JPH0334538A - Optical pumping reaction apparatus - Google Patents
Optical pumping reaction apparatusInfo
- Publication number
- JPH0334538A JPH0334538A JP16966389A JP16966389A JPH0334538A JP H0334538 A JPH0334538 A JP H0334538A JP 16966389 A JP16966389 A JP 16966389A JP 16966389 A JP16966389 A JP 16966389A JP H0334538 A JPH0334538 A JP H0334538A
- Authority
- JP
- Japan
- Prior art keywords
- light
- transmitting window
- film
- spaces
- light transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 40
- 230000003287 optical effect Effects 0.000 title description 6
- 238000005086 pumping Methods 0.000 title 1
- 238000005192 partition Methods 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 239000002826 coolant Substances 0.000 claims abstract description 7
- 230000005540 biological transmission Effects 0.000 claims description 30
- 239000003507 refrigerant Substances 0.000 claims description 21
- 230000001443 photoexcitation Effects 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 7
- 239000007789 gas Substances 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 13
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052753 mercury Inorganic materials 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 6
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 abstract description 5
- 239000011521 glass Substances 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 42
- 229910021417 amorphous silicon Inorganic materials 0.000 description 8
- 239000011261 inert gas Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 239000010409 thin film Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は光化学反応を利用して薄膜を形成する光励起反
応装置の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an improvement in a photoexcitation reaction device that forms a thin film using a photochemical reaction.
(従来の技術)
近年、光エネルギーによる化学反応を利用し、化合物ガ
スを分解して半導体ウェハ、ガラスなどの試料表面に薄
膜を形成する方法が開発されている。この方法は光CV
Dと称され、通常の薄膜形成法に比較して低温で膜形成
ができることや、荷電粒子によるダメージがないなどの
特長を有している。このため、光CVDは今後の薄膜形
成技術において重要な位置を占めるものとして注目され
ている。(Prior Art) In recent years, a method has been developed in which a chemical reaction using light energy is used to decompose a compound gas and form a thin film on the surface of a sample such as a semiconductor wafer or glass. This method is optical CV
This method is called D and has features such as being able to form a film at a lower temperature than normal thin film forming methods and being free from damage caused by charged particles. For this reason, photo-CVD is attracting attention as a technology that will play an important role in future thin film formation technology.
しかし、光CVD法では、光透過窓表面での成膜に起因
する問題・がある。すなわち、一部の絶縁膜を除いて、
目的とする膜は使用する光の波長に対して不透明である
。このため、光の照射時間が長くなるにつれて、光透過
窓表面に形成される膜の膜厚が厚くなって反応室内へ入
射される光の強度が低下し、膜厚の厚い膜を堆積させる
ことが困難になるという問題がある。However, the photo-CVD method has problems due to film formation on the surface of the light-transmitting window. In other words, except for some insulating films,
The desired film is opaque to the wavelength of the light used. Therefore, as the light irradiation time increases, the thickness of the film formed on the surface of the light transmission window increases, and the intensity of the light entering the reaction chamber decreases, resulting in the deposition of a thick film. The problem is that it becomes difficult.
この問題を解決するために、従来、以下のような方法が
提案されている。In order to solve this problem, the following methods have been proposed conventionally.
例えば、光透過窓に、蒸気圧が低くかつ使用する光の波
長に対して透明な油を塗布し、膜が付着するのを防止す
る方法が提案されている。しかし、この方法では、油の
成分が不純物として膜中に取り込まれるおそれがある。For example, a method has been proposed in which a light-transmitting window is coated with an oil that has a low vapor pressure and is transparent to the wavelength of the light used to prevent the film from adhering to the window. However, with this method, there is a risk that oil components may be incorporated into the membrane as impurities.
また、光透過窓に不活性ガスを吹き付ける方法も提案さ
れている。しかし、この方法では、反応室内の圧力が高
くなり、原料ガスが希釈される結果、試料表面での膜の
堆積速度が低下するという問題がある。A method of spraying an inert gas onto a light-transmitting window has also been proposed. However, this method has a problem in that the pressure inside the reaction chamber increases and the source gas is diluted, resulting in a decrease in the rate of film deposition on the sample surface.
また、光透過窓を二重にし、光透過窓間の空間に冷媒を
流して冷却する方法も提案されている(特開昭81−1
39022号公報)。この方法では、前述した問題を招
くことなく、光透過窓を冷却することにより光透過窓表
面での成膜を抑制することができ、試料表面に膜厚の厚
い膜を堆積することが容易になる。しかし、この方法で
は、二重になった光透過窓間の空間への入口側と出口側
とで冷媒に温度差が生じ、したがって光透過窓にも温度
差が生じて、光透過窓表面での成膜の状態が違ってくる
おそれがある(すなわち光透過窓表面では冷媒の入口側
では膜が薄く、出口側では膜が厚くなる)。この場合、
試料表面の位置によって光源から照射される光の強度が
異なり、膜の堆積速度が異なってくるため、試料表面に
堆積される膜の膜厚にばらつきが生じる。この傾向は、
試料の大型化に応じて光透過窓が大面積化するに伴い、
ますます顕著になってくる。In addition, a method has been proposed in which the light-transmitting windows are doubled and cooling is performed by flowing a refrigerant into the space between the light-transmitting windows (Japanese Unexamined Patent Publication No. 81-1
Publication No. 39022). With this method, film formation on the surface of the light-transmitting window can be suppressed by cooling the light-transmitting window without causing the above-mentioned problems, and a thick film can be easily deposited on the sample surface. Become. However, with this method, a temperature difference occurs in the refrigerant between the entrance and exit sides of the space between the double light-transmitting windows, and therefore a temperature difference also occurs in the light-transmitting window, and the surface of the light-transmitting window There is a possibility that the state of the film formation will be different (that is, on the surface of the light-transmitting window, the film is thinner on the refrigerant inlet side and thicker on the outlet side). in this case,
The intensity of the light irradiated from the light source differs depending on the position on the sample surface, and the deposition rate of the film varies, resulting in variations in the thickness of the film deposited on the sample surface. This trend is
As the size of the light transmission window increases as the sample size increases,
It's becoming more and more noticeable.
(発明が解決しようとする課題)
本発明は前述した従来の問題を解決しようとするもので
あり、膜中への不純物の取り込みを招くことなく、光透
過窓表面への膜の堆積を防止又は低減することにより、
試料表面に膜厚が厚くかつ均一な膜を堆積できる光励起
反応装置を提供することを目的とする。(Problems to be Solved by the Invention) The present invention attempts to solve the above-mentioned conventional problems, and is intended to prevent or prevent the deposition of a film on the surface of a light-transmitting window without introducing impurities into the film. By reducing
The object of the present invention is to provide a photoexcitation reaction device that can deposit a thick and uniform film on the surface of a sample.
[発明の構成]
(課題を解決する手段)
本発明の光励起反応装置は、反応室内に試料を収容して
原料ガスを導入し、光源から光透過窓を通して前記反応
室内へ光を入射することにより、前記原料ガスを光励起
分解し、前記試料表面に膜を形成する光励起反応装置に
おいて、前記反応室と前記光源との間に間隔を隔てて設
けられた複数の光透過窓と、前記光源からの光の入射方
向に沿って設けられ、光透過窓間の空間を複数の空間に
分割する隔壁と、前記隔壁によって分割された光透過窓
間の複数の空間にそれぞれ冷媒を供給する冷却手段とを
具備したことを特徴とするものである。[Structure of the Invention] (Means for Solving the Problems) The photoexcitation reaction apparatus of the present invention accommodates a sample in a reaction chamber, introduces a raw material gas, and allows light to enter the reaction chamber from a light source through a light transmission window. , a photoexcitation reaction device for photoexcited decomposition of the source gas to form a film on the surface of the sample, including a plurality of light transmission windows provided at intervals between the reaction chamber and the light source; A partition wall provided along the incident direction of light and dividing the space between the light transmission windows into a plurality of spaces, and a cooling means for supplying a coolant to each of the plurality of spaces between the light transmission windows divided by the partition wall. It is characterized by the following:
本発明の光励起反応装置には、隔壁によって分割された
光透過窓間の複数の空間に供給される冷媒の流れ方向が
、隣接する空間で逆向きとなるような供給手段を設ける
ことが好ましい。The photoexcitation reaction device of the present invention is preferably provided with a supply means such that the flow direction of the refrigerant supplied to the plurality of spaces between the light transmission windows divided by the partition walls is reversed in the adjacent spaces.
また、本発明の光励起反応装置には、光源を光透過窓と
平行な面内で揺動させる駆動機構を設けることが好まし
い。Further, it is preferable that the photoexcitation reaction device of the present invention is provided with a drive mechanism that swings the light source in a plane parallel to the light transmission window.
(作 用)
本発明の光励起反応装置を用いれば、反応室と光源との
間に間隔を隔てて複数の光透過窓を設け、光透過窓間の
空間を隔壁によって複数の空間に分割し、分割された光
透過窓間の複数の空間にそれぞれ冷媒を供給するので、
光透過窓を冷却することにより光透過窓表面での成膜を
抑制することができ、しかも光透過窓を従来よりも均一
に冷却することができるので、試料表面に膜厚が厚くか
つ均一な膜を堆積できる。特に、試料表面、に堆積させ
る目的の膜が、高温では堆積するが、低温では堆積しな
いか又は堆積速度が小さいものの場合、効果が大きい。(Function) When the photoexcitation reaction device of the present invention is used, a plurality of light transmission windows are provided at intervals between a reaction chamber and a light source, and the space between the light transmission windows is divided into a plurality of spaces by a partition wall. Since refrigerant is supplied to each of the multiple spaces between the divided light transmission windows,
By cooling the light-transmitting window, it is possible to suppress film formation on the surface of the light-transmitting window, and since the light-transmitting window can be cooled more uniformly than before, it is possible to create a thick and uniform film on the sample surface. Films can be deposited. This is particularly effective when the film to be deposited on the sample surface is deposited at high temperatures but not at low temperatures or at a low deposition rate.
また、隔壁によって分割された光透過窓間の複数の空間
に供給される冷媒の流れ方向が、隣接する空間で逆向き
と・なるように冷媒を供給すれば、光透過窓をより一層
均−に冷却することができるので、試料表面に堆積され
る膜の膜厚を均一化するのに効果がある。更に、光源を
光透過窓と平行な面内で揺動させれば、試料表面の位置
にかかわりなく光源から照a・tされる光の強度を均一
化することができるので、試料表面に堆積される膜の膜
厚を均一化するのに効果がある。Furthermore, if the refrigerant is supplied to a plurality of spaces between the light-transmitting windows divided by partition walls so that the flow direction of the refrigerant is opposite in the adjacent spaces, the light-transmitting windows can be evenly distributed. This is effective in making the thickness of the film deposited on the sample surface uniform. Furthermore, if the light source is oscillated in a plane parallel to the light transmission window, the intensity of the light emitted from the light source can be made uniform regardless of the position of the sample surface, thereby reducing the amount of deposits on the sample surface. This is effective in making the film thickness uniform.
(実施例)
以下、本発明の実施例を図面を参照して説明する。第1
図は本発明に係る光CVD装置の概略構成図、第2図は
同光CVD装置の光透過窓間の空間に設けられた隔壁を
示す平面図である。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a schematic configuration diagram of an optical CVD apparatus according to the present invention, and FIG. 2 is a plan view showing a partition wall provided in a space between light transmission windows of the optical CVD apparatus.
第1図において、反応容器1の内部が反応室となり、こ
の反応容器1の底部には試料台2が設けられ、この試料
台2上に例えばガラス基板からなる試料20が載せられ
る。試料台2の内部には試料20を加熱するヒーター3
が設けられている。化合物ガスを含む原料ガスはガス供
給部4から反応容器1内へ導入され、反応容器1内のガ
スは排気ポンプ5により排気される。反応容器1の上面
の試料台2上に対応する位置には第1の光透過窓6が取
り付けられている。反応容器1の上部にはランプハウス
7が設けられ、このランプハウス7の下面には、第1の
光透過窓6と平行に所定間隔を隔てて、第2の光透過窓
8が取り付けられている。In FIG. 1, the interior of a reaction vessel 1 serves as a reaction chamber, and a sample stage 2 is provided at the bottom of the reaction vessel 1, and a sample 20 made of, for example, a glass substrate is placed on this sample stage 2. Inside the sample stage 2 is a heater 3 that heats the sample 20.
is provided. A raw material gas containing a compound gas is introduced into the reaction vessel 1 from the gas supply section 4 , and the gas within the reaction vessel 1 is exhausted by the exhaust pump 5 . A first light transmitting window 6 is attached to the upper surface of the reaction vessel 1 at a position corresponding to the sample stage 2 . A lamp house 7 is provided in the upper part of the reaction vessel 1, and a second light transmitting window 8 is attached to the lower surface of the lamp house 7 parallel to the first light transmitting window 6 and spaced apart from each other by a predetermined distance. There is.
ランプハウス7内には、紫外光を反射する反射板9を介
して、第2の光透過窓8の近傍に低圧水銀ランプlOが
設けられている。不活性ガスが不活性ガス供給配管11
を通ってランプハウス7内に供給されてランプハウス7
内がパージされ、ランプハウス7内から不活性ガス排出
配管12を通って排出される。A low-pressure mercury lamp lO is provided in the lamp house 7 in the vicinity of the second light-transmitting window 8 via a reflector plate 9 that reflects ultraviolet light. Inert gas is inert gas supply pipe 11
is supplied into the lamp house 7 through the lamp house 7.
The interior of the lamp house 7 is purged, and the inert gas is discharged from the inside of the lamp house 7 through an inert gas exhaust pipe 12.
第1の光透過窓6と第2の透過窓8との間の空間は、第
2図に示すように、低圧水銀ランプlOからの光の入射
方向(鉛直方向)に沿って平行に設けられた複数の隔壁
13により、複数の空間に分割されている。これらの隔
壁i3は光透過窓と同一の材質で形成されている。隔壁
13によって分割された複数の空間には、互いに隣接す
る空間で冷媒の流れ方向が逆方向になるように、それぞ
れ冷媒供給配管14及び排出配管15が接続されている
。冷媒(例えば窒素ガス)は冷却装置16から供給配管
14を通って第1及び第2の光透過窓6.8間の空間に
供給され、第2図中矢印で示すように互いに隣接する空
間で逆方向に流れ、冷媒排出配管15を通って伶却装置
16へ循環される。As shown in FIG. 2, the space between the first light transmission window 6 and the second light transmission window 8 is provided in parallel along the incident direction (vertical direction) of light from the low-pressure mercury lamp IO. It is divided into a plurality of spaces by a plurality of partition walls 13. These partition walls i3 are made of the same material as the light transmitting window. A refrigerant supply pipe 14 and a discharge pipe 15 are respectively connected to the plurality of spaces divided by the partition wall 13 so that the flow direction of the refrigerant is opposite in mutually adjacent spaces. A refrigerant (for example, nitrogen gas) is supplied from the cooling device 16 through the supply pipe 14 to the space between the first and second light transmitting windows 6.8, and is supplied to the space adjacent to each other as indicated by the arrows in FIG. It flows in the opposite direction and is circulated through the refrigerant discharge pipe 15 to the cooling device 16.
この先CVD装置を用いて試料20表面にアモルファス
・シリコン膜を形成する場合について説明する。A case will now be described in which an amorphous silicon film is formed on the surface of the sample 20 using a CVD apparatus.
反応容器1内に試料20としてガラス基板を収容し、排
気ポンプ5により反応容器1内を減圧し、ヒーター3に
より試料20の温度を250℃まで昇温する。一方、冷
媒として用いられる窒素ガスを冷却装置16で冷却し、
冷媒供給配管14を通して第1及び第2の光透過窓6.
8間の空間に供給し、冷媒排出配管15を通って冷却装
置16へ循環することにより、第1の光透過窓6を一1
O℃に冷却する。A glass substrate is housed as a sample 20 in the reaction vessel 1, the pressure inside the reaction vessel 1 is reduced by the exhaust pump 5, and the temperature of the sample 20 is raised to 250° C. by the heater 3. On the other hand, nitrogen gas used as a refrigerant is cooled by a cooling device 16,
The first and second light transmitting windows 6.
By supplying the refrigerant to the space between the first light transmitting windows 6 and 8 and circulating it to the cooling device 16 through the refrigerant discharge pipe 15, the first light transmitting window 6 is
Cool to 0°C.
ガス供給部4から反応ガスとして水銀を含むモノシラン
(SiH4)を、流fit lO105c、圧力0.3
Torrで反応容器1内へ導入する。低圧水銀ランプI
Oから波長254■及び185 nmの紫外線を、第2
の光透過窓8、第1の光透過窓6を通して反応容器1内
に収容された試料20上に照射する。この結果、試料2
0表面にアモルファス・シリコン膜が堆積される。なお
、冷媒として用いられる窒素ガスは波長254■及び1
85 r+mの紫外線をほとんど吸収しない。Monosilane (SiH4) containing mercury is supplied as a reaction gas from the gas supply section 4 at a flow rate of 105c and a pressure of 0.3.
It is introduced into the reaction vessel 1 at Torr. Low pressure mercury lamp I
Ultraviolet rays with wavelengths of 254 nm and 185 nm are applied to the second
The sample 20 housed in the reaction vessel 1 is irradiated through the light transmission window 8 and the first light transmission window 6 . As a result, sample 2
An amorphous silicon film is deposited on the 0 surface. Note that nitrogen gas used as a refrigerant has wavelengths of 254 cm and 1
It hardly absorbs ultraviolet rays of 85 r+m.
この条件では、試料20表面にアモルファス・シリコン
膜が膜厚的togまで堆積されても、第1の光透過窓6
の表面には膜の堆積はほとんど起こらなかった。そして
、試料20表面に堆積されたアモルファス・シリコン膜
の膜厚のばらつきは±lO%であった。Under these conditions, even if the amorphous silicon film is deposited on the surface of the sample 20 to a thickness of tog, the first light transmitting window 6
Almost no film deposition occurred on the surface. The variation in film thickness of the amorphous silicon film deposited on the surface of sample 20 was ±10%.
また、前述した構成に加え、低圧水銀ランプ10を光透
過窓と平行な面内で揺動させる駆動機構(図示せず)を
設けた光CVD装置を用い、前記と同一の条件で試料表
面にアモルファス・シリコン膜を堆積した場合、膜厚の
ばらつきは±5%であった。In addition to the above-mentioned configuration, a photo-CVD apparatus equipped with a drive mechanism (not shown) for swinging the low-pressure mercury lamp 10 in a plane parallel to the light transmission window was used to coat the sample surface under the same conditions as above. When an amorphous silicon film was deposited, the film thickness variation was ±5%.
これに対して、光透過窓が1つだけであり、光透過窓の
冷却が行われない従来の光CVD装置を用い、前記と同
一の条件で試料表面にアモルファス・シリコン膜を堆積
した場合、膜厚のばらつきは±15%であった。On the other hand, when an amorphous silicon film is deposited on the sample surface under the same conditions as above using a conventional photo-CVD device that has only one light transmission window and does not cool the light transmission window, The variation in film thickness was ±15%.
なお、本発明は前述した実施例に限定されるものではな
く、その要旨を逸脱しない範囲で種々変形して実施する
ことができる。Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof.
例えば、試料表面に堆積させる目的の膜は、アモルファ
ス・シリコン膜に限らず、基板温度が低いと堆積が起ら
ないか、又は堆積速度が低いものであればどのような膜
でもよい。また、目的の膜がアモルファス・シリコン膜
である場合、原料ガスはモノシランに限らず、ジシラン
(S12H6)などでもよく、更にこれらにジボラン(
82H6)ホスフィン(PH3)、アセチレン(C2H
2)などを混合さ・せてもよい。また、原料ガスに水銀
を含ませず、直接励起により反応させてもよい。For example, the film to be deposited on the sample surface is not limited to an amorphous silicon film, but may be any film that does not deposit at low substrate temperatures or has a low deposition rate. Furthermore, when the target film is an amorphous silicon film, the raw material gas is not limited to monosilane, but may also be disilane (S12H6), etc. Furthermore, diborane (
82H6) Phosphine (PH3), Acetylene (C2H
2) etc. may be mixed. Alternatively, the raw material gas may not contain mercury and the reaction may be caused by direct excitation.
反応条件、例えば反応容器内の圧力、原料ガスの流量、
基板温度、光透過窓の冷却温度などは、目的とする膜に
応じて適宜設定することができる。Reaction conditions, such as pressure inside the reaction vessel, flow rate of raw material gas,
The substrate temperature, the cooling temperature of the light transmission window, etc. can be appropriately set depending on the intended film.
光源は、低圧水銀ランプに限らず、重水素ランプ、希ガ
スのマイクロ波放電による光源などでもよい。ヒーター
は抵抗加熱ヒーターに限らず、ハロゲンランプなどでも
よい。冷媒は窒素ガスに限らず、光源から照射される光
の吸収が小さいものであれば、気体でも液体でもよく、
気体としては例えばヘリウム、アルゴン、キセノンなど
の不活性ガスや水素など、液体としては例えばパーフル
オロポリエーテルなどを用いることができる。また、前
記実施例では冷媒を循環させたが、冷媒として窒素ガス
のように比較的安価なガスを用いた場合、必ずしも循環
させる必要はなく、大気中へ放出して回収しなくてもよ
い。The light source is not limited to a low-pressure mercury lamp, but may also be a deuterium lamp, a light source using microwave discharge of rare gas, or the like. The heater is not limited to a resistance heater, but may also be a halogen lamp or the like. The refrigerant is not limited to nitrogen gas; it may be a gas or liquid as long as it absorbs little light emitted from the light source.
As the gas, for example, an inert gas such as helium, argon, or xenon, or hydrogen can be used, and as the liquid, for example, perfluoropolyether can be used. Furthermore, although the refrigerant was circulated in the above embodiment, if a relatively inexpensive gas such as nitrogen gas is used as the refrigerant, it is not necessarily necessary to circulate it and it is not necessary to release it into the atmosphere and recover it.
以上詳述したように、本発明の光励起反応装置を用いれ
ば、光透過窓を均一に冷却して光透過窓表面のどの位置
でも成膜を抑制することができるので、試料表面に充分
厚くかつ膜厚の均一な膜を堆積できる。As detailed above, by using the photoexcitation reaction device of the present invention, it is possible to uniformly cool the light transmission window and suppress film formation at any position on the surface of the light transmission window. A film with uniform thickness can be deposited.
第1図は本発明に係る光CVD装置の概略構゛成図、第
2図は同光CVD装置の光透過窓間の空間に設けられた
隔壁を示す平面図である。
1・・・反応容器、2・・・試料台、3・・・ヒーター
4・・・ガス供給部、5・・・排気ポンプ、6・・・第
1の光透過窓、7・・・ランプハウス、8・・・第2の
光透過窓、9・・・反射板、10・・・低圧水銀ランプ
、11・・・不活性ガス供給配管、12・・・不活性ガ
ス排出配管、13・・・隔壁、14・・・冷媒供給配管
、15・・・冷媒排出配管、16・・・冷却装置、20
・・・試料。FIG. 1 is a schematic structural diagram of an optical CVD apparatus according to the present invention, and FIG. 2 is a plan view showing a partition wall provided in a space between light transmission windows of the optical CVD apparatus. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Sample stand, 3... Heater 4... Gas supply part, 5... Exhaust pump, 6... First light transmission window, 7... Lamp House, 8... Second light transmitting window, 9... Reflector, 10... Low pressure mercury lamp, 11... Inert gas supply piping, 12... Inert gas discharge piping, 13. ... Partition wall, 14 ... Refrigerant supply pipe, 15 ... Refrigerant discharge pipe, 16 ... Cooling device, 20
···sample.
Claims (3)
源から光透過窓を通して前記反応室内へ光を入射するこ
とにより、前記原料ガスを光励起分解し、前記試料表面
に膜を形成する光励起反応装置において、前記反応室と
前記光源との間に間隔を隔てて設けられた複数の光透過
窓と、前記光源からの光の入射方向に沿って設けられ、
光透過窓間の空間を複数の空間に分割する隔壁と、前記
隔壁によって分割された光透過窓間の複数の空間にそれ
ぞれ冷媒を供給する冷却手段とを具備したことを特徴と
する光励起反応装置。(1) A sample is housed in a reaction chamber, a raw material gas is introduced, and light is incident from a light source into the reaction chamber through a light transmission window to decompose the raw material gas through photoexcitation, thereby forming a film on the surface of the sample. In the photoexcitation reaction device, a plurality of light transmitting windows are provided at intervals between the reaction chamber and the light source, and a plurality of light transmission windows are provided along the incident direction of light from the light source,
A photoexcitation reaction device comprising a partition wall that divides the space between the light transmission windows into a plurality of spaces, and a cooling means that supplies a coolant to each of the plurality of spaces between the light transmission windows divided by the partition wall. .
に供給される冷媒の流れ方向が、隣接する空間で逆向き
となるような供給手段を設けたことを特徴とする請求項
(1)記載の光励起反応装置。(2) Claim (1) characterized in that a supply means is provided such that the flow direction of the refrigerant supplied to the plurality of spaces between the light transmitting windows divided by the partition walls is reversed in the adjacent spaces. ) The photoexcitation reaction device described in .
構を設けたことを特徴とする請求項(1)記載の光励起
反応装置。(3) The photoexcitation reaction device according to claim (1), further comprising a drive mechanism for swinging the light source in a plane parallel to the light transmission window.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16966389A JPH0334538A (en) | 1989-06-30 | 1989-06-30 | Optical pumping reaction apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16966389A JPH0334538A (en) | 1989-06-30 | 1989-06-30 | Optical pumping reaction apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0334538A true JPH0334538A (en) | 1991-02-14 |
Family
ID=15890624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16966389A Pending JPH0334538A (en) | 1989-06-30 | 1989-06-30 | Optical pumping reaction apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0334538A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100273683B1 (en) * | 1993-11-25 | 2001-01-15 | 김영환 | Application method of tube cooling device for manufacturing semiconductor device |
JP2001319886A (en) * | 2000-05-08 | 2001-11-16 | Tokyo Electron Ltd | System and method for heat treatment |
JP2003500865A (en) * | 1999-05-27 | 2003-01-07 | ステアーグ シーヴイディー システムズ リミテッド | Window cooled |
JP2004281703A (en) * | 2003-03-14 | 2004-10-07 | Koyo Thermo System Kk | Sheet feeding heat treatment apparatus |
-
1989
- 1989-06-30 JP JP16966389A patent/JPH0334538A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100273683B1 (en) * | 1993-11-25 | 2001-01-15 | 김영환 | Application method of tube cooling device for manufacturing semiconductor device |
JP2003500865A (en) * | 1999-05-27 | 2003-01-07 | ステアーグ シーヴイディー システムズ リミテッド | Window cooled |
JP2001319886A (en) * | 2000-05-08 | 2001-11-16 | Tokyo Electron Ltd | System and method for heat treatment |
JP2004281703A (en) * | 2003-03-14 | 2004-10-07 | Koyo Thermo System Kk | Sheet feeding heat treatment apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5229081A (en) | Apparatus for semiconductor process including photo-excitation process | |
US4597986A (en) | Method for photochemical vapor deposition | |
JPS6260467B2 (en) | ||
JPH0334538A (en) | Optical pumping reaction apparatus | |
CA1330601C (en) | Apparatus for semiconductor process including photo-excitation process | |
JPS60128265A (en) | Device for forming thin film in vapor phase | |
JP3456933B2 (en) | Semiconductor processing apparatus cleaning method and semiconductor processing apparatus | |
JP3174787B2 (en) | Optical CVD equipment | |
JPS61139022A (en) | Light excitation reactor | |
JPH01241818A (en) | Device for forming light excitation film | |
US4856458A (en) | Photo CVD apparatus having no ultraviolet light window | |
JP3010065B2 (en) | Optical excitation process equipment | |
JPS63207121A (en) | Method and apparatus for manufacturing thin film by photo-cvd | |
JPS6064426A (en) | Method and device for forming vapor-phase reaction thin- film | |
JPH03268320A (en) | Optical cvd system | |
JP3010066B2 (en) | Optical excitation process equipment | |
JPH04254489A (en) | Reduced pressure cvd device | |
JPS6118125A (en) | Thin film forming apparatus | |
JPS62280368A (en) | Thin film forming device | |
JPS63314828A (en) | Photo-cvd equipment | |
JPS6187317A (en) | Photoexcitation cvd equipment | |
JPS61131428A (en) | Semiconductor manufacturing equipment | |
JPH02159376A (en) | Method and device for light-excited cvd | |
JPS6281020A (en) | Photo-cvd device | |
JPS6156278A (en) | Film forming method |