JPS6050918A - Semiconductor processor - Google Patents

Semiconductor processor

Info

Publication number
JPS6050918A
JPS6050918A JP15798383A JP15798383A JPS6050918A JP S6050918 A JPS6050918 A JP S6050918A JP 15798383 A JP15798383 A JP 15798383A JP 15798383 A JP15798383 A JP 15798383A JP S6050918 A JPS6050918 A JP S6050918A
Authority
JP
Japan
Prior art keywords
cooling gas
cooling
window
ultraviolet
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15798383A
Other languages
Japanese (ja)
Inventor
Masaki Kusuhara
楠原 晶樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakomu KK
Original Assignee
Wakomu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakomu KK filed Critical Wakomu KK
Priority to JP15798383A priority Critical patent/JPS6050918A/en
Publication of JPS6050918A publication Critical patent/JPS6050918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To prevent the attachment and deposit of reacted product ono a transmission window for ultraviolet rays by providing a means of cooling the window. CONSTITUTION:One end of a cooling gas introduction pipe 12 is connected to a cooling device 23, and the other end i.e. a cooling gas supply port 12a is placed at the outer peripheral end of said window made of glass 5b. Besides, one end of a cooling gas exhaust pipe 13 is connected to a cooling gas absorbing device 22, and the outer end i.e. a cooling gas inhalant 13a is placed at the outer peripheral end of the window 5b. In this semiconductor processor, at the same time that the supply and exhaust of reaction gas, the precipitation of reacted product on a wafer 1 and the like are performed, a cooling gas supplying device 21 emits cooling gas from the supply port 12a. This cooling gas is sucked into the inhalant 13a after flowing along the surface of the window 5b along the cooling gas flow line 16. Thereby, the window 5b is cooled by the cooling gas, resulting in the prevention of the attachment and deposit of reacted product onto the window 5b; accordingly a thin film can be vapor deposited on the surface of the wafer 1 with good efficiency.

Description

【発明の詳細な説明】 (利用分野) 本発明は半導体処理装置に関するものであシ、特に光化
学反応による化学蒸着法を利用して、ウェーハに薄膜を
形成するための半導体処理装置に関するものである。
[Detailed Description of the Invention] (Field of Application) The present invention relates to a semiconductor processing device, and more particularly to a semiconductor processing device for forming a thin film on a wafer using a chemical vapor deposition method using a photochemical reaction. .

(従来技術) ICあるいはLSI等を製造するだめのウェーハには、
PVD (1’hysics、J Vapor Dap
osition )あるいはCVD (Ch+!+n1
ca/ Vapor Depo8ition )と呼ば
れる蒸、n処理が施こされる。
(Prior art) Wafers for manufacturing ICs, LSIs, etc.
PVD (1'hysics, J Vapor Dap
position ) or CVD (Ch+!+n1
A vaporization process called ca/Vapor Depo8ition) is performed.

該蒸着処理の際には、該ウェーハを〃)な9の高?!5
Nに庄で加熱してやることが必要となるが、該加熱操作
に加えて紫外線照射を行なうと、前記加熱温度を低く1
′ることができる。
During the vapor deposition process, the wafer is heated to a height of 9. ! 5
It is necessary to heat the nitrogen with a heat source, but if ultraviolet irradiation is performed in addition to the heating operation, the heating temperature can be lowered by 1
' can be done.

このJ:9にウェーハの加熱と紫り1線照射による光化
学15ζ応とを利用した化学蒸着法は、装置の檜成が比
較的簡単であり、かつ処理温度を下り゛ることかできる
ため、広く実用化されている。
This J:9 chemical vapor deposition method, which utilizes wafer heating and photochemical 15ζ reaction using violet 1-ray irradiation, is relatively simple to construct the equipment and can lower the processing temperature. It has been widely put into practical use.

以下に、図面を参照して、従来例を簡単に説明する。A conventional example will be briefly described below with reference to the drawings.

第1図は、従来例の概略溝成を示す断面図である。FIG. 1 is a sectional view showing a schematic groove structure of a conventional example.

耐熱透光性容器4gおよび容器蓋4bは、ガスケツ)4
cを介して、図示されない手段により結合されている。
The heat-resistant light-transmitting container 4g and the container lid 4b are gaskets) 4
They are connected by means not shown through c.

該容器蓋4bには数個のサセプタ支持具3が垂下してい
る。サセプタ2は、前記耐熱透光性容器4aの下方に位
置するように、前記各々のサセプタ支持具3の下端に係
止されている。
Several susceptor supports 3 are suspended from the container lid 4b. The susceptor 2 is locked to the lower end of each of the susceptor supports 3 so as to be located below the heat-resistant and transparent container 4a.

ウェーハ1は前記サセプタ2の上面に載置されている。The wafer 1 is placed on the upper surface of the susceptor 2.

反応ガス導入パイプ14の一端は反応ガス供給装置19
に接続され、その他端すなわち反応ガス供給口14aは
、前記容器蓋4bに設けられた小穴より前記耐熱透光性
容器4a内へ挿入されている。
One end of the reaction gas introduction pipe 14 is connected to the reaction gas supply device 19.
The other end, ie, the reaction gas supply port 14a, is inserted into the heat-resistant and light-transmitting container 4a through a small hole provided in the container lid 4b.

また、反応ガス排出パイプ15の一端は真空ポンプ20
に接続され、その他端、すなわち反応ガス吸入口15a
は、前記容器蓋4bに設けられた小穴より、前記耐熱透
光性容器4a内へ挿入されている。。
Further, one end of the reaction gas discharge pipe 15 is connected to a vacuum pump 20.
and the other end, that is, the reaction gas inlet 15a.
is inserted into the heat-resistant and light-transmitting container 4a through a small hole provided in the container lid 4b. .

前記反応ガス供給口14gおよび反応ガス吸入口15a
は、前記ウェーハlの表面近くに、かつ該ウェーハ1の
側面より外側で各々が対向するように設置されている。
The reaction gas supply port 14g and the reaction gas inlet 15a
are installed near the surface of the wafer 1 and facing each other outside the side surface of the wafer 1.

前記耐熱透光性容器4aの側面および底面には、近接対
向して、複数の赤外録ランプ6が設置されている。
A plurality of infrared recording lamps 6 are installed closely facing each other on the side and bottom surfaces of the heat-resistant and light-transmitting container 4a.

1)11記容器蓋4bの中央部には光照射窓としての紫
外線透過ガラス窓5bがガスケツ)4cを介して、図示
されない手段により前記容器ti 4 b上に固着され
ている。前記紫外線透過ガラス窓5bの上方には、光照
射レンズ系7が図示されない手段により設置されている
1) At the center of the container lid 4b in item 11, an ultraviolet ray transmitting glass window 5b serving as a light irradiation window is fixed onto the container ti 4 b by means not shown through a gasket 4c. A light irradiation lens system 7 is installed above the ultraviolet-transmitting glass window 5b by means not shown.

itt照射レンズ系7の設置は、該光照射レンズ系7に
対して紫外線10が入射された場合、前記耐熱透光性容
f!S4a内のウェーハ1に対して良好な紫外線照射が
行なわれるようになされている。゛前述の宿成による従
来例において、まず、真空ポンプ20を駆動させて、耐
熱透光性容器4a内を高真空状態にする。同時に樺外線
ラング6を点燈して、該耐熱透光性容器4a内に収納さ
れたウェーハ1を予定温度に加熱する。。
The installation of the itt irradiation lens system 7 means that when the ultraviolet rays 10 are incident on the light irradiation lens system 7, the heat-resistant light-transmitting volume f! The wafer 1 in S4a is properly irradiated with ultraviolet rays. In the conventional example using the above-mentioned storage, first, the vacuum pump 20 is driven to bring the inside of the heat-resistant and light-transmitting container 4a into a high vacuum state. At the same time, the birch line rung 6 is turned on to heat the wafer 1 housed in the heat-resistant and translucent container 4a to a predetermined temperature. .

次に、反応ガス供給装置19を駆動し、反応ガスP(給
口14aより、反応ガスを噴出さ硝る。該反応ガスは、
紫外線によシ活性化されるよりなシランガス等が用いら
れる。
Next, the reaction gas supply device 19 is driven, and the reaction gas P (reaction gas is ejected from the supply port 14a. The reaction gas is
A silane gas or the like that is activated by ultraviolet light is used.

該反応ガスは、反応ガス流線17に沿ってウェーハ1の
底面を流れたのち、前記真空ポンプ20の駆動により、
反応ガス吸入口15a内へ吸引される。
After the reaction gas flows on the bottom surface of the wafer 1 along the reaction gas flow line 17, by driving the vacuum pump 20,
The reaction gas is sucked into the reaction gas inlet 15a.

この状態において、光照射レンズ系7から、前記耐熱透
光性容器4a内に収納されたウェー /−11に紫外線
10を照射する。
In this state, ultraviolet rays 10 are irradiated from the light irradiation lens system 7 onto the wafer /-11 housed in the heat-resistant and light-transmitting container 4a.

以上のような操作によシ、反応ガスの化学反応によって
得られる反応生成物が、ある予定の温度(・て加熱され
た前記ウェーッ・1の直面上に付着堆積し、これにより
薄膜の蒸着は完了する。
Through the above-described operation, the reaction products obtained by the chemical reaction of the reaction gas are deposited on the surface of the wetted sheet 1 heated at a certain predetermined temperature, thereby causing the thin film to be deposited. Complete.

しかし、従来例では、反応ガス供給口14a x、jl
噴出した反応ガスは、ウェー711の表面を流れていく
と同時に容器内部全体にも拡散するため、その一部は、
反応ガス吸入口15aにより吸引されず、耐熱透光性容
器4a内へ残留する。
However, in the conventional example, the reaction gas supply ports 14a x, jl
The ejected reaction gas flows on the surface of the wafer 711 and at the same time diffuses throughout the inside of the container, so some of it is
The reaction gas is not sucked into the reaction gas inlet 15a and remains in the heat-resistant and light-transmitting container 4a.

前記耐熱透光性容器4a内へ残留した反応ガスから、紫
外1Pi110の照射をうけ、同時に赤外線ランプその
他の手段によシ、前記臨界光化学反応温度以上に加熱さ
れた前記耐熱透光性容器4aの内向、サセプタ2の表面
あるいは紫外線透過ガラス窓5bの内面に、前記反応生
成物が析出される。
The heat-resistant and light-transmitting container 4a is irradiated with ultraviolet 1Pi110 from the reaction gas remaining in the heat-resistant and light-transmitting container 4a, and at the same time is heated to the critical photochemical reaction temperature or higher by an infrared lamp or other means. The reaction product is deposited on the inner surface of the susceptor 2 or the inner surface of the ultraviolet-transmitting glass window 5b.

前記紫外線透過ガラス窓5bの内面に析出した該反応生
成物は、紫外線10の通過を妨げるので、ウェーハ1へ
の紫外線照射量を減少させる。
The reaction product deposited on the inner surface of the ultraviolet-transmitting glass window 5b prevents the ultraviolet rays 10 from passing through, thereby reducing the amount of ultraviolet irradiation to the wafer 1.

したがって、従来例においては、前記ウェーI・1への
紫外線による分解析出速度が遅くなシ、また反応ガスの
利用率が悪く、さらには一定厚み以上の反応生成物質膜
を一工程で形成することができない場合すら発生すると
いう欠点がちった。
Therefore, in the conventional example, the rate of separation and deposition by ultraviolet rays on the way I-1 is slow, the utilization rate of the reaction gas is poor, and furthermore, it is difficult to form a reaction product film of a certain thickness or more in one step. The drawback was that there were even cases where it was impossible to do so.

(目 的) 本発明は前述の欠点を除去するためになされたものであ
シ、その目的は、紫外線透過ガラス窓への反応生成物の
付着堆積を防止し、光化学反応による化学蒸着法の利用
によるウェーッ・の薄膜形成を実用的な効率で達成させ
ることのできる半導体処理興代を提供することにある。
(Purpose) The present invention has been made to eliminate the above-mentioned drawbacks, and its purpose is to prevent the adhesion and deposition of reaction products on ultraviolet-transmitting glass windows, and to utilize chemical vapor deposition methods using photochemical reactions. The object of the present invention is to provide a semiconductor processing method that can achieve the formation of a thin film with practical efficiency.

(概 要) 前記の目的を達成するだめに、本発明は、その一部に紫
外線透過窓を有肱その内部に被処理ウェーハを保持する
手段を有する密封可能な耐熱性反応容器と、前記被処理
ウェーッ・を所定σ)温度に加熱する手段と、前記紫外
線透過窓を通して、前記被処理ウェー /%を照射する
光照射レンズ系と、前記反応容器を気密に貫通して設け
られた反応ガス導入パイプおよび反応ガス排出・よイブ
と、前記紫外線透過窓を冷却する手段とを設けた点に特
徴がある。
(Overview) In order to achieve the above object, the present invention provides a sealable heat-resistant reaction vessel having an ultraviolet-transmitting window in a part thereof and a means for holding a wafer to be processed therein; means for heating the wafer to be treated to a predetermined temperature σ); a light irradiation lens system for irradiating the wafer/% to be treated through the ultraviolet-transmitting window; and a reaction gas introduction system provided through the reaction vessel in an airtight manner. The present invention is characterized in that it is provided with a pipe, a reactant gas exhaust/vib, and a means for cooling the ultraviolet light transmitting window.

(実施例) 以下に図面を参照して、本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第2図は、本発明の第1の実施例の概略構成を示す断面
図である。
FIG. 2 is a sectional view showing a schematic configuration of the first embodiment of the present invention.

第2図において、第1図と同一の符号は、同一または同
等部分をあられしており、前述と同様の機能を有してい
る。
In FIG. 2, the same reference numerals as in FIG. 1 represent the same or equivalent parts and have the same functions as described above.

第2図において、冷却ガス導入ノ(イブ12の一端は、
冷却装置23に接続され、その他端、すなわち冷却ガス
供給口122Lは、前記紫外線透過ガラス窓5bの外周
端部に設置されている。前記冷却・装置23は、冷却ガ
ス供給後[21に接続されている。
In FIG. 2, one end of the cooling gas inlet (eve 12) is
It is connected to the cooling device 23, and the other end, that is, the cooling gas supply port 122L, is installed at the outer peripheral end of the ultraviolet-transmitting glass window 5b. The cooling device 23 is connected to [21] after the cooling gas is supplied.

まだ、冷却ガス排出パイプ13の一端は冷却ガス吸収%
@22に接続され、その他端、すなわち、冷却ガス吸入
口13aは、前記紫外線透過ガラス窓5bの外周端部に
、前記冷却ガス供給口12aと対向するように設置され
ている。
Still, one end of the cooling gas exhaust pipe 13 is not absorbing the cooling gas.
The other end, that is, the cooling gas inlet 13a, is installed at the outer peripheral end of the ultraviolet-transmitting glass window 5b so as to face the cooling gas supply port 12a.

以上のような構成による本発明の第1の実施例において
、反応ガスの供給、排気、ウェー/・1上への反応生成
物の析出などが、第1図の場合と同様に行なわれる。
In the first embodiment of the present invention having the above-described configuration, the supply of reaction gas, evacuation, precipitation of the reaction product on the way/.1, etc. are performed in the same manner as in the case of FIG.

また、同時に、冷却ガス供給装置21は、冷却ガスを冷
却装置23に通過させることにより冷却し、冷却ガス導
入パイプ12を通し、冷却ガス供給口12aより噴出さ
せる。前記冷却ガスは、冷却ガス流線16に沿って紫外
線透過ガラス窓5bの界面を流れたのち、冷却ガス吸収
装置22の駆動により冷却ガス吸入口13a内に吸引さ
れる。
At the same time, the cooling gas supply device 21 cools the cooling gas by passing it through the cooling device 23, passes it through the cooling gas introduction pipe 12, and causes it to be ejected from the cooling gas supply port 12a. The cooling gas flows through the interface of the ultraviolet-transmitting glass window 5b along the cooling gas flow line 16, and then is sucked into the cooling gas inlet 13a by the driving of the cooling gas absorption device 22.

これによって、前記紫外線透過ガラス窓5bは前記冷却
ガスによシ冷却される。なお、この場合、該冷却2jス
は、どのような種類の気体であってもよい。
As a result, the ultraviolet-transmitting glass window 5b is cooled by the cooling gas. Note that in this case, the cooling gas 2j may be any type of gas.

第2の場合、容器内では、反応ガス吸入口15mにより
吸引されず、耐熱透光性容器4a内に残留した反応ガス
は、紫外線10の照射を受け、また紫外線透過ガラス窓
5bに接触するが、該紫外線透過ガラス窓5bは、冷却
ガスによシ反応生成物が析出しない温度以下に冷却され
ているから、該紫外線透過ガラス窓5bに反応生成物が
析出することはない。
In the second case, in the container, the reaction gas that is not sucked in by the reaction gas inlet 15m and remains in the heat-resistant and transparent container 4a is irradiated with ultraviolet rays 10 and comes into contact with the ultraviolet-transparent glass window 5b. Since the ultraviolet-transmitting glass window 5b is cooled by the cooling gas to a temperature below which reaction products do not precipitate, reaction products do not precipitate on the ultraviolet-transmitting glass window 5b.

第3図は、本発明の第2の実施例の概略構成を示す断面
図である− 第3図において、第1図および第2図と同一の符号は、
同一または同等部分をあられしている。
FIG. 3 is a cross-sectional view showing a schematic configuration of a second embodiment of the present invention. In FIG. 3, the same reference numerals as in FIGS. 1 and 2 refer to
The same or equivalent parts are hailed.

本発明の第2の実施例L1第2図との対比から明らかな
ように、前記第1の実施例における冷却ガス供給口12
aおよび冷却ガス吸入口13af、、耐熱透光性容器4
aの内側に設けたものである。
Second Embodiment L1 of the Present Invention As is clear from the comparison with FIG. 2, the cooling gas supply port 12 in the first embodiment
a and cooling gas inlet 13af, heat-resistant and translucent container 4
It is provided inside a.

すなわち、容器M4bに2つの小穴を設け、各々の該小
穴より冷却ガス導入パイプ12および冷却ガス排出パイ
プ13を前記耐熱透光性容器4a内へ挿入し、冷却ガス
供給口12aおよび冷却ガス吸入口13aを前記紫外線
透過ガラス窓5bの外周端部にそれぞれ対向して設置し
たものである。前記冷却ガス排出パイプ13は、冷却ガ
ス吸入口13aの他端において、反応ガス排出パイプ1
5と同様に^空ポンプ20に接続されている。
That is, two small holes are provided in the container M4b, and the cooling gas introduction pipe 12 and the cooling gas discharge pipe 13 are inserted into the heat-resistant and transparent container 4a through the respective small holes, and the cooling gas supply port 12a and the cooling gas inlet port are inserted. 13a are installed opposite to each other at the outer circumferential end of the ultraviolet-transmitting glass window 5b. The cooling gas exhaust pipe 13 is connected to the reaction gas exhaust pipe 1 at the other end of the cooling gas inlet 13a.
Similar to 5, it is connected to the empty pump 20.

前記冷却ガス導入パイプ12の冷却ガス供給口12aの
他端は、冷却装置23に接続されている。
The other end of the cooling gas supply port 12 a of the cooling gas introduction pipe 12 is connected to a cooling device 23 .

前記冷却装置23に接続される装置は、冷却ガスに用い
るガスの種類により具なる 第2の実施例においては、前記冷却ガスには次の21i
l類の気体の使用が考えられる。
In the second embodiment, the device connected to the cooling device 23 depends on the type of gas used for the cooling gas.
It is conceivable to use Class I gases.

fJlは、ウェーッ・1に薄膜蒸着を行なう反応ガスと
同じ反応ガスを使用する場合である。この場合は、前記
冷却装置23は前記反応ガス供給装置19に接続される
fJl is the case where the same reaction gas as that used for thin film deposition in wave 1 is used. In this case, the cooling device 23 is connected to the reaction gas supply device 19.

第2は、窒素、アルゴンあるいはその他の不活性ガス、
あるいはそれらの混合ガスを使用する場合である。この
場合は、前記冷却装置23は冷却ガス供給装置21に接
続される。第3図に訃いて、前記冷却ガス供給装[12
1は2点鎖線で示しである。
The second is nitrogen, argon or other inert gas,
Alternatively, a mixture of these gases may be used. In this case, the cooling device 23 is connected to the cooling gas supply device 21. As shown in FIG. 3, the cooling gas supply device [12
1 is indicated by a two-dot chain line.

いずれの場合も、前記紫外線透過ガラス窓5bの内側表
面に供給される冷却ガスは、前記冷却装置23により、
紫外線10の照射を受けても反応生成物が析出しない温
度以下に冷却されている。
In either case, the cooling gas supplied to the inner surface of the ultraviolet-transmitting glass window 5b is controlled by the cooling device 23.
It is cooled to a temperature below which reaction products do not precipitate even when irradiated with ultraviolet rays.

また、紫外線透過ガラス窓5bの、反応生成物の析出を
妨げようとする面を直接冷却するので、反応物析出防止
の効果は、第1の実施例に比べて高い。
Furthermore, since the surface of the ultraviolet-transmitting glass window 5b that is intended to prevent precipitation of reaction products is directly cooled, the effect of preventing precipitation of reactants is higher than in the first embodiment.

第2の実施例においても、冷却ガス供給口12aより噴
出した冷却ガスは、ウェーハ1の薄膜蒸着用の反応ガス
と同様に、拡散作用があるために、そのすべてが冷却ガ
ス吸入口13a内に吸引されるとは限らない。
In the second embodiment as well, the cooling gas ejected from the cooling gas supply port 12a has a diffusion effect, similar to the reaction gas for thin film deposition on the wafer 1, so that all of the cooling gas flows into the cooling gas inlet 13a. It does not necessarily mean that it will be attracted.

しかし、冷却ガスとしてウェーハ1に薄膜蒸着を行なう
反応ガスと同じ反応ガスを使用する場合は、耐熱透光性
容器4a内に拡散した反応ガスに対して不純物を混入す
ることに々らないので、ウェーハに対して常に良好に薄
膜を蒸着することができる。
However, when using the same reaction gas as that used for thin film deposition on the wafer 1 as the cooling gas, there is no need to mix impurities into the reaction gas diffused into the heat-resistant and transparent container 4a. Thin films can always be deposited satisfactorily on wafers.

冷却ガスとして不活性ガスを使用する場合は、該不活性
ガスは、耐熱透光性容器4a内に若干残留し、ウェーハ
1蒸着用の反応ガスと混合されるので、該反応ガスに対
して、あらかじめ、その成分をやや濃くするような調整
が必要である。
When an inert gas is used as the cooling gas, some of the inert gas remains in the heat-resistant and transparent container 4a and is mixed with the reaction gas for evaporating the wafer 1. It is necessary to make some adjustments in advance to make the ingredients slightly darker.

第4図は、本発明の第3の実施例の概略構成を示す断面
図である。
FIG. 4 is a sectional view showing a schematic configuration of a third embodiment of the present invention.

第4図において、第1図〜第3図と同一の符号は、同一
または同等部分をあられしている。
In FIG. 4, the same reference numerals as in FIGS. 1 to 3 represent the same or equivalent parts.

本発明の第3の実施例は、第3図に示した本発明の第2
の実施例の耐熱透光性容器4aと容器蓋4bの相対位置
間係を上下逆にしたものである。
A third embodiment of the present invention is a second embodiment of the present invention shown in FIG.
The relative positional relationship between the heat-resistant and light-transmitting container 4a and the container lid 4b of the embodiment is reversed upside down.

なお、この例では、ウェーハ1は、サセプタ2より落下
しないように、図示されない手段により前記勺セプタ2
に固着されている。
In this example, in order to prevent the wafer 1 from falling from the susceptor 2, the wafer 1 is secured to the susceptor 2 by means not shown.
is fixed to.

赤外絆ランプ60点燈によりウェーハ1tま加熱され、
オた該耐熱透光性容器4R内に導入された反応ガスも加
熱される。該加熱された反応ガスは、当然、前記耐熱透
ブ0性容器4a内の上方に集することになる。
The wafer is heated to 1 ton using 60 infrared bonding lamps.
Additionally, the reaction gas introduced into the heat-resistant and light-transmitting container 4R is also heated. Naturally, the heated reaction gas will collect above the heat-resistant transparent vessel 4a.

第3の実施例は、紫外線10の照射のだめの紫外線透過
ノJラヌ窓5bを、前記耐熱透光性容器4aの下部、す
なわち、ウェーハ1の下部に設けることにより、紫外線
照射による臨界反応温度以上に加熱された前記反応ガス
の該紫外n透過ガラス窓5bに対する接触量を少なくシ
、該紫外線透過ガラス窓5b表面への反応生成物の析出
を、より効果的におさえようとするものである。
In the third embodiment, by providing an ultraviolet-transmitting window 5b through which the ultraviolet rays 10 can be irradiated at the lower part of the heat-resistant and translucent container 4a, that is, at the lower part of the wafer 1, This is intended to reduce the amount of contact of the heated reaction gas with the ultraviolet n-transmissive glass window 5b, and to more effectively suppress the precipitation of reaction products on the surface of the ultraviolet-transparent glass window 5b.

したがって、前記紫外線透過ガラス窓5bを半導体処理
装置の下部に設け、さらに第2の実施例の操作を行なう
この第3の実施例によれば、前記第2の実施例に比べ、
前記紫外線透過ガラス窓5bの交換、あるいは反応生成
物の除去、作業の実施−リイクルが延び、その稼動率お
よび経済性が上昇する。
Therefore, according to the third embodiment, in which the ultraviolet-transmitting glass window 5b is provided at the lower part of the semiconductor processing apparatus and the operation of the second embodiment is performed, compared to the second embodiment,
Replacing the ultraviolet-transmitting glass window 5b or removing reaction products, the recycle time is extended, and the operating rate and economic efficiency are increased.

寸た、第3の実施例は第2の実施例の変形として説明し
たが、第1の実施例の変形とし又も適用できることは当
然である。すなわち、冷却ガスを紫外線透過ヲノラヌ窓
5bの外面にそって流すようにしてもよい。
Although the third embodiment has been described as a modification of the second embodiment, it goes without saying that it can also be applied as a modification of the first embodiment. That is, the cooling gas may be made to flow along the outer surface of the ultraviolet-transmitting window 5b.

以上、第1〜第3の実施例においては、ウェーハ1の加
熱手段として、耐熱透光性容器4aの外側に設置された
赤外線ランプ6を用いた。しかし、本発明はこれに限定
されず、ニクロム綜等の抵抗器を用いて加熱したり、あ
るいは、コイルを用いC1交流の電磁誘導によって生ず
る渦′rlX、流を利用しで加熱しでもよいことは当然
である。これらの場合は、半導体処理装置の容器として
は耐熱性を有していればよく、前述したような透光性を
有する必要はない。壕だ、該加熱手段は、前記容器外部
に設置えするほか、容器内部にも設置でき、あるいは−
リセプタ内部に組み込むことも可能である。
As described above, in the first to third embodiments, the infrared lamp 6 installed outside the heat-resistant and transparent container 4a was used as the heating means for the wafer 1. However, the present invention is not limited to this, and heating may be performed using a resistor such as a nichrome helix, or heating may be performed using a coil and a vortex 'rlX, a flow generated by electromagnetic induction of C1 alternating current. Of course. In these cases, the container for the semiconductor processing equipment only needs to have heat resistance, and does not need to have the above-mentioned light transmittance. In addition to being installed outside the container, the heating means can also be installed inside the container, or -
It is also possible to incorporate it inside the receptor.

(効 果) 以上の説明から明らかなように、本発明によれば、つぎ
のような効果が達成できる。1(1)冷却された冷却ガ
スをその内/外表面に流すことにより、紫外線透過ガラ
ス窓全冷却することによって、反応生成物の前記ツノラ
スへの付着を防止し、さらに紫外線透過ガラス窓をウェ
ーハよりも下方に設けて、その冷却効果を高めることに
より、反応生成物の付着をより完全に防止することがで
きる。
(Effects) As is clear from the above description, according to the present invention, the following effects can be achieved. 1 (1) By completely cooling the ultraviolet-transmitting glass window by flowing a cooled cooling gas to its inner/outer surface, it is possible to prevent reaction products from adhering to the horn glass window, and furthermore, to prevent the reaction products from adhering to the wafer. By providing the cooling effect at a lower position, it is possible to more completely prevent the reaction products from adhering to each other.

したがって紫外線および反応ガスの利用率を高めること
ができ、ウェーハ表面の薄膜蒸着を効率よく行なうこと
ができる。また、紫外線透過ガラス窓の交換、清浄化な
どの保守回数を減らせるので装置の稼動率を向上するこ
とができる。
Therefore, the utilization rate of ultraviolet rays and reactive gas can be increased, and thin film deposition on the wafer surface can be performed efficiently. Furthermore, the frequency of maintenance such as replacement and cleaning of the ultraviolet-transmitting glass window can be reduced, so the operating rate of the device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体処理装置の概略構成を示す断面図
、第2図は本発明の第1の実施例の概略構成を示す断面
図、第3図は本発明の第2の実施例の概略構成を示す断
面図、第4図は本発明の第3の実施例の概略構成を示す
断面図である。 1・・・ウェーハ、2・・・サセプタ、4a・・・耐熱
透光性容器、4b川容器蓋、5b・・・紫外線透過ガラ
ス窓、6・・・赤外線ランプ、7・・・光照射レンズ系
、lO・・・紫外FA、12・・・冷却ガス導入パイプ
、13・・・冷却ガス排出パイプ、14・・・反応ガフ
導入パイプ、15・・・反応ガス排出パイプ、16・・
・冷却カスb11;線、17・・・反応カス流線、19
・・・反応ガス供給装置、2o・・・tG2ボング、2
1・・・冷却ガフ、供給装置、22・・・冷却ガス吸引
装置、23・・・冷却装置 代理人弁理士 平 木 道 人 外1名第1図 第2図 73図 、21
FIG. 1 is a sectional view showing a schematic configuration of a conventional semiconductor processing apparatus, FIG. 2 is a sectional view showing a schematic configuration of a first embodiment of the present invention, and FIG. 3 is a sectional view of a second embodiment of the present invention. FIG. 4 is a sectional view showing the schematic structure of a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Wafer, 2... Susceptor, 4a... Heat-resistant light-transmitting container, 4b River container lid, 5b... Ultraviolet-transmitting glass window, 6... Infrared lamp, 7... Light irradiation lens System, lO...Ultraviolet FA, 12...Cooling gas introduction pipe, 13...Cooling gas discharge pipe, 14...Reaction gaff introduction pipe, 15...Reaction gas discharge pipe, 16...
・Cooled scum b11; Line, 17... Reaction scum streamline, 19
...Reaction gas supply device, 2o...tG2 bong, 2
1...Cooling gaff, supply device, 22...Cooling gas suction device, 23...Cooling device attorney Michihito Hiraki and 1 other personFigure 1Figure 2Figure 73, 21

Claims (5)

【特許請求の範囲】[Claims] (1) m封可能に構成された耐熱性反応容器と、前記
容器内に被処理ウェーハを保持する手段と、前記反応容
器の器壁の一部にこれと気密に固着された紫外線透過窓
と、前記被処理ウェーハを所定の温度に加熱する手段と
、前記紫外線透過窓を通して、前記幀処理つエーノ・に
紫外線を照射する光照射レンズ系と、前記反応容器を気
密に貫通して設けられた反応ガス導入パイプおよび反応
ガス排出パイプとを備えた半導体処理装置であって、さ
らに紫外線透過窓を冷却する手段を設けたことを特徴と
する半導体処理装置。
(1) A heat-resistant reaction container configured to be sealed, a means for holding a wafer to be processed in the container, and an ultraviolet transmitting window hermetically fixed to a part of the wall of the reaction container. , a means for heating the wafer to be processed to a predetermined temperature, a light irradiation lens system for irradiating the processing chamber with ultraviolet rays through the ultraviolet ray transmission window, and a light irradiation lens system provided to airtightly penetrate the reaction vessel. 1. A semiconductor processing apparatus comprising a reactive gas introduction pipe and a reactive gas discharge pipe, further comprising means for cooling an ultraviolet light transmitting window.
(2)前記紫外線透過窓を冷却する手段は、紫外線透過
窓の外面に沿って冷却ガスを流す手段であることをIr
#徴とする前記特許請求の範囲第1項記載の半導体処理
装置、。
(2) The means for cooling the ultraviolet ray transmitting window is a means for flowing cooling gas along the outer surface of the ultraviolet ray transmitting window.
The semiconductor processing apparatus according to claim 1, wherein the semiconductor processing apparatus has the following characteristics.
(3)前記紫外線透過窓を冷却する手段は、紫外線透過
窓の内面に沿って冷却ガスを流す手段であることを特徴
とする特許 半導体処理装置、
(3) A patented semiconductor processing apparatus characterized in that the means for cooling the ultraviolet ray transmission window is a means for flowing cooling gas along the inner surface of the ultraviolet ray transmission window;
(4)前記冷却ガスの成分が反応ガスのそれとほソ同−
であることを*微とする前記特許請求の範囲第3項記載
の半導体処理装置。
(4) The components of the cooling gas are almost the same as those of the reaction gas.
4. The semiconductor processing apparatus according to claim 3, wherein:
(5)前記紫外線透過窓が前記和処理ウエー・・を保持
する手段よシも下方に設けられたことを特徴とする前記
特許請求の5間第1項から第4項記載の半導体処理装置
(5) The semiconductor processing apparatus according to any one of the preceding claims, wherein the ultraviolet-transmitting window is also provided below the means for holding the sum processing wafer.
JP15798383A 1983-08-31 1983-08-31 Semiconductor processor Pending JPS6050918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15798383A JPS6050918A (en) 1983-08-31 1983-08-31 Semiconductor processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15798383A JPS6050918A (en) 1983-08-31 1983-08-31 Semiconductor processor

Publications (1)

Publication Number Publication Date
JPS6050918A true JPS6050918A (en) 1985-03-22

Family

ID=15661677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15798383A Pending JPS6050918A (en) 1983-08-31 1983-08-31 Semiconductor processor

Country Status (1)

Country Link
JP (1) JPS6050918A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139022A (en) * 1984-12-12 1986-06-26 Toshiba Corp Light excitation reactor
JPS62191592A (en) * 1985-12-13 1987-08-21 エ−.ア−ルストロム コ−ポレ−シヨン Headbox for papermaking machine
JPS6350026A (en) * 1986-08-20 1988-03-02 Nikon Corp Optical pumping processor
JPS6394998U (en) * 1986-12-04 1988-06-18
JPS63175197U (en) * 1987-02-19 1988-11-14
US5288684A (en) * 1990-03-27 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Photochemical vapor phase reaction apparatus and method of causing a photochemical vapor phase reaction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143718U (en) * 1974-09-27 1976-03-31
JPS57187033A (en) * 1981-05-12 1982-11-17 Seiko Epson Corp Vapor phase chemical growth device
JPS5895818A (en) * 1981-12-02 1983-06-07 Ushio Inc Forming method for film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143718U (en) * 1974-09-27 1976-03-31
JPS57187033A (en) * 1981-05-12 1982-11-17 Seiko Epson Corp Vapor phase chemical growth device
JPS5895818A (en) * 1981-12-02 1983-06-07 Ushio Inc Forming method for film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139022A (en) * 1984-12-12 1986-06-26 Toshiba Corp Light excitation reactor
JPS62191592A (en) * 1985-12-13 1987-08-21 エ−.ア−ルストロム コ−ポレ−シヨン Headbox for papermaking machine
JPH0310755B2 (en) * 1985-12-13 1991-02-14 Ahlstroem Oy
JPS6350026A (en) * 1986-08-20 1988-03-02 Nikon Corp Optical pumping processor
JPS6394998U (en) * 1986-12-04 1988-06-18
JPH0311279Y2 (en) * 1986-12-04 1991-03-19
JPS63175197U (en) * 1987-02-19 1988-11-14
JPH0336557Y2 (en) * 1987-02-19 1991-08-02
US5288684A (en) * 1990-03-27 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Photochemical vapor phase reaction apparatus and method of causing a photochemical vapor phase reaction

Similar Documents

Publication Publication Date Title
US4849260A (en) Method for selectively depositing metal on a substrate
JP4219441B2 (en) Method and apparatus for depositing film
US4994301A (en) ACVD (chemical vapor deposition) method for selectively depositing metal on a substrate
JPH10512100A (en) Apparatus and method for conditioning a surface
KR20010014782A (en) Single-substrate-treating apparatus for semiconductor processing system
JPS6050918A (en) Semiconductor processor
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS6328868A (en) Cvd method
JPH0758016A (en) Film-forming processor
JPH01183809A (en) Photo assisted cvd system
JPS61289623A (en) Vapor-phase reaction device
JPH0334538A (en) Optical pumping reaction apparatus
JPH0626182B2 (en) Infrared heating device
JPS61188928A (en) Optically pumped thin film forming method
JPS622525A (en) Vapor-phase reaction device
JPS59112613A (en) Vapor growth apparatus
JPH01241818A (en) Device for forming light excitation film
JPS6252921A (en) Light exitation film forming device
JPS61139022A (en) Light excitation reactor
JPS6311668A (en) Cvd method
JPH05347247A (en) Photochemical reaction device
JPS60253212A (en) Vapor growth device
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS6128443A (en) Photochemical gaseous phase growing apparatus
JPH03268320A (en) Optical cvd system