JPWO2018131362A1 - Substrate processing apparatus and substrate manufacturing method - Google Patents

Substrate processing apparatus and substrate manufacturing method Download PDF

Info

Publication number
JPWO2018131362A1
JPWO2018131362A1 JP2018561867A JP2018561867A JPWO2018131362A1 JP WO2018131362 A1 JPWO2018131362 A1 JP WO2018131362A1 JP 2018561867 A JP2018561867 A JP 2018561867A JP 2018561867 A JP2018561867 A JP 2018561867A JP WO2018131362 A1 JPWO2018131362 A1 JP WO2018131362A1
Authority
JP
Japan
Prior art keywords
substrate
processing chamber
chamber
processing apparatus
transmission window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018561867A
Other languages
Japanese (ja)
Other versions
JP6732051B2 (en
Inventor
政弘 横川
政弘 横川
隆裕 川崎
隆裕 川崎
保 中島
保 中島
田中 芳雄
芳雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018131362A1 publication Critical patent/JPWO2018131362A1/en
Application granted granted Critical
Publication of JP6732051B2 publication Critical patent/JP6732051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers

Abstract

基板処理装置は、基板(W)を保持し、減圧加熱処理室内で加熱される基板ホルダ(H)と、基板ホルダ(H)から放射された放射熱線(La)を減圧加熱処理室外へ透過させる透過窓(23)と、透過窓(23)を透過した放射熱線(La)を減圧加熱処理室外で計測する放射温度計(25)と、透過窓(23)に向けて開口したガス導入口(24a)からガスを透過窓(23)に噴射して、減圧加熱処理室内にガスを導入するガス導入装置(24)とを備える。The substrate processing apparatus holds the substrate (W) and transmits the substrate holder (H) heated in the reduced pressure heating process chamber and the radiant heat ray (La) radiated from the substrate holder (H) to the outside of the reduced pressure heating process chamber. A transmission window (23), a radiation thermometer (25) for measuring a radiant heat ray (La) transmitted through the transmission window (23) outside the reduced pressure heating processing room, a gas introduction port opened to the transmission window (23) A gas introduction device (24) for injecting a gas into the reduced pressure heating processing chamber by injecting a gas from the part a) to the transmission window (23);

Description

本発明は、加熱処理を行う基板処理装置および基板の製造方法に関する。   The present invention relates to a substrate processing apparatus that performs heat treatment and a method of manufacturing a substrate.

半導体製造装置である基板処理装置では、一般に減圧雰囲気の下で半導体基板(以下、単に「基板」という。)上に成膜またはエッチングといった表面処理が行われる。表面処理の工程では、通常、真空導入室、たとえばロードロック室において減圧雰囲気の下で基板に加熱処理が施される。加熱処理では、基板の温度制御が重要であるため、基板の温度の計測精度が重要となる。   In a substrate processing apparatus which is a semiconductor manufacturing apparatus, a surface treatment such as film formation or etching is generally performed on a semiconductor substrate (hereinafter simply referred to as “substrate”) under a reduced pressure atmosphere. In the surface treatment step, the substrate is usually subjected to a heat treatment under a reduced pressure atmosphere in a vacuum introduction chamber, for example, a load lock chamber. In heat treatment, since the control of the temperature of the substrate is important, the measurement accuracy of the temperature of the substrate is important.

基板および基板を保持する基板ホルダの加熱方法としては、基板および基板ホルダに発熱体を直接接触させた方法、および輻射熱によって基板および基板ホルダが非接触で加熱される方法がある。基板および基板ホルダの加熱では、要求される加熱速度および加熱温度を実現するためにコストが安くて済むランプヒータを用いることが多い。この場合、特に加熱速度が考慮されると、ランプヒータと、基板の表面および基板ホルダの基板載置面である上面とが向かい合っている方が好ましい。基板の表面は被処理面であるため、基板の表面および基板ホルダの上面における基板が載置されていない部分はその表面の状態が大きく変化する。このため、基板の温度の計測では、基板ホルダの裏面側の温度が計測されて基板の温度を相対的に計測している。また、基板の温度の計測では、基板および基板ホルダが移動するものである場合、基板および基板ホルダに非接触の放射温度計が用いられることが多い。このため、基板処理装置は、減圧加熱処理室内に設けられ、上面に基板が載置される基板ホルダと、減圧加熱処理室の底側に設けられ、放射熱線を透過させる窓とを備え、減圧加熱処理室の外側で、たとえば放射温度計を用いて、基板ホルダから放射されて窓を透過した放射熱線の強度を計測する。放射熱線とは、物体から放射される赤外線および可視光線を総称したものである。放射熱線は輻射熱線とも呼ばれる。基板処理装置では、基板ホルダの温度を計測することにより、基板の温度を相対的に計測している。   As a method of heating the substrate and the substrate holder holding the substrate, there are a method in which a heating element is brought into direct contact with the substrate and the substrate holder, and a method in which the substrate and the substrate holder are heated in a noncontact manner by radiant heat. Substrate and substrate holder heating often uses a low cost lamp heater to achieve the required heating rate and heating temperature. In this case, particularly in consideration of the heating rate, it is preferable that the lamp heater be opposed to the upper surface of the substrate and the substrate mounting surface of the substrate holder. Since the surface of the substrate is the surface to be treated, the state of the surface of the surface of the substrate and the portion of the upper surface of the substrate holder where the substrate is not placed changes significantly. Therefore, in the measurement of the temperature of the substrate, the temperature of the back surface side of the substrate holder is measured to relatively measure the temperature of the substrate. In the measurement of the temperature of the substrate, when the substrate and the substrate holder move, a noncontact radiation thermometer is often used for the substrate and the substrate holder. For this reason, the substrate processing apparatus is provided with a substrate holder provided in the reduced pressure heating processing chamber and having the substrate mounted on the upper surface, and a window provided on the bottom side of the reduced pressure heating processing chamber for transmitting radiant heat rays. Outside the heat treatment chamber, for example, a radiation thermometer is used to measure the intensity of the radiant heat radiated from the substrate holder and transmitted through the window. The radiant heat ray is a generic term for infrared rays and visible rays emitted from an object. Radiant heat rays are also called radiant heat rays. The substrate processing apparatus relatively measures the temperature of the substrate by measuring the temperature of the substrate holder.

加熱処理が何度も繰り返されると、減圧加熱処理室において基板ホルダに付着した膜や減圧加熱処理室内のダストまたは基板の破片といった異物が、上述した放射熱線を透過させる窓上に付着および堆積する。放射熱線を透過させる窓上に異物が付着および堆積すると、当該異物によって基板ホルダからの放射熱線が遮られ、放射温度計を用いた温度計測が正しく行えないことが起こり得る。たとえば、特許文献1に記載の技術では、放射熱線透過性を有する窓上に遮蔽部材を設けることにより、物理的に異物が窓上に堆積しにくいようにしている。   When the heat treatment is repeated many times, foreign matter such as a film attached to the substrate holder in the reduced pressure heating process chamber or dust or fragments of the substrate in the reduced pressure heating process chamber adheres and deposits on the window through which the above-mentioned radiant heat is transmitted. . If foreign matter adheres and deposits on the window through which the radiant heat is transmitted, the foreign matter may block the radiant heat from the substrate holder, and temperature measurement using the radiation thermometer may not be performed correctly. For example, in the technique described in Patent Document 1, by providing a shielding member on a window having radiation heat permeability, foreign substances are not easily deposited physically on the window.

特開2012−230049号公報JP 2012-230049

しかしながら、上記特許文献1の技術では、一度異物が上述した窓上に付着してしまうと、窓上に遮蔽部材が設けられているため当該遮蔽部材が当該異物の移動を阻害することになり、当該異物が窓上から取り除かれにくくなる。加熱処理を繰り返すことにより、当該取り除かれなかった異物が当該窓上に堆積し、当該異物によって基板ホルダからの放射熱線が遮られ、放射温度計を用いた温度計測が正しく行えなくなる。また、上記特許文献1の技術では、ガス導入口が遮蔽部材の近傍にあるため、ガス導入口から導入されたガスによって吹き飛ばされた異物の一部は当該遮蔽部材に跳ね返る。当該遮蔽部材に跳ね返った異物は当該遮蔽部材内に落下し、当該異物が上述した窓上に付着して堆積していくことになる。   However, in the technique of Patent Document 1, once the foreign matter adheres to the above-mentioned window, the shielding member inhibits the movement of the foreign matter because the shielding member is provided on the window. The foreign matter is less likely to be removed from the window. By repeating the heat treatment, the foreign substance which has not been removed is deposited on the window, and the foreign substance blocks the radiant heat from the substrate holder, and the temperature measurement using the radiation thermometer can not be performed correctly. Further, in the technique of Patent Document 1, since the gas inlet is in the vicinity of the shielding member, a part of the foreign matter blown off by the gas introduced from the gas inlet is repelled to the shielding member. The foreign matter rebounded to the shielding member falls into the shielding member, and the foreign matter adheres to and accumulates on the window described above.

本発明は、上記に鑑みてなされたものであって、放射熱線を利用した温度計測が正しく行えなくなることを抑制することができる基板処理装置を得ることを目的とする。   The present invention has been made in view of the above, and it is an object of the present invention to obtain a substrate processing apparatus capable of suppressing that temperature measurement using radiant heat rays can not be performed correctly.

上述した課題を解決し、目的を達成するために、本発明にかかる基板処理装置は、基板に減圧雰囲気の処理室内で加熱処理を施す。基板処理装置は、基板を保持し、処理室内で加熱される基板保持部を備える。基板処理装置は、基板保持部から放射された放射熱線を処理室外へ透過させる透過部を備える。基板処理装置は、透過部を透過した放射熱線を処理室外で計測する計測部を備える。基板処理装置は、透過部に向けて開口したガス導入口からガスを透過部に噴射して、処理室内にガスを導入するガス導入部を備える。   In order to solve the problems described above and achieve the object, the substrate processing apparatus according to the present invention performs a heating process on a substrate in a processing chamber under a reduced pressure atmosphere. The substrate processing apparatus includes a substrate holding unit which holds a substrate and is heated in a processing chamber. The substrate processing apparatus includes a transmitting unit that transmits a radiant heat ray emitted from the substrate holding unit to the outside of the processing chamber. The substrate processing apparatus includes a measurement unit that measures the radiant heat ray transmitted through the transmission unit outside the processing chamber. The substrate processing apparatus includes a gas introducing unit which injects gas into the processing chamber by injecting a gas from the gas introducing port opened toward the transmitting unit to the transmitting unit.

本発明にかかる基板処理装置によれば、放射熱線を利用した温度計測が正しく行えなくなることを抑制することができるという効果を奏する。   ADVANTAGE OF THE INVENTION According to the substrate processing apparatus concerning this invention, it is effective in the ability to suppress that the temperature measurement using a radiant heat ray can not be performed correctly.

本発明の実施の形態にかかる基板処理装置の構成を説明するための概略図Schematic diagram for explaining the configuration of a substrate processing apparatus according to an embodiment of the present invention 図1における減圧加熱処理室の一部の構成を詳細に説明するための拡大概略図An enlarged schematic view for explaining in detail the configuration of a part of the low pressure heating process chamber in FIG. 1 図1における減圧加熱処理室の透過窓を説明するための平面図A plan view for explaining the transmission window of the decompression heating processing chamber in FIG. 1 図1における減圧加熱処理室の基板ホルダと透過窓との位置関係を説明するための図The figure for demonstrating the positional relationship of the substrate holder of the decompression heating processing chamber in FIG. 1, and a permeation | transmission window 図1における減圧加熱処理室内で行われる処理のフローチャートFlow chart of processing performed in the decompression heating processing chamber in FIG. 1 図1における減圧加熱処理室の透過窓の周辺の形状の変形例を説明するための図The figure for demonstrating the modification of the shape of the periphery of the permeation | transmission window of the decompression heating process chamber in FIG. 図1における減圧加熱処理室の透過窓の周辺の形状の変形例を説明するための図The figure for demonstrating the modification of the shape of the periphery of the permeation | transmission window of the decompression heating process chamber in FIG.

以下に、本発明の実施の形態にかかる基板処理装置および基板の製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a substrate processing apparatus and a method of manufacturing a substrate according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.

実施の形態.
まず、本発明の実施の形態にかかる基板処理装置について説明する。図1は、本発明の実施の形態にかかる基板処理装置の構成を説明するための概略図である。
Embodiment.
First, a substrate processing apparatus according to an embodiment of the present invention will be described. FIG. 1 is a schematic view for explaining the configuration of a substrate processing apparatus according to an embodiment of the present invention.

図1に示すように、基板処理装置10は、処理対象の基板Wおよび基板ホルダHに減圧雰囲気の下で加熱処理を施す減圧加熱処理室20と、減圧加熱処理室20で加熱処理が施された基板W上に成膜またはエッチングといった表面処理を施す反応処理室30と、反応処理室30で表面処理が施された基板Wが搬出されるアンロード室40とを備える。基板Wは、たとえば集積回路用の半導体ウエハまたは太陽電池を製造するためのウエハである。基板処理装置10は、インライン方式の基板処理装置であってもよく、クラスタ方式の基板処理装置であってもよい。基板処理装置10は、反応処理室30およびアンロード室40を備えているが、反応処理室30およびアンロード室40を備えずに、減圧加熱処理室20の1つのチャンバで構成されてもよい。基板処理装置10は、反応処理室30を備えているが、反応処理室30を備えずに、減圧加熱処理室20およびアンロード室40の2つのチャンバで構成されてもよい。基板処理装置10は、アンロード室40を備えているが、減圧加熱処理室20にアンロード室40の機能を持たせて、アンロード室40を備えない構成であってもよい。この場合、反応処理室30で表面処理が施された基板Wが減圧加熱処理室20に搬出される。本実施の形態では、基板Wおよび基板ホルダHは、図示しない、少なくとも1つの搬送アームによって移送される。   As shown in FIG. 1, the substrate processing apparatus 10 is subjected to heat treatment in the reduced pressure heating processing chamber 20 which heats the substrate W and the substrate holder H to be processed under a reduced pressure atmosphere and the reduced pressure heating processing chamber 20. The reaction processing chamber 30 for performing surface treatment such as film formation or etching on the substrate W, and the unloading chamber 40 for unloading the substrate W subjected to the surface treatment in the reaction treatment chamber 30 are provided. The substrate W is, for example, a semiconductor wafer for integrated circuits or a wafer for manufacturing a solar cell. The substrate processing apparatus 10 may be an in-line type substrate processing apparatus or a cluster type substrate processing apparatus. Although the substrate processing apparatus 10 includes the reaction processing chamber 30 and the unloading chamber 40, the substrate processing apparatus 10 may be configured as one chamber of the reduced pressure heating processing chamber 20 without including the reaction processing chamber 30 and the unloading chamber 40. . Although the substrate processing apparatus 10 includes the reaction processing chamber 30, the substrate processing apparatus 10 may not include the reaction processing chamber 30, and may be configured of two chambers, a reduced pressure heating processing chamber 20 and an unloading chamber 40. Although the substrate processing apparatus 10 includes the unloading chamber 40, the reduced pressure heating processing chamber 20 may have a function of the unloading chamber 40 and may not include the unloading chamber 40. In this case, the substrate W subjected to the surface treatment in the reaction processing chamber 30 is carried out to the reduced pressure heating processing chamber 20. In the present embodiment, the substrate W and the substrate holder H are transferred by at least one transfer arm (not shown).

図1に示すように、減圧加熱処理室20には、基板ホルダHが搬入される。基板ホルダHには、上面A側に基板Wが載置される。基板ホルダHは、基板保持部の一例である。本実施の形態では、減圧加熱処理室20に基板ホルダHが搬入されたが、減圧加熱処理室20内に基板ホルダHが設けられて、減圧加熱処理室20に基板Wを搬入し、減圧加熱処理室20に搬入された基板Wが基板ホルダHに載置される構成であってもよい。この場合、基板ホルダHは基板Wを載置する基板載置台である。   As shown in FIG. 1, the substrate holder H is carried into the decompression heating processing chamber 20. The substrate W is placed on the upper surface A of the substrate holder H. The substrate holder H is an example of a substrate holding unit. In the present embodiment, the substrate holder H is carried into the reduced pressure heating process chamber 20. However, the substrate holder H is provided in the reduced pressure heating process chamber 20, and the substrate W is carried into the reduced pressure heating process chamber 20 and reduced pressure heating is performed. The substrate W carried into the processing chamber 20 may be placed on the substrate holder H. In this case, the substrate holder H is a substrate mounting table on which the substrate W is mounted.

減圧加熱処理室20には、基板ホルダHに載置された基板Wおよび基板ホルダHを加熱する加熱装置21が設けられている。加熱装置21は、基板Wを加熱することができる装置であればよい。本実施の形態では、加熱装置21としてランプヒータを用いるのがよい。本実施の形態では、ランプヒータを用いて基板Wの加熱を行うのがよいが、シースヒータを用いて基板Wの加熱を行ってもよい。本実施の形態では、たとえば基板ホルダHに載置される基板Wの温度を維持するために、減圧加熱処理室20内で基板Wが載置されていない基板ホルダHを加熱することも可能である。   The heating apparatus 21 for heating the substrate W placed on the substrate holder H and the substrate holder H is provided in the reduced pressure heating processing chamber 20. The heating device 21 may be any device that can heat the substrate W. In the present embodiment, it is preferable to use a lamp heater as the heating device 21. In the present embodiment, it is preferable to heat the substrate W using a lamp heater, but the substrate W may be heated using a sheath heater. In the present embodiment, for example, in order to maintain the temperature of the substrate W placed on the substrate holder H, it is possible to heat the substrate holder H on which the substrate W is not placed in the reduced pressure heating processing chamber 20. is there.

減圧加熱処理室20には、基板ホルダHの下方であって減圧加熱処理室20の底部22に、透過窓23が設けられている。基板ホルダHは加熱装置21により加熱され、基板ホルダHの温度に応じた放射熱線を放射する。透過窓23は、基板ホルダHから放射された放射熱線のうちの基板ホルダHの下方から放射された放射熱線を透過させる。透過窓23の材質は、たとえばフッ化カルシウムまたはフッ化バリウムである。透過窓23は、透過部である。   A transmission window 23 is provided below the substrate holder H in the decompression heating processing chamber 20 and at the bottom 22 of the decompression heating processing chamber 20. The substrate holder H is heated by the heating device 21 and emits a radiant heat corresponding to the temperature of the substrate holder H. The transmission window 23 transmits the radiation heat radiated from below the substrate holder H among the radiation heat radiated from the substrate holder H. The material of the transmission window 23 is, for example, calcium fluoride or barium fluoride. The transmission window 23 is a transmission part.

減圧加熱処理室20には、減圧加熱処理室20内に、たとえば窒素ガスまたはドライエアといったパージ用のガスを導入するガス導入装置24が設けられている。ガス導入装置24がパージ用のガスを減圧加熱処理室20内に導入することにより、減圧加熱処理室20内の圧力を大気圧に戻すことができる。ガス導入装置24は、ガス導入部の一例である。   In the reduced pressure heating process chamber 20, a gas introducing device 24 for introducing a purge gas such as nitrogen gas or dry air is provided in the reduced pressure heating process chamber 20, for example. When the gas introducing device 24 introduces the purge gas into the reduced pressure heating processing chamber 20, the pressure in the reduced pressure heating processing chamber 20 can be returned to the atmospheric pressure. The gas introduction device 24 is an example of a gas introduction unit.

減圧加熱処理室20の外部であって透過窓23の下部には、透過窓23を透過した放射熱線を計測する放射温度計25が設けられている。放射温度計25は、計測部の一例である。   A radiation thermometer 25 is provided outside the reduced-pressure heating processing chamber 20 and below the transmission window 23 to measure the radiation heat transmitted through the transmission window 23. The radiation thermometer 25 is an example of a measurement unit.

図2は、図1における減圧加熱処理室20の一部の構成を詳細に説明するための拡大概略図である。図3は、図1における減圧加熱処理室20の透過窓23を説明するための平面図である。図4は、図1における減圧加熱処理室20の基板ホルダHと透過窓23との位置関係を説明するための図である。   FIG. 2 is an enlarged schematic view for explaining in detail the configuration of a part of the low-pressure heating processing chamber 20 in FIG. FIG. 3 is a plan view for explaining the transmission window 23 of the decompression heating processing chamber 20 in FIG. FIG. 4 is a view for explaining the positional relationship between the substrate holder H and the transmission window 23 of the decompression heating processing chamber 20 in FIG.

図2に示すように、透過窓23は、基板ホルダHから放射された放射熱線Lのうち、図2中の下方に放射された放射熱線Laを減圧加熱処理室20の下方に透過させるように設けられている。   As shown in FIG. 2, of the radiant heat rays L radiated from the substrate holder H, the transmission window 23 allows the radiant heat rays La radiated downward in FIG. It is provided.

ガス導入装置24の下流端であるガス導入口24aは、透過窓23に向けて開口している。これにより、減圧加熱処理室20内へ導入するパージ用のガスが透過窓23に噴射される。ガス導入装置24は、減圧加熱処理室20の底部22における透過窓23の上面Bよりも外側に設けられる。これにより、基板ホルダHから放射された放射熱線Laの透過窓23への入射がガス導入装置24により遮られることがない。ガス導入装置24は、図2に示すように、ガス導入口24aから導入するガスが透過窓23の上面Bに対して角度αで噴射されるように設けられている。角度αは透過窓23の上面Bと噴射方向のなす角度で定義される。角度αは、30°から60°の範囲であることが好ましい。角度αが、30°から60°の範囲であると基板ホルダHから放射された放射熱線Laがガス導入装置24により遮られることを抑制することができる。角度αが、30°から60°の範囲であると導入されたガスによって吹き飛ばされた透過窓23上の異物が透過窓23上に戻ることを抑制することができる。角度αは、対象の異物のサイズ、ガス導入口24aから導入するガスの圧力、および減圧加熱処理室20内の圧力のうちの少なくともいずれかを考慮して適宜調整するのが好ましい。角度αは、ガス導入口24aから導入するガスが透過窓23の上面B全体に噴射されるように調整するのが好ましい。   The gas introduction port 24 a which is the downstream end of the gas introduction device 24 opens toward the transmission window 23. As a result, the purge gas introduced into the reduced pressure heating processing chamber 20 is injected to the transmission window 23. The gas introduction device 24 is provided outside the upper surface B of the transmission window 23 at the bottom 22 of the reduced pressure heating process chamber 20. Thereby, the incidence to the transmission window 23 of the radiant heat ray La radiated from the substrate holder H is not blocked by the gas introduction device 24. As shown in FIG. 2, the gas introduction device 24 is provided so that the gas introduced from the gas introduction port 24 a is jetted at an angle α with respect to the upper surface B of the transmission window 23. The angle α is defined by the angle between the top surface B of the transmission window 23 and the injection direction. The angle α is preferably in the range of 30 ° to 60 °. When the angle α is in the range of 30 ° to 60 °, it is possible to prevent the radiation heat ray La emitted from the substrate holder H from being blocked by the gas introduction device 24. When the angle α is in the range of 30 ° to 60 °, foreign matter on the transmission window 23 blown off by the introduced gas can be suppressed from returning to the transmission window 23. The angle α is preferably adjusted in consideration of at least one of the size of the target foreign object, the pressure of the gas introduced from the gas inlet 24 a, and the pressure in the reduced-pressure heating processing chamber 20. The angle α is preferably adjusted so that the gas introduced from the gas inlet 24 a is injected over the entire top surface B of the transmission window 23.

図3に示すように、減圧加熱処理室20の底部22には、円柱形状の透過窓23が設けられている。透過窓23の直径は、たとえば10mm〜40mm程度である。減圧加熱処理室20の底部22には、透過窓23の外周を囲うように窓枠26が設けられている。   As shown in FIG. 3, a cylindrical transmission window 23 is provided at the bottom 22 of the reduced-pressure heating processing chamber 20. The diameter of the transmission window 23 is, for example, about 10 mm to 40 mm. A window frame 26 is provided at the bottom 22 of the reduced-pressure heating processing chamber 20 so as to surround the outer periphery of the transmission window 23.

本実施の形態では、図4に示すように、減圧加熱処理室20の底部22の中心に透過窓23が設けられるのが好ましい。本実施の形態では、図2および図4に示すように、透過窓23は基板ホルダHの底面Cの中心Dから放射された放射熱線Laを透過するように設けられるのが好ましい。基板ホルダHの温度の計測では、基板ホルダHの中心を代表点として計測するのが好ましく、基板ホルダHの底面Cの中心Dを代表点として計測するのが好ましいからである。透過窓23が減圧加熱処理室20の底部22の中心から外れた位置に設けられ、透過窓23が基板ホルダHの底面Cの中心Dから外れた位置から放射された放射熱線Lを透過するように設けられていてもよい。基板ホルダHの温度の計測では、基板ホルダHの底面の中心から外れた位置を代表点として計測を行うことも可能だからである。   In the present embodiment, as shown in FIG. 4, it is preferable that the transmission window 23 be provided at the center of the bottom 22 of the reduced pressure heating process chamber 20. In the present embodiment, as shown in FIG. 2 and FIG. 4, the transmission window 23 is preferably provided so as to transmit the radiant heat ray La radiated from the center D of the bottom surface C of the substrate holder H. In the measurement of the temperature of the substrate holder H, it is preferable to measure the center of the substrate holder H as a representative point, and it is preferable to measure the center D of the bottom surface C of the substrate holder H as a representative point. A transmission window 23 is provided at a position away from the center of the bottom 22 of the reduced-pressure heating processing chamber 20, and the transmission window 23 transmits a radiant heat L emitted from a position outside the center D of the bottom surface C of the substrate holder H May be provided. This is because the measurement of the temperature of the substrate holder H can be performed with the position deviated from the center of the bottom surface of the substrate holder H as a representative point.

次に、図1における減圧加熱処理室20内で行われる処理について説明する。図5は、図1における減圧加熱処理室20内で行われる処理のフローチャートである。図5の処理は、減圧加熱処理室20内において繰り返し行われる。   Next, processing performed in the reduced pressure heating processing chamber 20 in FIG. 1 will be described. FIG. 5 is a flowchart of processing performed in the reduced pressure heating processing chamber 20 in FIG. The process of FIG. 5 is repeatedly performed in the reduced pressure heating process chamber 20.

図5に示すように、まず、減圧加熱処理室20内に基板ホルダHが搬入される(ステップS101)。基板ホルダHの上面Aには、基板Wが載置されている。減圧加熱処理室20内の圧力はたとえば大気圧である。   As shown in FIG. 5, first, the substrate holder H is carried into the decompression heating processing chamber 20 (step S101). The substrate W is mounted on the top surface A of the substrate holder H. The pressure in the reduced pressure heating process chamber 20 is, for example, atmospheric pressure.

次いで、減圧加熱処理室20内が図示しないポンプによって減圧排気される(ステップS102)。   Next, the inside of the reduced pressure heating processing chamber 20 is depressurized and exhausted by a pump (not shown) (step S102).

次いで、減圧加熱処理室20内で基板ホルダHに載置された基板Wに加熱処理が施される(ステップS103)。加熱処理では、加熱装置21が用いられる。加熱処理では、加熱装置21によって基板Wおよび基板ホルダHが加熱され、基板ホルダHの底面Cの中心Dから放射された放射熱線Laが透過窓23を透過する。加熱処理では、放射温度計38が、透過窓23を透過した放射熱線Laの強度を計測して、基板ホルダHの温度を計測する。加熱処理では、基板ホルダHの温度を計測することにより、基板Wの温度を相対的に計測して、基板Wの温度を制御する。たとえば、基板ホルダHの温度から基板Wの温度を推定してもよい。加熱処理は、基板Wの温度が次の工程である表面処理に必要な温度に到達するまで行われる。加熱処理は、基板Wの温度が次の工程である表面処理に必要な温度に到達してから、基板Wの温度を一定時間維持するように行われてもよい。   Next, the substrate W placed on the substrate holder H in the reduced pressure heating processing chamber 20 is subjected to a heating process (step S103). In the heat treatment, a heating device 21 is used. In the heat treatment, the substrate W and the substrate holder H are heated by the heating device 21, and the radiant heat ray La radiated from the center D of the bottom surface C of the substrate holder H passes through the transmission window 23. In the heat treatment, the radiation thermometer 38 measures the intensity of the radiant heat ray La transmitted through the transmission window 23 to measure the temperature of the substrate holder H. In the heat treatment, by measuring the temperature of the substrate holder H, the temperature of the substrate W is relatively measured, and the temperature of the substrate W is controlled. For example, the temperature of the substrate W may be estimated from the temperature of the substrate holder H. The heat treatment is performed until the temperature of the substrate W reaches the temperature necessary for the surface treatment which is the next step. The heat treatment may be performed to maintain the temperature of the substrate W for a certain period of time after the temperature of the substrate W reaches the temperature necessary for the surface treatment which is the next step.

次いで、基板Wの温度が次の工程である表面処理に必要な温度に到達すると、基板ホルダHが減圧加熱処理室20内から反応処理室30内に移送される(ステップS104)。反応処理室30内では、基板ホルダHに載置された基板Wに成膜またはエッチングといった表面処理が施される。反応処理室30内で、基板Wに表面処理が施されると、基板ホルダHはアンロード室40に搬出される。アンロード室40では、アンロード室40内の圧力が大気圧に戻されてから、基板Wがアンロード室40内から基板処理装置10の外へ取り出される。   Next, when the temperature of the substrate W reaches the temperature necessary for the surface processing which is the next step, the substrate holder H is transferred from the inside of the reduced pressure heating processing chamber 20 into the reaction processing chamber 30 (step S104). In the reaction processing chamber 30, the substrate W placed on the substrate holder H is subjected to surface treatment such as film formation or etching. When the substrate W is subjected to surface treatment in the reaction processing chamber 30, the substrate holder H is carried out to the unloading chamber 40. In the unloading chamber 40, the pressure in the unloading chamber 40 is returned to atmospheric pressure, and then the substrate W is taken out of the unloading chamber 40 and out of the substrate processing apparatus 10.

基板ホルダHを減圧加熱処理室20内から反応処理室30内へ移送した後、減圧加熱処理室20内では、減圧加熱処理室20内の圧力をたとえば大気圧に戻すために、ガス導入装置24により減圧加熱処理室20内にパージ用のガスが導入される(ステップS105)。その後に、本処理を終了する。   After transferring the substrate holder H from the inside of the reduced pressure heating processing chamber 20 to the inside of the reaction processing chamber 30, the gas introducing device 24 is provided in the reduced pressure heating processing chamber 20 in order to return the pressure in the reduced pressure heating processing chamber 20 to atmospheric pressure, for example. As a result, a purge gas is introduced into the reduced pressure heating processing chamber 20 (step S105). Thereafter, the process ends.

図5の処理によれば、ガス導入装置24により減圧加熱処理室20内にパージ用のガスが導入される(ステップS105)。図2に示すように、ガス導入装置24のガス導入口24aは、導入するガスが透過窓23に噴射されるように透過窓23に向けて開口している。これにより、減圧加熱処理室20内に導入されたガスによって、透過窓23に付着した異物が吹き飛ばされる。減圧加熱処理室20内へのガスの導入は減圧加熱処理室20内で繰り返し行われるものであり、その都度透過窓23に付着した異物が吹き飛ばされるため、透過窓23に異物が堆積することが抑制される。よって、透過窓23に堆積した異物が放射熱線Laを遮ることを抑制することができるため、放射熱線を利用した温度計測が正しく行えなくなることを抑制することができる。   According to the process of FIG. 5, the gas for purge is introduced into the reduced pressure heating processing chamber 20 by the gas introduction device 24 (step S105). As shown in FIG. 2, the gas introduction port 24 a of the gas introduction device 24 is opened toward the transmission window 23 so that the gas to be introduced is injected to the transmission window 23. Thus, the foreign matter attached to the transmission window 23 is blown away by the gas introduced into the reduced pressure heating process chamber 20. The introduction of the gas into the reduced-pressure heating processing chamber 20 is repeatedly performed in the reduced-pressure heating processing chamber 20, and the foreign matter adhering to the transmission window 23 is blown away each time, so the foreign matter may be deposited on the transmission window 23 Be suppressed. Therefore, since the foreign material deposited on the transmission window 23 can be prevented from blocking the radiant heat ray La, it is possible to suppress that the temperature measurement using the radiant heat ray can not be performed correctly.

図5の処理によれば、減圧加熱処理室20内が減圧排気されているため、減圧加熱処理室20内が減圧排気されていない場合と比較して、ガス導入装置24による減圧加熱処理室20内へのパージ用のガスの導入において、減圧加熱処理室20内の圧力とパージ用のガスの圧力との圧力差が大きくなる。このため、減圧加熱処理室20内では、減圧加熱処理室20内が減圧排気されていない場合と比較して、パージ用のガスの流れが速くなるため、容易に透過窓23に付着した異物を吹き飛ばすことができる。   According to the process of FIG. 5, since the inside of the reduced pressure heating processing chamber 20 is depressurized and exhausted, the reduced pressure heating processing chamber 20 by the gas introduction device 24 is compared with the case where the inside of the reduced pressure heating processing chamber 20 is not evacuated. In the introduction of the purge gas into the inside, the pressure difference between the pressure in the reduced-pressure heating processing chamber 20 and the pressure of the purge gas increases. Therefore, in the reduced pressure heating processing chamber 20, the flow of the purge gas is faster than in the case where the reduced pressure heating processing chamber 20 is not reduced in pressure and thus, foreign matter attached to the transmission window 23 is easily. It can be blown off.

図5の処理によれば、減圧加熱処理室20内が減圧排気されているため、減圧加熱処理室20内が減圧排気されていない場合と比較して、ガス導入装置24による減圧加熱処理室20内へのパージ用のガスの導入において、ガスの導入時間が長くなる。これにより、減圧加熱処理室20内が減圧排気されていない場合と比較して、基板処理装置10の生産性を低下させることなく、より多くの異物を透過窓23から吹き飛ばすことができる。   According to the process of FIG. 5, since the inside of the reduced pressure heating processing chamber 20 is depressurized and exhausted, the reduced pressure heating processing chamber 20 by the gas introduction device 24 is compared with the case where the inside of the reduced pressure heating processing chamber 20 is not evacuated. In the introduction of the purge gas into the inside, the introduction time of the gas becomes long. As a result, more foreign matter can be blown out of the transmission window 23 without reducing the productivity of the substrate processing apparatus 10 as compared to the case where the reduced pressure heating processing chamber 20 is not evacuated.

図5の処理によれば、減圧加熱処理室20内を大気圧に戻す工程において、透過窓23上に付着した異物を取り除いている。透過窓23上に異物が付着しやすい工程は、減圧加熱処理室20内で温度変化がある工程および基板ホルダHを移動させる工程である。減圧加熱処理室20内を大気圧に戻す工程は、減圧加熱処理室20内の温度を低下させる工程を兼ねている。減圧加熱処理室20内を大気圧に戻す工程は、減圧加熱処理室20内の温度を上昇させる工程および基板ホルダHを移動させる工程の後に行われる工程である。減圧加熱処理室20内を大気圧に戻す工程では、透過窓23上に多くの異物が付着しているため、透過窓23上に付着した異物を効率的に取り除くことができる。本実施の形態では、減圧加熱処理室20内を大気圧に戻す工程において、透過窓23上に付着した異物を取り除いているが、たとえば、反応処理室30内で基板Wに表面処理が施されている間において、減圧加熱処理室20内でガス導入装置24によりガスを導入して、透過窓23上に付着した異物を取り除いてもよい。   According to the process of FIG. 5, in the step of returning the inside of the reduced pressure heating processing chamber 20 to the atmospheric pressure, the foreign matter attached on the transmission window 23 is removed. The step in which foreign matter tends to adhere on the transmission window 23 is a step in which there is a temperature change in the reduced pressure heating processing chamber 20 and a step of moving the substrate holder H. The step of returning the inside of the reduced pressure heating processing chamber 20 to the atmospheric pressure also serves as the step of reducing the temperature in the reduced pressure heating processing chamber 20. The step of returning the inside of the reduced pressure heating processing chamber 20 to the atmospheric pressure is a step performed after the step of raising the temperature in the reduced pressure heating processing chamber 20 and the step of moving the substrate holder H. In the step of returning the inside of the reduced-pressure heating processing chamber 20 to the atmospheric pressure, many foreign substances are attached on the transmission window 23. Therefore, the foreign substances attached on the transmission window 23 can be efficiently removed. In the present embodiment, in the step of returning the inside of the reduced pressure heating processing chamber 20 to the atmospheric pressure, the foreign matter attached on the transmission window 23 is removed, but for example, the substrate W is subjected to surface treatment in the reaction processing chamber 30. In the meantime, a gas may be introduced by the gas introducing device 24 in the reduced pressure heating processing chamber 20 to remove foreign matter adhering to the transmission window 23.

本実施の形態では、図2に示すように、透過窓23の上面B、すなわち基板ホルダH側の面と、窓枠26の上面Fと、底部22の上面Eとは高さが同じであることが最も好ましい。この場合、吹き飛ばされた異物が透過窓23と窓枠26との境界に留まることがないからである。図6に示すように、透過窓23の周辺の形状は、透過窓23の上面Bの高さが窓枠26の上面Fの高さおよび底部22の上面Eの高さと比較して高くなる凸型であってもよい。この場合においても、吹き飛ばされた異物が透過窓23と窓枠26との境界に留まることが抑制される。透過窓23の周辺の形状が凸型である場合は、透過窓23の上面Bの高さが窓枠26の上面Fの高さおよび底部22の上面Eの高さよりも0mmから2mm程度高い形状であるのが好ましい。図7に示すように、透過窓23の周辺の形状が、透過窓23の上面Bの高さが窓枠26の上面Fの高さおよび底部22の上面Eの高さと比較して低くなる凹型であると、吹き飛ばされた異物が透過窓23と窓枠26との境界に留まることがある。この場合、ガス導入装置24から導入するガスの流れを速くすることによって、異物が透過窓23と窓枠26との境界に留まらないようにすることが可能である。   In the present embodiment, as shown in FIG. 2, the top surface B of the transmission window 23, ie, the surface on the substrate holder H side, the top surface F of the window frame 26, and the top surface E of the bottom 22 have the same height. Is most preferred. In this case, the blown foreign matter does not stay at the boundary between the transmission window 23 and the window frame 26. As shown in FIG. 6, the shape of the periphery of the transmission window 23 is convex such that the height of the top surface B of the transmission window 23 is higher than the height of the top surface F of the window frame 26 and the height of the top surface E of the bottom 22. It may be a type. Also in this case, the blown-out foreign matter is suppressed from remaining at the boundary between the transmission window 23 and the window frame 26. When the shape of the periphery of the transmission window 23 is convex, the height of the top surface B of the transmission window 23 is about 0 mm to 2 mm higher than the height of the top surface F of the window frame 26 and the height of the top surface E of the bottom 22. Is preferred. As shown in FIG. 7, the shape of the periphery of the transmission window 23 is concave such that the height of the top surface B of the transmission window 23 is lower than the height of the top surface F of the window frame 26 and the height of the top surface E of the bottom 22. If so, the blown foreign matter may stay at the boundary between the transmission window 23 and the window frame 26. In this case, by speeding up the flow of the gas introduced from the gas introducing device 24, it is possible to prevent the foreign matter from staying at the boundary between the transmission window 23 and the window frame 26.

本実施の形態では、図2に示すように、透過窓23は上面Bが基板ホルダHの底面Cに対して平行となるように減圧加熱処理室20の底部22に設けられるのが好ましい。異物は、主に基板ホルダHの底面Cから落下して、透過窓23上に付着するため、透過窓23が計測対象物である基板ホルダHの底面Cに対して、平行に設置されていると透過窓23上に異物が付着しやすくなる。透過窓23の上面Bが基板ホルダHの底面Cに対して平行とならない場合は、重力および異物の吹き飛ばす方向によっては、異物が透過窓23上のどこかの部分に偏って堆積してしまう。本実施の形態では、透過窓23は上面Bが基板ホルダHの底面Cに対して平行となるように減圧加熱処理室20の底部22に設けられているため、透過窓23に異物が偏って堆積することを抑制することができ、より長期間の基板処理装置10の使用においても異物の堆積を抑制できる。本実施の形態では、透過窓23は上面Bが水平となるように減圧加熱処理室20の底部22に設けられるとさらに好ましい。本実施の形態では、透過窓23は上面Bが基板ホルダHの底面Cに対して平行となるように減圧加熱処理室20の底部22に設けられていたが、透過窓23の上面Bが基板ホルダHの底面Cに対して平行の場合に限定されるものではなく、たとえば基板処理装置10の設置状況によって、透過窓23の上面Bが基板ホルダHの底面Cに対して平行でない場合であってもよい。   In the present embodiment, as shown in FIG. 2, the transmission window 23 is preferably provided at the bottom 22 of the reduced-pressure heating processing chamber 20 such that the top surface B is parallel to the bottom surface C of the substrate holder H. Since the foreign matter mainly falls from the bottom surface C of the substrate holder H and adheres on the transmission window 23, the transmission window 23 is disposed parallel to the bottom surface C of the substrate holder H which is the measurement object Foreign objects are likely to be attached onto the transmission window 23. If the top surface B of the transmission window 23 is not parallel to the bottom surface C of the substrate holder H, the foreign material may be deposited on a portion of the transmission window 23 depending on the gravity and the direction in which the foreign material is blown off. In the present embodiment, the transmission window 23 is provided at the bottom 22 of the reduced-pressure heating processing chamber 20 so that the upper surface B is parallel to the bottom surface C of the substrate holder H. The deposition can be suppressed, and the deposition of foreign matter can be suppressed even in the use of the substrate processing apparatus 10 for a longer period of time. In the present embodiment, the transmission window 23 is more preferably provided at the bottom 22 of the reduced-pressure heating processing chamber 20 so that the upper surface B is horizontal. In the present embodiment, the transmission window 23 is provided at the bottom 22 of the reduced-pressure heating processing chamber 20 so that the upper surface B is parallel to the bottom surface C of the substrate holder H, but the upper surface B of the transmission window 23 is the substrate The present invention is not limited to the case where it is parallel to the bottom surface C of the holder H. For example, depending on the installation situation of the substrate processing apparatus 10, the top surface B of the transmission window 23 is not parallel to the bottom surface C of the substrate holder H. May be

本実施の形態では、図2に示すように、透過窓23は上面Bが基板ホルダHの底面Cに対して平行となるように減圧加熱処理室20の底部22に設けられるのが好ましい。これにより、上述した特許文献1に記載の技術よりも、放射温度計25に入射される放射熱線Laの量を多くすることができるため、基板ホルダHの温度の計測誤差を小さくすることができる。   In the present embodiment, as shown in FIG. 2, the transmission window 23 is preferably provided at the bottom 22 of the reduced-pressure heating processing chamber 20 such that the top surface B is parallel to the bottom surface C of the substrate holder H. As a result, the amount of the radiant heat ray La incident on the radiation thermometer 25 can be increased more than the technology described in the above-mentioned Patent Document 1, so that the measurement error of the temperature of the substrate holder H can be reduced. .

本実施の形態では、減圧加熱処理室20が真空の状態と大気圧の状態とを繰り返す真空導入室、たとえばロードロック室であるのが好ましい。この場合、減圧加熱処理室20内を大気圧に戻す工程において、透過窓23に付着した異物を取り除くことができるため、基板処理装置10の生産性の低下を抑制できる。   In the present embodiment, it is preferable that the reduced pressure heating process chamber 20 be a vacuum introduction chamber, for example, a load lock chamber, which repeats a vacuum state and an atmospheric pressure state. In this case, since the foreign matter attached to the transmission window 23 can be removed in the step of returning the inside of the reduced pressure heating processing chamber 20 to the atmospheric pressure, the decrease in productivity of the substrate processing apparatus 10 can be suppressed.

本実施の形態では、図1に示すように、加熱装置21が、基板ホルダHの位置を基準に、透過窓23の位置に対して反対側の位置に設けられる。本実施の形態では、加熱装置21が放射した光、すなわち赤外線が透過窓23に入射されないように、基板ホルダHの位置を基準に、透過窓23の位置に対して反対側の位置に設けられる。これにより、加熱装置21から放射された赤外線が透過窓23に入射されることがないため、加熱装置21から放射された赤外線が透過窓23に入射されて、放射温度計25による基板ホルダHの温度の計測精度が悪化することを抑制することができる。   In the present embodiment, as shown in FIG. 1, the heating device 21 is provided at a position opposite to the position of the transmission window 23 on the basis of the position of the substrate holder H. In the present embodiment, it is provided at a position opposite to the position of the transmission window 23 on the basis of the position of the substrate holder H so that light emitted by the heating device 21, that is, infrared light is not incident on the transmission window 23. . As a result, the infrared radiation emitted from the heating device 21 is not incident on the transmission window 23, so the infrared radiation emitted from the heating device 21 is incident on the transmission window 23, and the substrate holder H by the radiation thermometer 25 is It can suppress that the measurement precision of temperature deteriorates.

本実施の形態では、基板ホルダHは上面に基板Wを載置するものであったが、基板ホルダHは基板Wを支持するものであればよい。   In the present embodiment, the substrate holder H places the substrate W on the upper surface, but the substrate holder H may support the substrate W.

上述した本実施の形態では、減圧加熱処理室20は、減圧加熱処理室20内の圧力を大気圧から減圧するロードロック室としての機能と、基板Wの温度を成膜といった表面処理に必要な温度に近づけるための予備加熱を行う予備加熱室としての機能とを有する1つの処理室である。減圧加熱処理室20をロードロック室と予備加熱室とを兼ねたものとすることにより、基板処理装置10のコストおよびフットプリントを低減できる。なお、上記の例に限らず、ロードロック室と予備加熱室とが別に設けられていてもよい。ロードロック室と予備加熱室とが別に設けられ、減圧加熱処理室20がロードロック室であった場合、ガス導入装置24から供給するガスをパージガスとしても使用することができるため、減圧加熱処理室20のコストを低減できる。ロードロック室と予備加熱室とが別に設けられ、減圧加熱処理室20が予備加熱室であった場合、所望の温度に対する基板ホルダHの温度の計測誤差を小さくすることができる。   In the present embodiment described above, the reduced pressure heating processing chamber 20 has a function as a load lock chamber for reducing the pressure in the reduced pressure heating processing chamber 20 from the atmospheric pressure, and the temperature of the substrate W is required for surface treatment such as film formation. It is one processing chamber having a function as a preheating chamber that performs preheating to approach temperature. The cost and footprint of the substrate processing apparatus 10 can be reduced by using the reduced pressure heating processing chamber 20 as a load lock chamber and a preheating chamber. Not limited to the above example, the load lock chamber and the preheating chamber may be provided separately. When the load lock chamber and the preheating chamber are separately provided and the reduced pressure heating processing chamber 20 is a load lock chamber, the gas supplied from the gas introduction device 24 can also be used as a purge gas. The cost of 20 can be reduced. When the load lock chamber and the preheating chamber are separately provided and the reduced pressure heating processing chamber 20 is a preheating chamber, the measurement error of the temperature of the substrate holder H with respect to the desired temperature can be reduced.

上述した本実施の形態では、基板処理装置10が、アンロード室40を備えない場合、成膜といった表面処理が施された基板Wが、減圧加熱処理室20へ搬送される。その際に、異物が透過窓23に付着および堆積することが多いため、減圧加熱処理室20がガス導入装置24を備えていることによる異物除去の効果は大きい。   In the present embodiment described above, when the substrate processing apparatus 10 does not include the unloading chamber 40, the substrate W subjected to surface processing such as film formation is transported to the reduced pressure heating processing chamber 20. At that time, foreign matter often adheres to and accumulates on the transmission window 23, so the effect of foreign matter removal by the reduced pressure heating processing chamber 20 being provided with the gas introduction device 24 is large.

上述した本実施の形態では、基板ホルダHの中心Dから放射された放射熱線Laを計測することによる、温度の計測誤差を小さくするためには、図2に示すように、放射温度計25の位置は基板ホルダHに対して直下であることが好ましい。さらには、基板ホルダHから垂直に放射された放射熱線Laが放射温度計25に垂直に入射されるように、基板ホルダHと放射温度系25とは対向していることが好ましい。   In the embodiment described above, in order to reduce the measurement error of the temperature by measuring the radiant heat ray La radiated from the center D of the substrate holder H, as shown in FIG. The position is preferably directly below the substrate holder H. Furthermore, it is preferable that the substrate holder H and the radiation temperature system 25 be opposed so that the radiation heat radiation La vertically emitted from the substrate holder H is perpendicularly incident on the radiation thermometer 25.

上述した本実施の形態では、図2に示すように、放射温度計25は、基板ホルダHの底面Cの直下に位置し、基板ホルダHから垂直に放射された放射熱線Laが放射温度計25に垂直に入射されるように、減圧加熱処理室20の底部22および透過窓23に設けられるのが好ましい。これにより、上述した特許文献1に記載の技術よりも、放射温度計25に入射される放射熱線Laの量を多くすることができるため、基板ホルダHの温度の計測誤差を小さくすることができる。   In the embodiment described above, as shown in FIG. 2, the radiation thermometer 25 is located directly below the bottom surface C of the substrate holder H, and the radiation heat radiation La radiated vertically from the substrate holder H is a radiation thermometer 25. Preferably, it is provided at the bottom 22 and the transmission window 23 of the reduced-pressure heating processing chamber 20 so as to be vertically incident on the As a result, the amount of the radiant heat ray La incident on the radiation thermometer 25 can be increased more than the technology described in the above-mentioned Patent Document 1, so that the measurement error of the temperature of the substrate holder H can be reduced. .

上述した本実施の形態では、図2に示すように、ガス導入装置24は、減圧加熱処理室20内において透過窓23の上面Bよりも外側に設けられる。これにより、基板ホルダHから放射された放射熱線Laの透過窓23への入射がガス導入装置24により遮られることがない。一方、上述した特許文献1に記載の技術では、遮蔽物内にガス導入装置の配管が設置されており、遮蔽物内で透過窓にむけてガスが照射される構成となる場合には、窓領域を基板に投影する投影領域に配管の口が存在することになると考えられる。この場合、配管が放射温度計25に入射される放射熱線Laを遮るため、基板ホルダHの温度の計測誤差が本発明より大きくなる。   In the embodiment described above, as shown in FIG. 2, the gas introduction device 24 is provided outside the upper surface B of the transmission window 23 in the reduced pressure heating processing chamber 20. Thereby, the incidence to the transmission window 23 of the radiant heat ray La radiated from the substrate holder H is not blocked by the gas introduction device 24. On the other hand, in the technology described in Patent Document 1 described above, if the piping of the gas introduction device is installed in the shield and the configuration is such that the gas is irradiated toward the transmission window in the shield, the window It is believed that a pipe port will be present in the projection area that projects the area onto the substrate. In this case, since the piping blocks the radiation heat ray La incident on the radiation thermometer 25, the measurement error of the temperature of the substrate holder H becomes larger than that of the present invention.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略および変更することも可能である。   The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. It is also possible to omit and change parts.

実施例.
基板処理装置10を用いて、10日間、連続して成膜処理を行った。成膜処理では、基板Wの温度を380℃に設定した。成膜処理の1回の処理は5分程度であった。基板処理装置10では、基板Wの実際の温度を380℃±9℃の範囲で推移させることができた。
Example.
The film forming process was continuously performed for 10 days using the substrate processing apparatus 10. In the film forming process, the temperature of the substrate W was set to 380.degree. One process of the film forming process was about 5 minutes. In the substrate processing apparatus 10, the actual temperature of the substrate W can be changed in the range of 380 ° C. ± 9 ° C.

比較例.
上述した特許文献1に記載の装置を用いて、10日間、連続して成膜処理の実験を行った。成膜処理では、基板Wの温度を380℃に設定した。成膜処理の1回の処理は5分程度であった。上述した特許文献1に記載の装置では、基板Wの実際の温度が380℃〜420℃の範囲で推移した。
Comparative example.
Using the apparatus described in Patent Document 1 described above, experiments of film formation processing were continuously performed for 10 days. In the film forming process, the temperature of the substrate W was set to 380.degree. One process of the film forming process was about 5 minutes. In the apparatus described in Patent Document 1 described above, the actual temperature of the substrate W changed in the range of 380 ° C. to 420 ° C.

実施例と比較例とを比較した結果、上述した特許文献1に記載の装置を用いた実験では、基板Wの実際の温度の平均値が400℃となり、設定値である380℃から+20℃という大幅なずれが生じた。さらに、基板Wの実際の温度が380℃〜420℃の範囲で推移し、変動幅が40℃となった。基板処理装置10を用いた場合は、基板Wの実際の温度が380℃±9℃の範囲で推移し、変動幅は18℃となり、比較例と比較して変動幅を2分の1程度に抑制することができた。基板処理装置10では、基板Wの温度制御を適切に行うことができ、比較例と比較して、基板Wの温度のばらつきが抑制されていることが実証された。また、比較例では、実験終了後、窓上に異物の堆積が確認されたが、基板処理装置10では透過窓23の上面Bに異物は殆ど載っていなかった。   As a result of comparing the example and the comparative example, in the experiment using the apparatus described in the above-mentioned patent document 1, the average value of the actual temperature of the substrate W is 400 ° C., and the set value is 380 ° C. to + 20 ° C. A significant shift has occurred. Furthermore, the actual temperature of the substrate W changed in the range of 380 ° C. to 420 ° C., and the fluctuation range became 40 ° C. When the substrate processing apparatus 10 is used, the actual temperature of the substrate W changes in the range of 380 ° C. ± 9 ° C., and the variation range is 18 ° C., and the variation range is reduced to about half compared to the comparative example. It was possible to suppress. In the substrate processing apparatus 10, the temperature control of the substrate W can be appropriately performed, and it has been proved that the variation in the temperature of the substrate W is suppressed as compared with the comparative example. Further, in the comparative example, deposition of foreign matter was confirmed on the window after the experiment, but in the substrate processing apparatus 10, almost no foreign matter was on the upper surface B of the transmission window 23.

10 基板処理装置、20 減圧加熱処理室、21 加熱装置、22 底部、23 透過窓、24 ガス導入装置、24a ガス導入口、25 放射温度計、26 窓枠、30 反応処理室、40 アンロード室、H 基板ホルダ、L,La 放射熱線、W 基板。   DESCRIPTION OF SYMBOLS 10 substrate processing apparatus, 20 decompression heating processing room, 21 heating apparatus, 22 bottom part, 23 transmission window, 24 gas introduction apparatus, 24a gas introduction port, 25 radiation thermometer, 26 window frame, 30 reaction processing room, 40 unloading room , H substrate holder, L, La radiant heat rays, W substrate.

上述した課題を解決し、目的を達成するために、本発明にかかる基板処理装置は、基板に減圧雰囲気の処理室内で加熱処理を施す。基板処理装置は、基板を保持し、処理室内で加熱される基板保持部を備える。基板処理装置は、基板保持部から放射された放射熱線を処理室外へ透過させる透過部を備える。基板処理装置は、透過部を透過した放射熱線を処理室外で計測する計測部を備える。基板処理装置は、透過部の上面よりも外側に設けられ、透過部に向けて開口したガス導入口からガスを透過部に噴射して、処理室内にガスを導入するガス導入部を備える。 In order to solve the problems described above and achieve the object, the substrate processing apparatus according to the present invention performs a heating process on a substrate in a processing chamber under a reduced pressure atmosphere. The substrate processing apparatus includes a substrate holding unit which holds a substrate and is heated in a processing chamber. The substrate processing apparatus includes a transmitting unit that transmits a radiant heat ray emitted from the substrate holding unit to the outside of the processing chamber. The substrate processing apparatus includes a measurement unit that measures the radiant heat ray transmitted through the transmission unit outside the processing chamber. The substrate processing apparatus includes a gas introduction unit provided outside the upper surface of the transmission unit, injecting a gas into the transmission unit from a gas introduction port opened toward the transmission unit, and introducing the gas into the processing chamber.

Claims (8)

基板に減圧雰囲気の処理室内で加熱処理を施す基板処理装置であって、
前記基板を保持し、前記処理室内で加熱される基板保持部と、
前記基板保持部から放射された放射熱線を前記処理室外へ透過させる透過部と、
前記透過部を透過した前記放射熱線を前記処理室外で計測する計測部と、
前記透過部に向けて開口したガス導入口からガスを前記透過部に噴射して、前記処理室内に前記ガスを導入するガス導入部と、を備える
ことを特徴とする基板処理装置。
A substrate processing apparatus for performing heat treatment on a substrate in a processing chamber of a reduced pressure atmosphere,
A substrate holding unit which holds the substrate and is heated in the processing chamber;
A transmitting unit for transmitting a radiant heat ray emitted from the substrate holding unit to the outside of the processing chamber;
A measurement unit configured to measure the radiant heat ray transmitted through the transmission unit outside the processing chamber;
A substrate processing apparatus, comprising: a gas introduction unit for injecting a gas into the processing chamber by injecting a gas from the gas introduction port opened toward the transmission unit into the processing chamber.
前記基板保持部は上面および底面を有し、
前記基板は前記基板保持部の前記上面側で支持され、
前記透過部は前記基板保持部の前記底面から放射された放射熱線を前記処理室外へ透過させ、上面が前記基板保持部の前記底面に対して平行となるように前記処理室の底部に設けられることを特徴とする請求項1に記載の基板処理装置。
The substrate holder has a top surface and a bottom surface.
The substrate is supported on the upper surface side of the substrate holding unit,
The transmission unit is provided at the bottom of the processing chamber such that a radiant heat ray radiated from the bottom surface of the substrate holding unit is transmitted to the outside of the processing chamber, and the upper surface is parallel to the bottom surface of the substrate holding unit. The substrate processing apparatus according to claim 1,
前記ガス導入部は、前記処理室内において前記透過部の上面よりも外側に設けられている
ことを特徴とする請求項2に記載の基板処理装置。
The substrate processing apparatus according to claim 2, wherein the gas introduction unit is provided outside the upper surface of the transmission unit in the processing chamber.
前記透過部の上面と前記処理室の底部の上面とは高さが同じであることを特徴とする請求項2または3に記載の基板処理装置。   The substrate processing apparatus according to claim 2, wherein the upper surface of the transmission part and the upper surface of the bottom of the processing chamber have the same height. 前記加熱処理はランプヒータを用いて行われ、
前記ランプヒータは、放射した光が前記透過部に入射されないように、前記基板保持部の位置を基準に、前記透過部の位置に対して反対側の位置に設けられることを特徴とする請求項1から4のいずれか1項に記載の基板処理装置。
The heat treatment is performed using a lamp heater,
The lamp heater is provided at a position opposite to the position of the transmission portion with respect to the position of the substrate holding portion so that the emitted light is not incident on the transmission portion. The substrate processing apparatus according to any one of 1 to 4.
前記処理室は、反応処理室の前室である予備加熱室であることを特徴とする請求項1から5のいずれか1項に記載の基板処理装置。   The substrate processing apparatus according to any one of claims 1 to 5, wherein the processing chamber is a preheating chamber which is a front chamber of a reaction processing chamber. 前記処理室は、ロードロック室であり、かつ反応処理室の前室である予備加熱室であり、かつ基板を搬出するアンロード室であることを特徴とする請求項1から5のいずれか1項に記載の基板処理装置。   The processing chamber is a load lock chamber, and is a preheating chamber which is a front chamber of a reaction processing chamber, and is an unloading chamber for unloading a substrate. The substrate processing apparatus as described in a term. 基板を保持する基板保持部から放射された放射熱線を処理室外へ透過させる透過部を備えた基板処理装置で実行される基板の製造方法であって、
前記基板を前記処理室内に搬入する搬入ステップと、
前記基板に前記処理室内で加熱処理を施す加熱ステップと、
前記透過部に向けて開口したガス導入口からガスを前記透過部に噴射して、前記処理室内に前記ガスを導入するガス導入ステップとを有し、
前記加熱ステップは、前記透過部を透過した前記放射熱線を前記処理室外で計測する計測ステップを含む
ことを特徴とする基板の製造方法。
A method of manufacturing a substrate, which is performed by a substrate processing apparatus including a transmitting unit configured to transmit a radiant heat ray radiated from a substrate holding unit holding a substrate to the outside of the processing chamber,
A loading step of loading the substrate into the processing chamber;
Applying a heating process to the substrate in the process chamber;
Introducing a gas into the processing chamber by injecting a gas from the gas inlet port opened toward the permeation portion to the permeation portion;
The method for manufacturing a substrate, wherein the heating step includes a measuring step of measuring the radiant heat ray transmitted through the transmission portion outside the processing chamber.
JP2018561867A 2017-01-13 2017-12-11 Substrate processing apparatus and substrate manufacturing method Active JP6732051B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017004478 2017-01-13
JP2017004478 2017-01-13
PCT/JP2017/044406 WO2018131362A1 (en) 2017-01-13 2017-12-11 Substrate treatment device and method for manufacturing substrate

Publications (2)

Publication Number Publication Date
JPWO2018131362A1 true JPWO2018131362A1 (en) 2019-06-27
JP6732051B2 JP6732051B2 (en) 2020-07-29

Family

ID=62839854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018561867A Active JP6732051B2 (en) 2017-01-13 2017-12-11 Substrate processing apparatus and substrate manufacturing method

Country Status (5)

Country Link
JP (1) JP6732051B2 (en)
CN (1) CN110168132B (en)
DE (1) DE112017006821T5 (en)
TW (1) TW201843754A (en)
WO (1) WO2018131362A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188928A (en) * 1985-02-18 1986-08-22 Toshiba Corp Optically pumped thin film forming method
JPH0375357A (en) * 1989-08-15 1991-03-29 Toshiba Corp Film forming device
JPH05335321A (en) * 1992-05-29 1993-12-17 Nec Corp Lamp annealing device
JPH10106476A (en) * 1996-09-27 1998-04-24 Nissin Electric Co Ltd Ion implantation device
JP2000036468A (en) * 1998-07-17 2000-02-02 Dainippon Screen Mfg Co Ltd Substrate processor and substrate processing method therefor
JP2012230049A (en) * 2011-04-27 2012-11-22 Shimadzu Corp Vacuum processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348656A (en) * 2001-05-21 2002-12-04 Laser Atom Separation Eng Res Assoc Of Japan Vapor deposition preventing device
JP2009027100A (en) * 2007-07-23 2009-02-05 Rohm Co Ltd Substrate temperature measuring apparatus and substrate temperature measurement method
JP6479525B2 (en) * 2015-03-27 2019-03-06 株式会社ニューフレアテクノロジー Film forming apparatus and temperature measuring method
CN104846346B (en) * 2015-05-20 2017-11-24 中国科学院宁波材料技术与工程研究所 Control method, device and the film deposition equipment of underlayer temperature

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188928A (en) * 1985-02-18 1986-08-22 Toshiba Corp Optically pumped thin film forming method
JPH0375357A (en) * 1989-08-15 1991-03-29 Toshiba Corp Film forming device
JPH05335321A (en) * 1992-05-29 1993-12-17 Nec Corp Lamp annealing device
JPH10106476A (en) * 1996-09-27 1998-04-24 Nissin Electric Co Ltd Ion implantation device
JP2000036468A (en) * 1998-07-17 2000-02-02 Dainippon Screen Mfg Co Ltd Substrate processor and substrate processing method therefor
JP2012230049A (en) * 2011-04-27 2012-11-22 Shimadzu Corp Vacuum processing apparatus

Also Published As

Publication number Publication date
TW201843754A (en) 2018-12-16
WO2018131362A1 (en) 2018-07-19
CN110168132B (en) 2021-12-17
JP6732051B2 (en) 2020-07-29
CN110168132A (en) 2019-08-23
DE112017006821T5 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP5361106B2 (en) Apparatus and method for temperature treatment of a multilayer structure and such multilayer structure
KR20100110822A (en) Heat treatment apparatus, and method for controlling the same
KR20130135708A (en) Uv curing system for semiconductors
KR20110131318A (en) Treatment device
JP2002532897A (en) Gas-driven rotary susceptor for rapid thermal processing (RTP) systems
TW200949950A (en) Heat treatment apparatus
KR20170130535A (en) Film forming method and film forming apparatus
KR102244356B1 (en) Substrate treatment method
KR20160026302A (en) Substrate processing apparatus, apparatus for manufacturing integrated circuit device, substrate processing method and method of manufacturing integrated circuit device
JP2016001642A (en) Laser heat treatment equipment
JP2003526067A (en) Apparatus and method for tempering at least one workpiece
JP2002075901A5 (en)
JPWO2018131362A1 (en) Substrate processing apparatus and substrate manufacturing method
TW201729328A (en) Substrate cooling method, substrate transfer method, and load-lock mechanism
JP6594616B2 (en) Support apparatus, substrate processing apparatus, and substrate processing method
JP7192588B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
TW201440163A (en) Carousel gas distribution assembly with optical measurements
JP2000058534A (en) Substrate heat treatment device
JP2016145391A (en) Vaporization apparatus, and film deposition apparatus
JP5560325B2 (en) Vacuum processing apparatus and low dielectric constant film manufacturing apparatus
TW201925528A (en) Light irradiation apparatus and thin film forming apparatus capable of finely activating an indium oxide precursor through heating the substrate
KR102225424B1 (en) Heat treatment method and heat treatment apparatus
JP5886023B2 (en) Plasma processing method and apparatus
US11921422B2 (en) Single-volume baking chamber for mask clean
US20220199376A1 (en) Workpiece Processing Apparatus with Vacuum Anneal Reflector Control

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6732051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250