JPS61188928A - Optically pumped thin film forming method - Google Patents

Optically pumped thin film forming method

Info

Publication number
JPS61188928A
JPS61188928A JP2824485A JP2824485A JPS61188928A JP S61188928 A JPS61188928 A JP S61188928A JP 2824485 A JP2824485 A JP 2824485A JP 2824485 A JP2824485 A JP 2824485A JP S61188928 A JPS61188928 A JP S61188928A
Authority
JP
Japan
Prior art keywords
gas
sample
thin film
film
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2824485A
Other languages
Japanese (ja)
Inventor
Takaaki Kamimura
孝明 上村
Masahiko Hirose
広瀬 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2824485A priority Critical patent/JPS61188928A/en
Publication of JPS61188928A publication Critical patent/JPS61188928A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To eliminate change in film characteristic by a second gas by allowing the second inactive gas to flow so that film is not formed in the side of light transmitting window. CONSTITUTION:A sample board 3 loading a sample 2, for example, consisting of a glass substrate is housed within a thin film forming vessel 1 and a heater 4 which heats said sample 2 is provided within the sample board 3. A first gas including raw material gas is supplied onto the sample from a raw material gas supply part 5. A second inactive gas which is helium gas is sprayed to a light transmitting window 7 from an inactive gas supply part 6 or is caused to flow along the window 7. The gas in the vessel 1 is exhausted from an exhaustion pump 8.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光化学反応を利用して薄膜形成を行う光励起
OVD法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a photoexcitation OVD method for forming a thin film using a photochemical reaction.

C発明の技術的背景と問題点〕 近年、光エネルギーによる化学反応を利用し、化合物ガ
、スを分解して半導体ウェハ、ガラス等の試料上に薄膜
を形成する方法が開発されている。
C. Technical background and problems of the invention] In recent years, a method has been developed for forming a thin film on a sample such as a semiconductor wafer or glass by decomposing a compound gas or gas using a chemical reaction caused by light energy.

この方法は光OVDと称され、通常の薄膜形成法に比較
し低温で膜形成ができることや荷電粒子によるダメージ
がない等の特徴を有しておシ、今後の薄膜形成技術にお
いて重要な位置を占めるものとして注目されている。
This method is called optical OVD, and has features such as being able to form films at lower temperatures and being free from damage from charged particles compared to normal thin film forming methods, and will play an important role in future thin film forming technology. It is attracting attention as something that occupies.

上記の特徴を有する・光OVD法であるが、光導入窓上
での製膜く起因する問題がある。一部の絶縁膜を除いて
目的とする膜は使用する光の波長に対して不透明であり
、光照射の時間と共に反応室中の光強度が低下し、膜の
堆積速度が減少するという問題があ−る。その解決法と
して、基板側に原料ガスを含む第1のガスを流すと共に
、光透過窓側に膜形成が起らないような第2のガスを流
すこ   ”とによシ、窓上への膜付着を抑える方法が
ある。
Although the optical OVD method has the above-mentioned characteristics, there is a problem due to film formation on the light introduction window. With the exception of some insulating films, the target film is opaque to the wavelength of the light used, and the problem is that the light intensity in the reaction chamber decreases with the time of light irradiation, reducing the film deposition rate. A-ru. A solution to this problem is to flow a first gas containing the raw material gas on the substrate side and flow a second gas that prevents film formation on the light-transmitting window side. There are ways to reduce adhesion.

しかし、この方法では′減圧下で行うために第1のガス
と第2ガスはある程度混合されてしまう。そのため、第
2のガスによシ膜特性が変化する虞れがある◇ 〔発明の目的〕 本発明は上述した従来方法の欠点を改良したもので、膜
特性が変化することなく、光透過窓への膜付着を抑え2
ることのできる光励起薄膜形成方法を提供することを目
的とする。
However, since this method is carried out under reduced pressure, the first gas and the second gas are mixed to some extent. Therefore, there is a risk that the film properties may change due to the second gas.◇ [Object of the Invention] The present invention improves the drawbacks of the above-mentioned conventional method. Prevents film adhesion to 2
The purpose of the present invention is to provide a method for forming a photoexcited thin film.

〔発明の概要〕[Summary of the invention]

本発明は、基板側に原料ガスを含む第1のガスを流すと
共に光透過窓側に、膜形成が起らないような第2のガス
を流すととくよシ、窓上への膜付着を抑える方法におい
て、第2のガスが不活性ガスであることによシ、第2の
ガスによる膜特性の変化が起きない光励起薄膜形成方法
を得ることにある0 〔発明の効果〕 1、本発明によれば膜特性が変化することなく、光透過
窓への膜付着を抑えることができ、長時間の膜形成を行
っても膜の堆積速度が減少することがない。 − 〔発明の実施例〕 以下、本発明の一実施例を図面を参照して説明する。
The present invention provides a method for suppressing film deposition on the window by flowing a first gas containing a raw material gas on the substrate side and flowing a second gas that prevents film formation on the light-transmitting window side. [Effects of the Invention] 1. According to the present invention, it is possible to obtain a method for forming a photoexcited thin film in which the film characteristics are not changed by the second gas because the second gas is an inert gas. It is possible to suppress the film from adhering to the light-transmitting window without changing the film properties, and the film deposition rate does not decrease even if the film is formed for a long time. - [Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係わる光cvD装置の概略
構成図を示す。図中(1)は薄属形成容器(反応室)(
1)で、この容器(1)内には例えばガラス基板からな
る試料(基材)(2)を載置した試料台(3)が収容さ
れている。試料台(3)の内部には上記試料(2)を加
熱するヒーター(4)が設けられている。また容器(1
)内には、原料ガス供給部(5)から原料ガスを含む第
1のガスが試料(2)面上に導入され、不活性ガス供給
部(6)からヘリウムガスである第2の不活性ガスが光
透過窓(7)に吹きつけるか、窓(7)に沿って流すよ
うに導入される。また、容器(11内のガスは排気ポン
プ(8)によシ排気される。
FIG. 1 shows a schematic configuration diagram of an optical CVD apparatus according to an embodiment of the present invention. In the figure (1) is a thin metal forming container (reaction chamber) (
1), a sample stand (3) on which a sample (base material) (2) made of, for example, a glass substrate is placed is accommodated in the container (1). A heater (4) for heating the sample (2) is provided inside the sample stage (3). Also a container (1
), a first gas containing a source gas is introduced onto the surface of the sample (2) from a source gas supply section (5), and a second inert gas, which is helium gas, is introduced from an inert gas supply section (6). Gas is introduced by blowing onto the light-transmitting window (7) or flowing along the window (7). Further, the gas in the container (11) is exhausted by an exhaust pump (8).

一方、容器(1)の上部にはランプハウス内D法がアリ
ランプハウス(9)内には低圧水銀ラーンプαQ及び紫
外光を反射する反射板aDが設けられている。不活性ガ
スラインa3は、ランプハウス内を不活性ガスでン パージするものである。
On the other hand, in the upper part of the container (1), there is provided a lamp house D method, and a low pressure mercury lamp αQ and a reflection plate aD for reflecting ultraviolet light are provided in the lamp house (9). The inert gas line a3 is for purging the inside of the lamp house with an inert gas.

このように構成された本装置でのシリコン膜の形成につ
いて述べる。ヒーター(4)で試料(2)を加熱し、原
料ガIスとして水銀を簀んだモノシランガスを原料ガス
供給部(5)よシ、ヘリウムガスを不活性ガス供給部(
6)より、容器(1)内へ圧力1 ’l’orrで導入
する。そこで低圧水銀ランプ(光源) a(Iからの紫
外光を試料(2)面上に照射し、シリコン膜の形成を行
つた。その結果、ガラス基板上にシリコン膜を10(P
m〕堆積しても、光透過窓部上には膜の堆積はほとんど
起らず、得られたシリコン膜の膜特性もヘリウムガスを
導入しない場合の膜特性と同じであった。
The formation of a silicon film using this apparatus configured as described above will be described. The sample (2) is heated with a heater (4), monosilane gas containing mercury is supplied as a raw material gas to the raw material gas supply section (5), and helium gas is supplied to the inert gas supply section (
6), it is introduced into the container (1) at a pressure of 1'l'orr. Therefore, ultraviolet light from a low-pressure mercury lamp (light source) a(I) was irradiated onto the surface of the sample (2) to form a silicon film.As a result, a silicon film of 10(P
m] Even when deposited, almost no film was deposited on the light transmitting window, and the film properties of the obtained silicon film were the same as those in the case where helium gas was not introduced.

さらに具体的実験例について説明する。ここでは基板1
00〜300℃に加熱し、水銀を微量含んだモノシラ7
ガス及び希釈ガスを全流量100500Mガス圧力0.
5Torrで導入し、低圧水銀ランプからの紫外光(2
54185nm)を基板面上に照射して基板上にシリコ
ン膜を形成した。第2図に原料ガスであるモノシランガ
スに水素ガスを混合した時に得られたシリコン膜の特性
(暗導電率 d。
Further, specific experimental examples will be explained. Here, board 1
Monosilica 7 heated to 00-300℃ and containing a trace amount of mercury
Gas and diluent gas total flow rate 100500M gas pressure 0.
UV light from a low-pressure mercury lamp (2
54185 nm) onto the substrate surface to form a silicon film on the substrate. Figure 2 shows the characteristics (dark conductivity, d) of a silicon film obtained when hydrogen gas is mixed with monosilane gas, which is a raw material gas.

AM−1100mW/−下でo光導電率 p)を示す。AM-1 shows o photoconductivity p) under 1100 mW/-.

水素ガスを混合した場合には、膜特性が大きく変化して
唐ることが判る。第3図にモノシランガスにヘリウムガ
スからなる不活性ガスを混合し走時に得られたシリコン
膜の特性を示す。ヘリウムガスを混合した場合には、膜
特性にほとんど変化がない。
It can be seen that when hydrogen gas is mixed, the film properties change greatly. FIG. 3 shows the characteristics of a silicon film obtained by mixing monosilane gas with an inert gas consisting of helium gas and running the mixture. When helium gas is mixed, there is almost no change in film properties.

このように水素ガスを混合した場合には、膜特性には大
きな変化が見られるが、ヘリウムガスを混合した場合に
は膜特性が変化しないことが判明した。・ 尚、本発明は上述した実施例に限定されるものではなく
、その要旨を逸脱しない範囲で種々変形して実施するこ
とができる。薄膜形成に用いた原料ガスとしては上記実
施例ではモノシラン(SiH,)をm−たが、他の高次
シラン(例えばジシラン(SttHa L  )ジシラ
ン(Si3Hg)など)やメチルシラン系ガス(例えば
ジメチルシラン((OHs)z8 i Ht )など)
やハロシラン系ガス(例えば8iH,OJ、など)でも
よい。また、炭化水素系ガス(例えばO,H,など)や
ゲルマン系ガス−(例えばGeH,など)やシボラフ 
(BtHs L 7 t スフ イ:、y(PHs)等
を上記シラン系ガスに混合してもよい。
It has been found that when hydrogen gas is mixed in this way, the film properties change significantly, but when helium gas is mixed, the film properties do not change. - The present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof. In the above example, monosilane (SiH) was used as the raw material gas for forming the thin film, but other higher silanes (such as disilane (SttHa L ), disilane (Si3Hg), etc.) and methylsilane-based gas (such as dimethylsilane) were also used. ((OHs)z8 i Ht ) etc.)
or a halosilane gas (for example, 8iH, OJ, etc.). In addition, hydrocarbon gases (e.g. O, H, etc.), germane gases (e.g. GeH, etc.) and cibolaph.
(BtHs L7tSufui:, y(PHs), etc. may be mixed with the silane-based gas.

また、光源は低圧水銀ランプに限る本のではなく、重水
素ランプ、希ガスのマイクロ波放電による光源等でも良
く、さらに圧力、基板温度、ガス流量は所望の膜によシ
適宜定めればよく、水銀を含まない直接励起でもよい。
Furthermore, the light source is not limited to a low-pressure mercury lamp, but may also be a deuterium lamp, a light source using a microwave discharge of rare gas, etc., and the pressure, substrate temperature, and gas flow rate may be determined as appropriate depending on the desired film. , mercury-free direct excitation may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明の一実施例に係わるシリコン
膜の特性を示す図、第3図は光励起薄膜形成装置を示す
概略構成図である。 1・・・薄膜形成容器(反応室)、2・・・試料(基材
)、3・・・試料台、4・・・ヒーター、5・・・原料
ガス供給部、6・・・不活性ガス供給部、7・・・光透
過窓、8・・・排気ポンプ、9・・・ランプハウス、1
0・・・低圧水銀ランプ(光源)、11・・・反射板、
12・・・不活性ガスライン0 代理人弁理士 則 近 憲 佑 (ほか1名)第1図 第2図 第3図
FIGS. 1 and 2 are diagrams showing the characteristics of a silicon film according to an embodiment of the present invention, and FIG. 3 is a schematic diagram showing a photoexcited thin film forming apparatus. DESCRIPTION OF SYMBOLS 1... Thin film formation container (reaction chamber), 2... Sample (substrate), 3... Sample stand, 4... Heater, 5... Raw material gas supply section, 6... Inert Gas supply unit, 7... Light transmission window, 8... Exhaust pump, 9... Lamp house, 1
0...Low pressure mercury lamp (light source), 11...Reflector,
12...Inert gas line 0 Representative Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)光化学反応を利用して基材上に薄膜を形成する方
法に於いて、光化学反応を起す原料ガスを含む第1のガ
スを基材上近傍に流すと共に第2の不活性ガスを光源か
らの光を透過する窓の近傍に流すことを特徴とする光励
起薄膜形成方法。
(1) In a method of forming a thin film on a substrate using a photochemical reaction, a first gas containing a raw material gas that causes a photochemical reaction is flowed near the substrate, and a second inert gas is used as a light source. A method for forming a photo-excited thin film, which is characterized by flowing light from a window near a transmitting window.
(2)前記第2の不活性ガスは、ヘリウムであることを
特徴とする特許請求の範囲第1項記載の光励起薄膜形成
方法。
(2) The method for forming a photoexcited thin film according to claim 1, wherein the second inert gas is helium.
JP2824485A 1985-02-18 1985-02-18 Optically pumped thin film forming method Pending JPS61188928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2824485A JPS61188928A (en) 1985-02-18 1985-02-18 Optically pumped thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2824485A JPS61188928A (en) 1985-02-18 1985-02-18 Optically pumped thin film forming method

Publications (1)

Publication Number Publication Date
JPS61188928A true JPS61188928A (en) 1986-08-22

Family

ID=12243168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2824485A Pending JPS61188928A (en) 1985-02-18 1985-02-18 Optically pumped thin film forming method

Country Status (1)

Country Link
JP (1) JPS61188928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018131362A1 (en) * 2017-01-13 2019-06-27 三菱電機株式会社 Substrate processing apparatus and substrate manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018131362A1 (en) * 2017-01-13 2019-06-27 三菱電機株式会社 Substrate processing apparatus and substrate manufacturing method
CN110168132A (en) * 2017-01-13 2019-08-23 三菱电机株式会社 The manufacturing method of substrate processing device and substrate
CN110168132B (en) * 2017-01-13 2021-12-17 三菱电机株式会社 Substrate processing apparatus and method for manufacturing substrate

Similar Documents

Publication Publication Date Title
JP3148004B2 (en) Optical CVD apparatus and method for manufacturing semiconductor device using the same
US4597986A (en) Method for photochemical vapor deposition
US20100096569A1 (en) Ultraviolet-transmitting microwave reflector comprising a micromesh screen
WO1984002035A1 (en) Method of forming amorphous silicon film
JPH03107466A (en) Method and device for manufacturing adherend for inorganic and amorphous protective film on organic polymer substrate
JPS60117711A (en) Forming apparatus of thin film
JPS61188928A (en) Optically pumped thin film forming method
JPS59207621A (en) Formation of thin film
JPS60128265A (en) Device for forming thin film in vapor phase
JPS6050918A (en) Semiconductor processor
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPS61160926A (en) Photo-excited thin film former
JPH0334538A (en) Optical pumping reaction apparatus
JPH09260251A (en) Manufacture of mask membrane for x-ray lithography use
JPS62160713A (en) Photoexcitation film forming equipment
JPS6167920A (en) Photochemical reaction device
JPS60212221A (en) Photochemical reaction apparatus
JPS6156278A (en) Film forming method
JPS6118125A (en) Thin film forming apparatus
JPS60209247A (en) Photochemical reaction device
JPS61139022A (en) Light excitation reactor
JPS6252921A (en) Light exitation film forming device
JPH0372712B2 (en)
JPS63240030A (en) Semiconductor processor
JPS6152232B2 (en)