JPH02159376A - Method and device for light-excited cvd - Google Patents

Method and device for light-excited cvd

Info

Publication number
JPH02159376A
JPH02159376A JP31359088A JP31359088A JPH02159376A JP H02159376 A JPH02159376 A JP H02159376A JP 31359088 A JP31359088 A JP 31359088A JP 31359088 A JP31359088 A JP 31359088A JP H02159376 A JPH02159376 A JP H02159376A
Authority
JP
Japan
Prior art keywords
gas
substrate
photo
cvd method
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31359088A
Other languages
Japanese (ja)
Inventor
Saburo Adaka
阿高 三郎
Kenji Shibata
芝田 健二
Hiroshi Yuasa
博司 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP31359088A priority Critical patent/JPH02159376A/en
Publication of JPH02159376A publication Critical patent/JPH02159376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the clouding of a light incident window and to form a uniform film at a high rate by forming a gaseous NO2 current on the substrate side in the space between the substrate and the light incident window and forming a gaseous silane compd. current thereon. CONSTITUTION:Sections 5 and 6 are formed by a perforated plate 3 and a partition plate 4 on the gas inlet side of a reaction vessel 1, and gas inlets 2a and 2b are respectively provided to the sections 5 and 6. The perforated plate 3 is made to metallic particles, ceramic particles, and heat-resistant resin, and the mean particle diameter is controlled to about 0.1mu to 1mm. Under such a constitution, the reaction vessel 1 is evacuated through an exhaust port 12, and the substrate 10 is heated to a specified temp. by a heater 11. SiH4 is then introduced from the gas inlet 2a and NO2 from the gas inlet 2b, the gas currents 13 and 14 are straightened by thew perforated plate 3, UV light irradiates from a light source 8 through the light incident window 9, and SiO2 is deposited on the substrate 10. By this method, the window 9 is not clouded, and a uniform film is formed at a high rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光励起CVD方法およびその装置に係り、特に
光入射窓の窓くもりの防止と高速、均一な成膜を達成す
るのに好適な光励起CVD方法およびその装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photoexcitation CVD method and an apparatus thereof, and particularly to a photoexcitation CVD method suitable for preventing fogging of a light incident window and achieving high-speed, uniform film formation. The present invention relates to a CVD method and apparatus.

〔従来の技術〕 光励起CVD方法では反応ガスにそのガスの吸収波長に
応じた波長を有する光を照射することによって化学反応
を促進させることを原理としている。したがって、光励
起CVD法では、プラズマ反応のように荷電粒子の影響
がなく、基板に堆積した膜の損傷等がないことから、こ
の方法はLSI等の分野における酸化シリコンの成膜に
有望とされている。
[Prior Art] The principle of the photo-excited CVD method is to promote a chemical reaction by irradiating a reaction gas with light having a wavelength corresponding to the absorption wavelength of the gas. Therefore, unlike plasma reactions, the photo-excited CVD method is not affected by charged particles and does not damage the film deposited on the substrate, so this method is considered promising for forming silicon oxide films in fields such as LSI. There is.

従来の光励起CVD装置は、第4図に示すように反応容
器31の上面側に紫外光用光源32から照射される紫外
光を容器内に入射させる光入射窓33が設けられ、薄膜
を堆積させるための基板34がハロゲンランプ等の基板
加熱用ヒータ35により加熱されるようになっている。
As shown in FIG. 4, in the conventional photoexcitation CVD apparatus, a light entrance window 33 is provided on the upper surface side of a reaction vessel 31 to allow ultraviolet light irradiated from an ultraviolet light source 32 to enter the vessel, thereby depositing a thin film. The substrate 34 used for this purpose is heated by a substrate heating heater 35 such as a halogen lamp.

また、反応容器31の側面部には、反応ガス36を容器
内部に導入するためのガス導入口37と、容器内部の排
ガス38を容器外に排出させるためのガス排出口39が
それぞれ配設されている。
Furthermore, a gas inlet 37 for introducing the reaction gas 36 into the inside of the container, and a gas exhaust port 39 for exhausting the exhaust gas 38 inside the container to the outside of the container are provided on the side surface of the reaction container 31, respectively. ing.

この光励起CVD装置では、ガス導入口37から反応ガ
ス36として5iHaおよびOtを導入し、紫外光用光
源32から光入射窓33を経て照射される紫外光によっ
て化学反応が促進され、低温下で基板34上にS i 
O!が析出する。なお、この種の光励起CVD装置には
特開昭61−131415号等の記載のものが挙げられ
る。
In this photo-excited CVD apparatus, 5iHa and Ot are introduced as reaction gases 36 from a gas inlet 37, and the chemical reaction is promoted by ultraviolet light irradiated from an ultraviolet light source 32 through a light incidence window 33, and the substrate is heated at a low temperature. S i on 34
O! is precipitated. Incidentally, examples of this type of photoexcitation CVD apparatus include those described in JP-A-61-131415 and the like.

〔発明が解決しようとするyA題〕[YA problem that the invention attempts to solve]

むかしながら、従来の光励起CVD装置では、基板34
上にSiO□が析出すると同時に光入射窓33面にもS
in、が析出する。光入射窓33面の温度が基板34面
の温度よりも低いために光入射窓33面に析出する5l
O1は、緻密性が低く、紫外光を吸収、散乱するため光
入射窓33における透過光強度を低下させる要因となっ
ている。
In the past, in conventional photo-excited CVD equipment, the substrate 34
At the same time, SiO□ is deposited on the surface of the light entrance window 33.
in, is precipitated. Since the temperature of the light entrance window 33 surface is lower than the temperature of the substrate 34 surface, 5L is deposited on the light entrance window 33 surface.
O1 has low density and absorbs and scatters ultraviolet light, which causes a decrease in the intensity of transmitted light at the light entrance window 33.

−船釣に、光励起CVD法では、基板温度、反応ガスの
組成比、圧力を一定に保った条件下では、基板上に堆積
する薄膜の成膜速度は、光の照射強度に比例して速くな
ることが知られている。したがって、光入射窓33にS
 i O!が析出することは、薄膜の成nり速度を経時
的に低下させるばかりでなく、均一に成膜させることお
よび成膜の厚みを制御することを困難なものとしている
- For boat fishing, in the photo-excited CVD method, under conditions where the substrate temperature, the composition ratio of the reactant gas, and the pressure are kept constant, the deposition rate of the thin film on the substrate increases in proportion to the light irradiation intensity. It is known that Therefore, the S
i O! The precipitation not only reduces the rate of thin film formation over time, but also makes it difficult to form a film uniformly and to control the thickness of the film.

本発明の目的は、上記した従来技術の課題を解決し、光
入射窓に対する析出物による窓くもりを防止して高速な
成膜操作が達成できると共に均一な成膜と膜厚制御を可
能とした光励起CVD方法および装置を提供することに
ある。
The purpose of the present invention is to solve the above-mentioned problems of the conventional technology, to prevent window fogging due to precipitates on the light entrance window, to achieve high-speed film formation, and to enable uniform film formation and film thickness control. An object of the present invention is to provide a photo-excited CVD method and apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の光励起CVD法に
おいては、基体と光入射窓との間の空間部に対し、上下
方向に複数段のガス流れを形成するようにし、基体側に
はN Oxガス流を形成し、その上側にシラン化合物の
ガス流を形成するようにしたものである。
In order to achieve the above object, in the photo-excited CVD method of the present invention, multiple stages of gas flow are formed in the vertical direction in the space between the substrate and the light incidence window, and N2 is formed on the substrate side. An Ox gas flow is formed, and a silane compound gas flow is formed above it.

ま°た、本発明の光励起CVD装置においては、基体と
光入射窓との間の空間部に対する側面部側に上下方向に
複数段に区画された区画室を有し、それらのガス吹出し
面が金属粒子の焼結体等の多孔体からなるノズルを設け
、最下段の区画室にNO□、その上段側にシラン化合物
を導入するようにしたものである。
Furthermore, the optically excited CVD apparatus of the present invention has compartments divided into a plurality of stages in the vertical direction on the side surface side of the space between the substrate and the light incidence window, and the gas blowing surfaces of the compartments are divided into multiple stages in the vertical direction. A nozzle made of a porous body such as a sintered body of metal particles is provided, and NO□ is introduced into the lowermost compartment, and a silane compound is introduced into the upper compartment.

〔作用〕[Effect]

酸化ガスとしてのNO□は、発生期の酸素(0)を生成
する反応では、その吸収機は244〜398nmであり
、低圧水銀ランプ、キセノンランプ等の長波長成分の吸
収率が高く、シラン化合物とNOよとの反応が促進され
、S i OtO高速成膜が達成される。またNO□は
SiH,等のシラン化合物に比較して重いガスであるた
め、N02の上段側への拡散が少なく、高速成膜と同時
に光入射窓に対する窓くもりが抑制される。そして、高
速成膜により、均一な成膜条件の設定が容易となる。
NO□ as an oxidizing gas has an absorber of 244 to 398 nm in the reaction that produces oxygen (0) in the nascent stage, and has a high absorption rate of long wavelength components such as low-pressure mercury lamps and xenon lamps, and is The reaction between NO and NO is promoted, and high-speed SiOtO film formation is achieved. Furthermore, since NO□ is a heavier gas than silane compounds such as SiH, there is less diffusion of N02 to the upper stage side, and at the same time as high-speed film formation, window clouding of the light incidence window is suppressed. Furthermore, high-speed film formation makes it easy to set uniform film formation conditions.

次に本発明の光励起CVD装置においては、ガス吹出し
面が多孔板からなるノズルから整流されたガス流が形成
され、上記方法における作用が確実に行われる。
Next, in the photo-excited CVD apparatus of the present invention, a rectified gas flow is formed from the nozzle whose gas blowing surface is made of a perforated plate, and the effect of the above method is reliably performed.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の光励起CVD装置の一実施例を示す縦
断面図である。第1図において、反応容器lの一側面部
側に2つのガス導入口2a、2bが配設され、ガス導入
口2aは多孔板3と区画板4によって形成される区画室
5に連通され、ガス導入口2bは多孔板3と区画板6に
よって形成される区画室7に連通されている。また、ガ
ス導入口2a、2bは各区画室5.6における側面中央
部に配置されている。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of a photoexcitation CVD apparatus of the present invention. In FIG. 1, two gas introduction ports 2a and 2b are arranged on one side of a reaction vessel l, and the gas introduction port 2a communicates with a compartment 5 formed by a perforated plate 3 and a partition plate 4. The gas inlet 2b communicates with a compartment 7 formed by the perforated plate 3 and the partition plate 6. Further, the gas introduction ports 2a and 2b are arranged at the center of the side surface of each compartment 5.6.

多孔板3は、微細な連通孔を有する多孔質体からなって
いる。この多孔体としては、例えば、ステンレス等の金
属粒子若しくはセラミックス粒子の焼結体又はフン素樹
脂(例えば、テフロン)等の耐熱性樹脂で形成されたも
のが有効である。そして、多孔体における平均粒径は目
詰りを防止する点から0.1μm以上、所定のガスを整
流化させる点から1mm以下とすることが望ましい。
The porous plate 3 is made of a porous body having fine communication holes. As this porous body, for example, one formed of a sintered body of metal particles such as stainless steel or ceramic particles, or a heat-resistant resin such as fluorine resin (for example, Teflon) is effective. The average particle diameter in the porous body is desirably 0.1 μm or more in order to prevent clogging, and 1 mm or less in order to rectify a given gas.

なお、第1図中、8は紫外光用光源、9は光入射窓、1
0は基板、11は基板加熱用ヒータ、12はガス排気口
である。
In addition, in FIG. 1, 8 is a light source for ultraviolet light, 9 is a light entrance window, and 1
0 is a substrate, 11 is a heater for heating the substrate, and 12 is a gas exhaust port.

この光励起CVD装置では、まず、反応容器l内は、〜
10−”torrオーダまで排気された後、基板加熱用
ヒータIfによって基板10は所定の温度まで加熱され
る。
In this photo-excited CVD apparatus, first, inside the reaction vessel l, ~
After being evacuated to the order of 10-'' torr, the substrate 10 is heated to a predetermined temperature by the substrate heating heater If.

次にガス導入口2aからSiH4又はN2で希釈された
S i H4が区画室5に導入され、ガス導入口2bか
らNtで希釈されたN Oxが区画室7内に導入される
。各区画室5.7内に導入されたガスは、多孔板3に形
成された微細な連通孔を介して整流ガスとなって反応容
器1内に吹き出される。
Next, SiH4 or SiH4 diluted with N2 is introduced into the compartment 5 through the gas inlet 2a, and NOx diluted with Nt is introduced into the compartment 7 through the gas inlet 2b. The gas introduced into each compartment 5.7 becomes a rectified gas and is blown into the reaction vessel 1 through fine communication holes formed in the perforated plate 3.

この場合、一般にノズルからのガスや流体の流量はノズ
ル前後での圧力差の2分の1乗に比例する。したがって
、吹き出し口を形成する多孔板3の前後の圧損が大きい
、このため、区画室5.7内のガス圧力はほぼ一定値と
なり、多孔板3で形成されたガス吹き出し口から吹き出
すガスの流速は多孔体面で一様となり、偏流は起こらな
い、さらに多孔体表面には多数の孔を存するのでそれら
の孔から吹き出すガスの流速は極めて小さい、しかも答
礼が極めて近接しているので各孔間に存在するデッドス
ペースが相対的に小さくなり、ガスの乱れがHEしにく
い、その結果、多孔板3より吹き出すガスは乱れや偏り
がなく、整流されたものとなる。
In this case, the flow rate of gas or fluid from the nozzle is generally proportional to the 1/2 power of the pressure difference before and after the nozzle. Therefore, the pressure drop before and after the perforated plate 3 that forms the air outlet is large. Therefore, the gas pressure in the compartment 5.7 is approximately constant, and the flow rate of the gas blown out from the gas outlet formed by the perforated plate 3 is large. is uniform on the surface of the porous body, and no drift occurs.Furthermore, since there are many holes on the surface of the porous body, the flow rate of the gas blown out from those holes is extremely small.Furthermore, since the gas flow is very close to each other, there is no flow between each hole. The existing dead space becomes relatively small, and gas turbulence is less likely to cause HE. As a result, the gas blown out from the porous plate 3 is rectified without turbulence or bias.

したがって、区画室5からのガスは整流された上段のガ
ス流れ13、区画室7からのガスは整流された下段のガ
ス流れ14をそれぞれ形成する。
The gas from compartment 5 thus forms a rectified upper gas stream 13 and the gas from compartment 7 forms a rectified lower gas stream 14.

この場合、ガス流れ13とガス流れ14とのガス境界N
J15でスリップの発生を防止するために、ガス流れ1
3とガス流れ14のそれぞれの線速度が同じなるように
区画室5.7にそれぞれ供給されるガスの供給量が調整
される。
In this case, the gas boundary N between gas stream 13 and gas stream 14
To prevent slippage at J15, gas flow 1
The amount of gas supplied to each compartment 5.7 is adjusted so that the linear velocities of gas flow 14 and gas flow 14 are the same.

また、区画室7から多孔板3を経て吹き出されるガスは
、N2で希釈されたNOlであり、区画室5から多孔板
3を歴で吹き出されるガス(St114又はN、で希釈
された5iH4)よりも重いガスであるため、上段のガ
ス流れ13側に混入することがない。
The gas blown out from the compartment 7 through the perforated plate 3 is NOl diluted with N2, and the gas blown out from the compartment 5 through the perforated plate 3 (St114 or 5iH4 diluted with N) ), it does not mix into the upper gas flow 13 side.

さらに光励起CVD成膜条件下では、(1)1〜5to
rrの減圧下であり、かつ、ガス流れ13.14の線速
度が速< 、(2)基板10の温度は3(10Cと低く
、また容器内のガス温度は紫外線による加熱によって1
(10〜150 ”C程度に加熱される。
Furthermore, under photo-excited CVD film formation conditions, (1) 1 to 5 to
rr, and the linear velocity of the gas flow 13.
(Heated to about 10-150"C.

このため、反応容器l内で熱滞留は無視できる程度にす
ぎない。
Therefore, heat retention within the reaction vessel 1 is negligible.

次に光源に低圧水銀ランプを使用した場合、先ず、紫外
光の波長185nmの領域0□→0.の反応によってオ
ゾン(0,)が発生する0次いで、このオゾンは、紫外
光の波長254nmの領域で0、→0□+Oの反応によ
って発生期の酸素(O)を生成する。
Next, when a low-pressure mercury lamp is used as a light source, first, the region 0□→0. Ozone (0,) is generated by the reaction of 0. Next, this ozone generates nascent oxygen (O) by the reaction of 0,→0□+O in the wavelength range of 254 nm of ultraviolet light.

最後に反応ガスとしてのSiH4は、この発生期の酸素
と反応して、SiH,+O→5iOz+H2の反応が進
行して310□が形成される。したがって、上記した反
応機構から、Sin、の形成には、SiH4の光励起が
関係しているのではなく、低圧水銀ランプからの紫外光
の185nmの波長域における光励起が、酸化シリコン
(SiO7)の形成速度の律速となるとみることができ
る。ここで酸化ガスとして使用されるNO8の吸収域は
、 (1)   N Oz  →N O+ O(228、8
n m )(2)   No、−No+○  (244
〜390 nm)(3)Not ” +NOz→2NO
十〇□−+NOs  +NO(>43 6 nm)で表
されるように、酸化ガスとしてのNzOに比較して長波
長域にある。
Finally, SiH4 as a reaction gas reacts with the oxygen in the nascent stage, and the reaction of SiH, +O→5iOz+H2 proceeds to form 310□. Therefore, from the reaction mechanism described above, the formation of Sin is not related to the photoexcitation of SiH4, but the photoexcitation in the 185 nm wavelength range of ultraviolet light from a low-pressure mercury lamp is responsible for the formation of silicon oxide (SiO7). It can be seen that the speed is the limiting factor. The absorption range of NO8 used as the oxidizing gas here is: (1) N Oz → N O+ O(228, 8
nm) (2) No, -No+○ (244
~390 nm) (3) Not ” +NOz → 2NO
As expressed by 10□-+NOs +NO (>43 6 nm), it is in a longer wavelength range than NzO as an oxidizing gas.

ここで、発生期の酸素(0)を生成する反応(2)では
、その吸収域は、244〜398nmであり、この吸収
域は、低圧水銀ランプにおいて最大光強度である254
nnnの吸収域を含んでいる。酸化ガスとして、NOt
を使用する場合、波長254m以上の光が十分に吸収さ
れ(すなわち、光吸収係数が大きい)、光分解して発生
期の酸素(0)を発生し易くなる。すなわち、波長25
4nm以上の光が有効に利用されるため、活性種濃度が
高くなる。
Here, in the reaction (2) that produces nascent oxygen (0), its absorption range is 244 to 398 nm, and this absorption range is 254 nm, which is the maximum light intensity in a low-pressure mercury lamp.
It contains nnn absorption range. As an oxidizing gas, NOt
When using, light with a wavelength of 254 m or more is sufficiently absorbed (that is, the light absorption coefficient is large), and it becomes easy to photodecompose and generate nascent oxygen (0). That is, wavelength 25
Since light of 4 nm or more is effectively used, the concentration of active species is increased.

したがって、NO7を酸化ガスとして使用することは、
5iHnの酸化を促進させ、Singの成膜速度を高め
ることになる。また、成膜速度が高くなれば、均一成膜
における成膜条件が広くなり、均一成膜が可能となる。
Therefore, using NO7 as an oxidizing gas
This promotes the oxidation of 5iHn and increases the Sing film formation rate. Moreover, if the film formation rate becomes high, the film formation conditions for uniform film formation become wider, and uniform film formation becomes possible.

また、第3図に示すように低圧水銀ランプ以外にも、超
高圧水銀ランプ、キセノン(Xe)アークランプ、ハラ
イドランプの場合、波長244〜398nmのjJJa
iでは、光強度が大きい、光励起CVD法によって、酸
化シリコンを生成する場合、光源として超高圧水銀ラン
プ、キセノン、(Xe)アークランプ、ハライドランプ
を使用し、酸化ガスとしてNO□を使用する場合にも、
SiH4の酸化を促進させ、Sin、の成膜速度を高め
ることになる。
In addition, as shown in Fig. 3, in addition to low-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon (Xe) arc lamps, and halide lamps have jJJa wavelengths of 244 to 398 nm.
In i, when silicon oxide is produced by a photo-excited CVD method with high light intensity, when an ultra-high-pressure mercury lamp, xenon, (Xe) arc lamp, or halide lamp is used as a light source, and NO□ is used as an oxidizing gas. Also,
This promotes the oxidation of SiH4 and increases the rate of film formation of Sin.

さらに、低圧水銀ランプ、超高圧水銀ランプ、キセノン
(Xe)アークランプ、ハライドランプはそれぞれ単独
に使用しもよく、またはこれらのランプを併用した複合
ランプを使用することもできる。
Furthermore, a low-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon (Xe) arc lamp, and a halide lamp may be used individually, or a composite lamp may be used in which these lamps are used in combination.

本発明において、酸化シリコンを生成するための反応ガ
スとしては、シラン化合物、例えば、モノシラン(SJ
f(、)、ジシラン(SitH6)、メチルシラン(S
 i’H3(CH3) ) 、モノクロルシラン(S 
i H3(C2))等が使用される。
In the present invention, a silane compound such as monosilane (SJ
f(,), disilane (SitH6), methylsilane (S
i'H3(CH3) ), monochlorosilane (S
i H3(C2)) etc. are used.

これらのシラン化合物は、酸化ガス(No、)の光励起
により生成する発生期の酸素(0)により酸化シリコン
を生成する。
These silane compounds generate silicon oxide with nascent oxygen (0) generated by photoexcitation of an oxidizing gas (No.).

因みに基板10の温度1(10°C,S i Ha分圧
0.02Lorr、全圧5torr、モル比(NOz 
/ S i Ha ) I 、時間10分での成11り
条件において、60μm/minの高速成膜、膜圧分布
±1%を達成できた。また、成膜時間1(10分後にお
いても光入射窓9の窓くもりは認められなかった。この
ことは、膜厚6μmの成膜に対して窓くもりが生じなか
ったことになり、現在のLSIおよび■−■族化合物半
導体等の作製のプロセスのパッシベーションに使用可能
である。
Incidentally, the temperature of the substrate 10 (10°C, S i Ha partial pressure 0.02 Lorr, total pressure 5 torr, molar ratio (NOz
/ S i Ha ) I , under the conditions of 11 deposition times of 10 minutes, high-speed film deposition of 60 μm/min and film pressure distribution of ±1% could be achieved. In addition, no clouding of the light incident window 9 was observed even after film formation time 1 (10 minutes). This means that no clouding of the window occurred when the film was formed with a film thickness of 6 μm, and the current It can be used for passivation in the manufacturing process of LSI and ■-■ group compound semiconductors.

第2図は、本発明の光励起CVD装置の他の実施例を示
す断面図である。第2図においては、反応容器1の一側
面側にガス導入口2a、2bの他にガス導入口2cが配
設され、このガス導入口2Cは多孔板3と区画板2工と
によって形成される区画室22に連通されている。第2
図おいて、第1図に示す構成部材と同一部材は同一符号
で示している。
FIG. 2 is a sectional view showing another embodiment of the optically excited CVD apparatus of the present invention. In FIG. 2, in addition to gas inlets 2a and 2b, a gas inlet 2c is provided on one side of the reaction vessel 1, and this gas inlet 2C is formed by a perforated plate 3 and a partition plate 2. It is connected to a compartment 22 which is divided into two compartments. Second
In the figure, the same members as those shown in FIG. 1 are designated by the same reference numerals.

この光励起CVD装置では、ガス導入口2aからN1、
ガス導入口2bからSiH4、ガス導入口2CからNO
8がそれぞれ導入され、多孔板3を通して整流され、3
段のガス流13.14.23を形成する。この場合は、
ガス境界層15.24で各ガス流のスリップが生じない
ように区画室5.7.22に供給されるガス量が調整さ
れる。
In this optically excited CVD apparatus, N1 from the gas inlet 2a,
SiH4 from gas inlet 2b, NO from gas inlet 2C
8 are respectively introduced, rectified through the perforated plate 3, and 3
Forming stage gas streams 13.14.23. in this case,
The amount of gas supplied to the compartment 5.7.22 is adjusted so that no slippage of the respective gas flow occurs in the gas boundary layer 15.24.

本実施例では、第1図に示す実施例の効果の他に光入射
窓9に隣接するガス流れ13は光化学反応に関与しない
Ntガスであるため、反応生成物(SiO8)が光入射
窓9に付着することをより確実に防止することができる
In this embodiment, in addition to the effect of the embodiment shown in FIG. can be more reliably prevented from adhering to the surface.

上記した実施例では、光化学反応に関与しないガスとし
てNtを示したが、N2以外にArガス、Heガス等の
不活性ガスを使用することができる。
In the above embodiments, Nt was shown as a gas that does not participate in photochemical reactions, but inert gases such as Ar gas and He gas can be used in addition to N2.

また、シラン化合物又はNO2を希釈するガスは、N2
以外にArガス、Heガス等の不活性ガスを利用するこ
ともできる。この場合にも各整流ガスが下段側の方が重
くなるようなガスを選定することが望ましい。
In addition, the gas that dilutes the silane compound or NO2 is N2
In addition to this, inert gases such as Ar gas and He gas can also be used. In this case as well, it is desirable to select gases that are heavier on the lower side of each rectifying gas.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の光励起CVD方法によれば、光入
射窓の窓くもり防止が可能となり、かつ、高速成膜、均
一成膜が達成できるので、本発明方法は、例えばLSI
、■−v族化合物半導体デバイスの作成プロセス等−・
の適用に拡大でき、L7かも、光源の光利用効率が向上
するため、反応ガスの消費を低減でき、高速成膜、均一
成膜の向上によって、高スループツト化および大面積化
の成膜操作が可能となる。
As described above, according to the photo-excited CVD method of the present invention, it is possible to prevent the light entrance window from fogging, and to achieve high-speed and uniform film formation.
,■-V group compound semiconductor device creation process, etc.
L7 also improves the light utilization efficiency of the light source, which reduces the consumption of reaction gas, and improves high-speed and uniform film formation, allowing for high-throughput and large-area film formation operations. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光励起CVD装置の一実施例を示す縦
断面図、第2図は本発明の光励起CVD装置の他の実施
例を示す縦断面図、第3図は各種光源の発光スペクトル
を示すグラフ、第4図は従来の光励起CVD装置の縦断
面図である。 1・・・・・・反応容器、2a、2b、2c・・・・・
・ガス導入口、3・・・・・・多孔板、4,6.21・
・・・・・区画板、5.7.22・・・・・・区画室、
8・・・・・・紫外光用光源、9・・・・・・光入射窓
、10・・・・・・基板、11・・・・・・基板加熱用
ヒータ、12・・・・・・排気口、13,14.23・
・・・・・ガス流れ、15.24・・・・・・ガス境界
層。 第1図
FIG. 1 is a longitudinal sectional view showing one embodiment of the photoexcitation CVD apparatus of the present invention, FIG. 2 is a longitudinal sectional view showing another embodiment of the photoexcitation CVD apparatus of the invention, and FIG. 3 is the emission spectrum of various light sources. FIG. 4 is a vertical cross-sectional view of a conventional photoexcitation CVD apparatus. 1...Reaction container, 2a, 2b, 2c...
・Gas inlet, 3...Perforated plate, 4,6.21・
...Division board, 5.7.22...Division room,
8... Light source for ultraviolet light, 9... Light entrance window, 10... Substrate, 11... Heater for heating the substrate, 12...・Exhaust port, 13, 14.23・
...gas flow, 15.24 ...gas boundary layer. Figure 1

Claims (10)

【特許請求の範囲】[Claims] (1)反応室内に反応ガスを導入すると共にその反応ガ
スに対する酸化ガスを導入し、光源から光入射窓を介し
て照射させる紫外光の励起による光化学反応を利用して
反応室内に配置された基体上に膜を形成させるものにお
いて、前記基体側に酸化ガスとしてのNO_2又はNO
_2を主成分とする第1のガス流を形成し、その上層流
にシラン化合物又はシラン化合物を主成分とする第2の
ガス流を形成することを特徴とする光励起CVD方法。
(1) A substrate placed in a reaction chamber by introducing a reaction gas into the reaction chamber, introducing an oxidizing gas for the reaction gas, and utilizing a photochemical reaction caused by excitation of ultraviolet light irradiated from a light source through a light entrance window. In the case where a film is formed on the substrate side, NO_2 or NO_2 as an oxidizing gas is added to the substrate side.
A photo-excited CVD method characterized by forming a first gas flow containing _2 as a main component, and forming a silane compound or a second gas flow containing a silane compound as a main component in the upper flow.
(2)前記第2のガス流の上層流であって、前記光入射
窓に隣接して光化学反応に関与しないガスからなる第3
のガス流を形成することを特徴とする請求項(1)記載
の光励起CVD方法。
(2) A third gas flow, which is an upper flow of the second gas flow and is adjacent to the light entrance window and is made of a gas that does not participate in photochemical reactions.
2. The photoexcited CVD method according to claim 1, wherein a gas flow of .
(3)前記シラン化合物が、SiH_4、Si_2H_
6、SiH_3(CH_3)、SiH_3(Cl)の少
なくとも1種以上であることを特徴とする請求項(1)
記載の光励起CVD方法。
(3) The silane compound is SiH_4, Si_2H_
6. Claim (1) characterized in that it is at least one of SiH_3 (CH_3) and SiH_3 (Cl).
The photoexcited CVD method described.
(4)前記NO_2を主成分とするガスがNO_2と不
活性ガスとからなることを特徴とする請求項(1)記載
の光励起CVD方法。
(4) The photo-excited CVD method according to claim 1, wherein the gas containing NO_2 as a main component consists of NO_2 and an inert gas.
(5)前記シラン化合物を主成分とするガスが、シラン
化合物と不活性ガスとからなることを特徴とする請求項
(1)記載の光励起CVD方法。
(5) The photoexcitation CVD method according to claim (1), wherein the gas containing the silane compound as a main component consists of a silane compound and an inert gas.
(6)前記第3のガス流が、不活性ガスからなることを
特徴とする請求項(1)記載の光励起CVD方法。
(6) The photo-excited CVD method according to claim (1), wherein the third gas flow comprises an inert gas.
(7)前記不活性ガスが、N_2からなることを特徴と
する請求項(4)記載〜請求項(6)のいずれかに記載
の光励起CVD方法。
(7) The photoexcitation CVD method according to any one of claims (4) to (6), wherein the inert gas is composed of N_2.
(8)反応室内に配置される基体と、この基体の上方側
に配置され、光源からの紫外光を透過させる光入射窓と
を備えた光励起CVD装置において、前記基体と前記光
入射窓との空間部に対する側面部側に上下方向に複数段
に区画された区画室を有し、それらの各ガス吹出し面が
多孔体からなるノズルを設け、最下段の区画室に NO_2又はNO_2を主成分とするガスを導入し、そ
の区画室より上段の区画室にシラン化合物を導入するよ
うにしたことを特徴とする光励起CVD装置。
(8) In a photo-excited CVD apparatus comprising a substrate disposed in a reaction chamber and a light entrance window disposed above the base and transmitting ultraviolet light from a light source, the substrate and the light entrance window It has compartments divided into multiple levels in the vertical direction on the side surface side of the space, each of which has a gas blowing surface equipped with a nozzle made of a porous material, and the lowest compartment contains NO_2 or NO_2 as the main component. A photo-excited CVD apparatus characterized in that a gas is introduced into the compartment, and a silane compound is introduced into a compartment above the compartment.
(9)前記多孔体が、金属粒子若しくはセラミックス粒
子の焼結体又は耐熱性樹脂からなることを特徴とする請
求項(8)記載の光励起CVD装置。
(9) The photo-excited CVD apparatus according to claim (8), wherein the porous body is made of a sintered body of metal particles or ceramic particles, or a heat-resistant resin.
(10)前記ノズルが3段に分割された区画室を有し、
その最上段に不活性ガスを導入するようにしたことを特
徴とする請求項(8)記載の光励起CVD装置。
(10) The nozzle has a compartment divided into three stages,
9. The photoexcited CVD apparatus according to claim 8, wherein an inert gas is introduced into the uppermost stage.
JP31359088A 1988-12-12 1988-12-12 Method and device for light-excited cvd Pending JPH02159376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31359088A JPH02159376A (en) 1988-12-12 1988-12-12 Method and device for light-excited cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31359088A JPH02159376A (en) 1988-12-12 1988-12-12 Method and device for light-excited cvd

Publications (1)

Publication Number Publication Date
JPH02159376A true JPH02159376A (en) 1990-06-19

Family

ID=18043146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31359088A Pending JPH02159376A (en) 1988-12-12 1988-12-12 Method and device for light-excited cvd

Country Status (1)

Country Link
JP (1) JPH02159376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432513B1 (en) * 2001-09-11 2004-05-22 한국과학기술원 Apparatus and method for photo-induced process
JP2007234709A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Manufacturing apparatus and manufacturing method of silicon oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432513B1 (en) * 2001-09-11 2004-05-22 한국과학기술원 Apparatus and method for photo-induced process
JP2007234709A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Manufacturing apparatus and manufacturing method of silicon oxide

Similar Documents

Publication Publication Date Title
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
US4849260A (en) Method for selectively depositing metal on a substrate
US4702936A (en) Gas-phase growth process
JPH02159376A (en) Method and device for light-excited cvd
JPS60245217A (en) Thin film formation equipment
JP5193488B2 (en) Method and apparatus for forming oxide film
JPS6050918A (en) Semiconductor processor
JPS6050168A (en) Production of thin solid film by photo cvd method
JPS61196542A (en) Photochemical vapor deposition equipment
JPH06181200A (en) Photo excited cvd
JPH01247573A (en) Photochemical vapor deposition device
JPH0334538A (en) Optical pumping reaction apparatus
JPH03126877A (en) Optical exciting cvd device
JPH04163911A (en) Photo assisted cvd equipment
JPS6128443A (en) Photochemical gaseous phase growing apparatus
JPS61279120A (en) Vapor growth method
JPH03119726A (en) Optical excitation cvd apparatus
JPH02130926A (en) Optical excitation cvd method
JPS61156726A (en) Manufacture of semiconductor device
JPH01312078A (en) Light-excited treating device
JPH06260424A (en) Optical cvd device
JPS60182127A (en) Photoexcitation reactor
JPH0740554B2 (en) Vapor phase growth equipment
JPS6118125A (en) Thin film forming apparatus
JPH0545053B2 (en)