JPH09260251A - Manufacture of mask membrane for x-ray lithography use - Google Patents

Manufacture of mask membrane for x-ray lithography use

Info

Publication number
JPH09260251A
JPH09260251A JP6684296A JP6684296A JPH09260251A JP H09260251 A JPH09260251 A JP H09260251A JP 6684296 A JP6684296 A JP 6684296A JP 6684296 A JP6684296 A JP 6684296A JP H09260251 A JPH09260251 A JP H09260251A
Authority
JP
Japan
Prior art keywords
diamond
gas
diamond particles
membrane
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6684296A
Other languages
Japanese (ja)
Other versions
JP3459152B2 (en
Inventor
Hitoshi Noguchi
仁 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP06684296A priority Critical patent/JP3459152B2/en
Publication of JPH09260251A publication Critical patent/JPH09260251A/en
Application granted granted Critical
Publication of JP3459152B2 publication Critical patent/JP3459152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing

Abstract

PROBLEM TO BE SOLVED: To make high the generation of diamond nuclei and the in-plane evenness of the stress distribution and the film thickness distribution of a diamond membrane by a method wherein a silicon substrate prior to a film formation is brought into contact with diamond particles fluidized with gas. SOLUTION: Diamond particles of a particle diameter of about 0.1 to 700μm are fluidized with inert gas, such as the air, nitrogen gas and argon gas, conforming to a synthetic condition and the gas is made to flow in a treating device in the reverse direction to the direction of the force of gravity as evenly as possible setting the velocity of the gas at a flow velocity of 5 times or quicker than the flow starting velocity of the diamond particles. The treating surface of a substrate 1 to be treated is installed in a fluidized layer 2 consisting of these diamond particles in such a way as to make to fix or float turning vertically to the direction of the flow of the gas fluid. By generating diamond nuclei of a prescribed density on the substrate 1, a diamond membrane, which has a high visible light transmittance and is very high in the in-plane evenness of its film thickness distribution and its stress distribution, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はX線リソグラフィ用
マスクメンブレンの製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method of manufacturing a mask membrane for X-ray lithography.

【0002】[0002]

【従来の技術】半導体デバイス作製におけるパターン形
成の微細化に伴ない、将来のリソグラフィ技術として、
X線リソグラフィ技術が有望視されている。X線リソグ
ラフィに用いられるマスクのX線透過膜(以下メンブレ
ンと略記する。)に要求される重要な性能を以下示す。 表面の平滑性を有すること。 機械的強度が高いこと。 高精度なアライメントに必要な可視光透過性が高いこ
と。 良好な耐薬品性や耐湿性とを有し、エッチング工程や
洗浄工程で損傷されにくいこと。 高エネルギー電子線やシンクロトロン放射光(以下SR
と略記する)の様な高エネルギービームの照射に耐える
こと。従来、X線リソグラフィ用マスクメンブレン材料
として、BN、ボロンドープシリコン、SiNx、SiC 、ダイ
ヤモンド等が提案されている。中でもダイヤモンドは、
他の材料と比較して、ヤング率、耐エッチング性、耐SR
照射性において、特異な特性を有することから、X線マ
スク用メンブレン材料として最適と考えられる。通常、
ダイヤモンドの製膜方法としては、DCアーク放電、DCグ
ロー放電、燃焼炎、高周波(13.56MHz)、マイクロ波
(2.45GHz )、熱フィラメント等が載げられるが、特に
マイクロ波 CVD法は、無電極放電で発生するため、不純
物の混入がないことや、再現性良く安定して長時間の製
膜が可能であることから、最も一般的に用いられてい
る。ところで、X線マスク基板には、半導体プロセス上
有利なシリコンが使用されるが、この基板に上記に挙げ
た種々の方法でそのまま製膜を行っても、ダイヤモンド
の核がほとんど発生せずダイヤモンド膜は成長し難い。
そこでマイクロ波放電において、基板にバイアス電圧を
印加して、ダイヤモンド核発生を促進して、ダイヤモン
ド膜を成長させた例もある。(S.Yugo;Appl.Phys.Lette
r,58,1036頁(1991)参照)。
2. Description of the Related Art With the miniaturization of pattern formation in the fabrication of semiconductor devices, as a future lithography technique,
X-ray lithography technology holds promise. The important performance required for the X-ray transparent film (hereinafter abbreviated as a membrane) of the mask used for X-ray lithography is shown below. Must have surface smoothness. High mechanical strength. High visible light transparency required for highly accurate alignment. It has good chemical resistance and moisture resistance, and is not easily damaged during etching and cleaning processes. High-energy electron beam and synchrotron radiation (hereinafter SR
Abbreviated). Conventionally, BN, boron-doped silicon, SiNx, SiC, diamond, etc. have been proposed as a mask membrane material for X-ray lithography. Among them, diamond is
Compared with other materials, Young's modulus, etching resistance, SR resistance
It is considered to be optimal as an X-ray mask membrane material because of its unique property in irradiation property. Normal,
As a method for forming a diamond film, DC arc discharge, DC glow discharge, combustion flame, high frequency (13.56MHz), microwave (2.45GHz), hot filament, etc. can be mounted. In particular, microwave CVD method is electrodeless. Since it is generated by electric discharge, it is most commonly used because it does not contain impurities and is capable of stable and long-term film formation with good reproducibility. By the way, although silicon, which is advantageous in semiconductor processes, is used for the X-ray mask substrate, even if the film is directly formed on this substrate by the various methods described above, diamond nuclei are scarcely generated and the diamond film Is hard to grow.
Therefore, there is also an example in which a diamond film is grown by applying a bias voltage to the substrate in microwave discharge to promote the generation of diamond nuclei. (S.Yugo; Appl.Phys.Lette
r, 58 , pp. 1036 (1991)).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このダ
イヤモンド膜をX線マスク用メンブレンとして用いるに
は、未だ核発生密度が充分ではなく、また、X線マスク
の標準サイズの3インチに対して製膜を行うには処理状
態の不均一性から全く実用レベルではない。また、製膜
前にシリコン基板の表面をダイヤモンド粒子でスクラッ
チすることも行われている。具体的には、以下に示す方
法が用いられる。 ダイヤモンド粒子もしくは、ダイヤモンド粒子入りペ
ーストでシリコン基板の表面を研磨する。 アセトン、エタノール等にダイヤモンド粒子を分散さ
せた液にシリコン基板を入れて、超音波スクラッチを行
う。しかしながらの方法においては研磨の方向、荷重
等の均一化が困難であり、の方法においては、ダイヤ
モンド粒子の分散状態が得られないことや超音波振動の
基板に対する均一なエネルギー寄与が困難であることか
ら、得られた膜の膜応力や膜厚分布均一性が低い。ま
た、いずれの方法においても、ダイヤモンド核発生密度
が充分ではなく、1〜3μm 厚の平滑な、膜を得られ難
いという欠点があった。
However, in order to use this diamond film as an X-ray mask membrane, the nucleation density is not yet sufficient, and the film is formed for a standard X-ray mask size of 3 inches. However, due to the non-uniformity of the processing state, it is not at a practical level. In addition, the surface of a silicon substrate is also scratched with diamond particles before film formation. Specifically, the method shown below is used. The surface of the silicon substrate is polished with diamond particles or a paste containing diamond particles. A silicon substrate is placed in a liquid in which diamond particles are dispersed in acetone, ethanol, etc., and ultrasonic scratching is performed. However, in the method, it is difficult to make the polishing direction and load uniform, and in the method, it is difficult to obtain a dispersed state of diamond particles and it is difficult to uniformly contribute energy of ultrasonic vibration to the substrate. Therefore, the film stress and film thickness distribution uniformity of the obtained film are low. In addition, in any of the methods, the diamond nucleus generation density was not sufficient, and there was a defect that it was difficult to obtain a smooth film having a thickness of 1 to 3 μm.

【0004】[0004]

【課題を解決するための手段】本発明は上記の問題に鑑
みこれを改善すべく種々検討してなされたもので、本発
明は、シリコン基板上に気相合成ダイヤモンドより成る
メンブレンを製膜するX線リソグラフィ用マスクメンブ
レンの製造方法において、製膜前のシリコン基板を、ガ
スにより流動化されたダイヤモンド粒子に接触させるこ
とを特徴とするX線リソグラフィ用マスクメンブレンの
製造方法を要旨とするものである。
The present invention has been made by various studies in order to solve the above problems in view of the above problems, and the present invention forms a membrane composed of vapor phase synthetic diamond on a silicon substrate. A method for producing a mask membrane for X-ray lithography, comprising: bringing a silicon substrate before film formation into contact with diamond particles fluidized by a gas. is there.

【0005】[0005]

【発明の実施の形態】気相合成の多結晶ダイヤモンドメ
ンブレンにおいて、高い可視光透過率を得るには、結晶
粒子を小さくして、メンブレン表面での乱反射を少なく
することが有効で、そのためには、ダイヤモンド粒子を
シリコン基板表面に衝突させて、シリコン基板表面にキ
ズを付けること、およびダイヤモンドのパーティクルを
残すことで製膜におけるダイヤモンド核発生を高くする
ことが要求される。一方、ダイヤモンドにメンブレンの
応力および膜厚の面内分布均一性を高くするためには、
上述のダイヤモンド粒子衝突におけるキズおよびダイヤ
モンド残渣の均一分布が要求される。これらの要求を満
たす基板前処理方法として、ダイヤモンド粒子が流動開
始速度以上のガス流体によって流動化された層内に入れ
ることで行う、いわゆる流動前処理方法を考えだした。
BEST MODE FOR CARRYING OUT THE INVENTION In order to obtain a high visible light transmittance in a vapor phase synthesized polycrystalline diamond membrane, it is effective to make the crystal particles small and reduce the irregular reflection on the membrane surface. It is required to cause diamond particles to collide with the surface of a silicon substrate to scratch the surface of the silicon substrate, and to leave diamond particles to increase diamond nucleus generation during film formation. On the other hand, in order to increase the uniformity of membrane stress and film thickness in-plane distribution on diamond,
A uniform distribution of scratches and diamond residues in the above-mentioned diamond particle collision is required. As a substrate pretreatment method satisfying these requirements, a so-called fluidization pretreatment method, which is carried out by putting diamond particles into a layer fluidized by a gas fluid having a flow initiation speed or more, was considered.

【0006】図1は本発明における流動前処理方法を行
うための装置である。図1により流動前処理方法につい
て以下に説明する。まず、処理層容器5は、シリコン基
板1が流動層2内に入っても流動化状態が得られる程度
の基板に対して充分に大きなサイズとする。通常の3″
径シリコン基板の場合、内径が8″径の管状のものが好
ましい。ダイヤモンド粒子としては、市販の合成ダイヤ
モンドおよび天然ダイヤモンドで粒子径は 0.1〜700 μ
m のものを合成条件に合わせて用いる。流体ガスは、取
り扱いが容易であることやシリコン基板表面での化学的
反応を防ぐために、空気および窒素、アルゴン等の不活
性ガスを用いればよい。
FIG. 1 shows an apparatus for carrying out the flow pretreatment method according to the present invention. The flow pretreatment method will be described below with reference to FIG. First, the processing layer container 5 has a size sufficiently large with respect to the substrate that the fluidized state can be obtained even if the silicon substrate 1 enters the fluidized bed 2. Normal 3 "
In the case of a silicon substrate with a diameter, a tubular shape with an inner diameter of 8 ″ is preferable. As the diamond particles, commercially available synthetic diamond and natural diamond having a particle diameter of 0.1 to 700 μm can be used.
Use m according to the synthesis conditions. As the fluid gas, air and an inert gas such as nitrogen or argon may be used in order to facilitate handling and prevent a chemical reaction on the surface of the silicon substrate.

【0007】ダイヤモンド粒子の流動化ガス速度は、流
動開始速度の5倍以上の流速値で処理容器内を重力方向
に対して逆向きにできる限り均一に流すのが好ましい。
また流動開始速度Umf は、例えば、アルキメデス数が1.
9 ×104 以下においては式(1)により計算される。 Umf =dp2(ρp −ρf)G /1650μ…(1) 式(1)中の記号は、dp;ダイヤモンド粒子径、ρp ;
ダイヤモンド粒子密度、ρf ;ガス流体密度、 G;重力
加速度、μ;粘度、を表し、単位はCGS単位で示す。
ダイヤモンド粒子の流動化ガス速度は、流動開始速度の
5倍未満では十分な流動化層が得られず、また100 倍を
超えると流動化層が破壊されるので100 倍以下がよい。
処理する基板1はダイヤモンド粒子の流動化層2内に置
くが、設置方法は固定であっても浮動でもよい。但し処
理表面は、大きな処理効果を得るためにガス流体の流れ
の方向に対して垂直であることが好ましい。例えば図1
に示す固定治具4により固定される。
The fluidizing gas velocity of diamond particles is preferably as uniform as possible in the direction opposite to the direction of gravity in the processing container at a flow velocity value of 5 times or more the flow initiation velocity.
The flow start velocity Umf is, for example, Archimedes number 1.
When 9 × 10 4 or less, it is calculated by the formula (1). Umf = dp 2 (ρp -ρf) G / 1650μ ... (1) Equation (1) symbols, dp; diamond particle size, .rho.p;
Diamond particle density, ρf; gas fluid density, G; gravitational acceleration, μ; viscosity, and the unit is CGS unit.
If the fluidization gas velocity of diamond particles is less than 5 times the fluidization initiation velocity, a sufficient fluidized layer cannot be obtained, and if it exceeds 100 times, the fluidized layer will be destroyed.
The substrate 1 to be treated is placed in the fluidized layer 2 of diamond particles, but the installation method may be fixed or floating. However, the treated surface is preferably perpendicular to the flow direction of the gas fluid in order to obtain a large treatment effect. Figure 1
It is fixed by the fixing jig 4 shown in.

【0008】製膜におけるシリコン基板上のダイヤモン
ド核発生密度は1×106 個mm-2以上がよく、1×106
mm-2未満では気相合成の多結晶ダイヤモンドメンブレン
において、高い可視光透過率が得られず、膜厚の面内分
布均一性を高くすることができない。
The diamond nucleus generation density on the silicon substrate during film formation is preferably 1 × 10 6 mm −2 or more and 1 × 10 6
If it is less than mm -2 , a high visible light transmittance cannot be obtained in a vapor-phase synthesized polycrystalline diamond membrane, and the in-plane uniformity of film thickness cannot be increased.

【0009】ダイヤモンドの製膜方法は公知の方法で行
えば良い。例えばDCアーク放電、DCグロー放電、燃焼
炎、高周波(13.56MHz)、マイクロ波(2.45GHz )、熱
フィラメント等が載げられるが、特にマイクロ波 CVD法
は、無電極放電で発生するため、不純物の混入がないこ
とや、再現性良く安定して長時間の製膜が可能であるこ
とから好ましい。
The diamond film forming method may be a known method. For example, DC arc discharge, DC glow discharge, combustion flame, high frequency (13.56MHz), microwave (2.45GHz), hot filament, etc. can be mounted. Is preferable, and it is possible to form a film for a long time stably with good reproducibility.

【0010】[0010]

【実施例】以下、実施例、比較例を示すが、本発明はこ
れらによって限定されるものではない。 実施例 基板には、直径3インチで厚さが 600μm の両面研磨シ
リコン基板(100 )を用いて、図1に示す装置により流
動前処理を行なった。装置の処理層容器は、内径8イン
チ高さ1m のアクリル管とした。ダイヤモンド粒子とし
て、合成ダイヤモンドで粒径 400μm のものを 700g 内
に入れ、サイズ40μm のステンレスメッシュの金網を介
して、下からガス流体として窒素ガスを垂直方向に逆向
きに流した。流速は、Umf 18.3cm/secに対して20倍の36
6.0 cm/secとした。シリコン基板は、処理面をガスの流
れに対して垂直方向にかつ、ダイヤモンド粒子の流動化
層の中央付近に固定し、3時間処理した。
EXAMPLES Examples and comparative examples will be shown below, but the present invention is not limited thereto. Example As a substrate, a double-side polished silicon substrate (100) having a diameter of 3 inches and a thickness of 600 μm was used, and a pre-flow treatment was performed by the apparatus shown in FIG. The processing layer container of the apparatus was an acrylic tube having an inner diameter of 8 inches and a height of 1 m. As the diamond particles, 700 g of synthetic diamond having a particle size of 400 μm was put into 700 g, and nitrogen gas as a gas fluid was made to flow vertically in the opposite direction from below through a wire mesh of a stainless mesh of 40 μm in size. The flow velocity is 20 times 36 times that of Umf 18.3 cm / sec.
It was 6.0 cm / sec. The treated surface of the silicon substrate was fixed in the direction perpendicular to the gas flow and near the center of the fluidized layer of diamond particles and treated for 3 hours.

【0011】このシリコン基板表面へのダイヤモンド膜
の製膜は、下記に示すマイクロ波 CVD法によって行っ
た。まず、チェンバー内に上記処理済シリコン基板をセ
ットし、ロータリーポンプで10-3Torr以下のベースプレ
ッシャーまで排気した後、原料ガスである水素とメタン
をそれぞれ997cc/分、3cc/ 分の流量で通した。排気系
に通じるバルブの開口度を調節して、チャンバー内を30
Torrにした後、電力3000W のマイクロ波を入力して、30
時間製膜を行った。このとき、マイクロ波電力によっ
て、シリコン基板の表面温度は 900℃となっていた。得
られたダイヤモンドは、膜厚 1.2μm の多結晶ダイヤモ
ンドであった。また、核発生密度がは基板端から7mm、
23mm、39mmの位置でそれぞれ 1.6×108 個mm-2、 2.0×
108 個mm-2、 2.0×108 個mm-2と極めて、高密度かつ高
均一なものであり、膜厚分布は、3″内で中心膜厚 1.2
μm に対して±3%を達成した。さらに表面の平滑性
は、いずれの位置でも中心線平均粗さRaで50nm程度であ
り、良好な値を得た。次に、この基板のシリコンを30mm
×30mmの範囲でウェットエッチングで除去し、30mm×30
mmのメンブレンを完成させた。このメンブレンは表面凹
凸による入射光の散乱も少なく、633.1nm の入射光の透
過率は59%であった。
The diamond film was formed on the surface of the silicon substrate by the microwave CVD method shown below. First, set the treated silicon substrate in the chamber and evacuate it with a rotary pump to a base pressure of 10 -3 Torr or less, and then pass the source gases hydrogen and methane at 997 cc / min and 3 cc / min, respectively. did. Adjust the opening of the valve leading to the exhaust system to
After setting to Torr, input microwave of power 3000W,
Time film formation was performed. At this time, the surface temperature of the silicon substrate was 900 ° C due to the microwave power. The obtained diamond was a polycrystalline diamond having a film thickness of 1.2 μm. The nucleation density is 7 mm from the substrate edge,
1.6 x 10 8 pieces at 23 mm and 39 mm positions mm -2 , 2.0 x
10 8 mm -2 , 2.0 x 10 8 mm -2 with extremely high density and high uniformity, with a film thickness distribution of 3 "center film thickness 1.2"
± 3% was achieved for μm. Furthermore, the smoothness of the surface was about 50 nm in the centerline average roughness Ra at any position, which was a good value. Next, 30 mm of silicon on this substrate
Removed by wet etching in the range of 30 mm × 30 mm, 30 mm × 30
mm membrane was completed. This membrane had little scattering of incident light due to surface irregularities, and the transmittance of incident light at 633.1 nm was 59%.

【0012】比較例 シリコン基板の製膜前処理方法には超音波振動方法を用
いた。すなわち粒子径10μm の人工ダイヤモンド100gを
ヘキサン3000ccに分散させた液に3インチ径厚さ 600μ
m のシリコン基板(100)両面研磨品を入れ、超音波振動
を加え40分処理した。その後、ヘキサンのみを入れた洗
浄槽で15分超音波洗浄を行ってシリコン基板の製膜前処
理を行った。
Comparative Example An ultrasonic vibration method was used as a pretreatment method for forming a film on a silicon substrate. That is, 100 g of artificial diamond having a particle size of 10 μm is dispersed in 3000 cc of hexane to obtain a solution of 3 inch diameter and thickness of 600 μ.
An m 2 silicon substrate (100) double-side polished product was put in, and ultrasonic vibration was applied for 40 minutes. After that, ultrasonic cleaning was performed for 15 minutes in a cleaning tank containing only hexane to perform film formation pretreatment of the silicon substrate.

【0013】この基板に対して、以下の条件でマイクロ
波 CVD法で製膜を行った。入射電力3000W、原料ガスの
水素/メタン=997CCM/30CM 、気圧40Torr、基板温度 9
00℃、製膜時間30時間とした。得られた多結晶ダイヤモ
ンドの核発生密度は基板端から7mm、23mm、39mmの位置
でそれぞれ 9.2×104 個mm-2、 3.6×105 個mm-2、 8.2
×104 個mm-2と、低密度で、しかも不均一であった。3
点の測定位置での膜厚は 1.0μm ±40%であり、核発生
密度の低さから多数の不連続膜状態も確認された。また
表面平滑性は不良で中心線平均粗さは、 250μm であっ
た。従って、得られたメンブレン表面でのアライメント
光の散乱も多く、平均1μm 厚で 633.1nmの入射光の透
過率は39%と高精度なアライメントには、不十分な値で
あった。
A film was formed on this substrate by the microwave CVD method under the following conditions. Incident power 3000W, source gas hydrogen / methane = 997CCM / 30CM, atmospheric pressure 40Torr, substrate temperature 9
The film formation time was set to 00 ° C. for 30 hours. The nucleation densities of the obtained polycrystalline diamond were 9.2 × 10 4 pieces mm -2 , 3.6 × 10 5 pieces mm -2 , 8.2 at the positions of 7 mm, 23 mm, and 39 mm from the substrate edge, respectively.
The density was as low as × 10 4 mm -2 and was non-uniform. 3
The film thickness at the measurement points was 1.0 μm ± 40%, and many discontinuous film states were also confirmed due to the low nucleation density. The surface smoothness was poor and the center line average roughness was 250 μm. Therefore, there was a lot of scattering of alignment light on the surface of the obtained membrane, and the transmittance of incident light with an average thickness of 1 μm of 633.1 nm was 39%, which was an insufficient value for highly accurate alignment.

【0014】[0014]

【発明の効果】本発明によると、ダイヤモンドの初期
核発生密度が極めて高いため、1〜3μm 厚の薄膜状態
であっても表面平滑性に優れるので、表面でのアライメ
ント入射光の乱反射が少なくなり高い可視光透過率を有
し、ガス流動層内での基板前処理のため、ギス付け、
ダイヤモンド種付けの効果の基板面内均一性が良好であ
り、膜厚分布、応力分布の面内均一性が極めて高いダイ
ヤモンドメンブレンが得られる。
According to the present invention, since the initial nucleation density of diamond is extremely high, the surface smoothness is excellent even in the thin film state of 1 to 3 μm, and the irregular reflection of alignment incident light on the surface is reduced. It has a high visible light transmittance and is pre-treated for the substrate in the gas fluidized bed.
It is possible to obtain a diamond membrane in which the in-plane uniformity of the effect of diamond seeding is good and the in-plane uniformity of film thickness distribution and stress distribution is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における流動前処理を行うための装置の
斜視図をしめしたもの。
FIG. 1 is a perspective view of an apparatus for performing a flow pretreatment according to the present invention.

【符号の説明】[Explanation of symbols]

1…シリコン基板 2…流動層 3…ステンレス製金網 4…固定治具 5…処理層容器 DESCRIPTION OF SYMBOLS 1 ... Silicon substrate 2 ... Fluidized bed 3 ... Stainless wire mesh 4 ... Fixing jig 5 ... Processing layer container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリコン基板上に気相合成ダイヤモンドよ
り成るメンブレンを製膜するX線リソグラフィ用マスク
メンブレンの製造方法において、製膜前のシリコン基板
を、ガスにより流動化されたダイヤモンド粒子に接触さ
せることを特徴とするX線リソグラフィ用マスクメンブ
レンの製造方法。
1. A method of manufacturing a mask membrane for X-ray lithography, which comprises forming a membrane made of vapor-phase synthetic diamond on a silicon substrate, wherein the silicon substrate before film formation is brought into contact with diamond particles fluidized by gas. A method of manufacturing a mask membrane for X-ray lithography, comprising:
【請求項2】ダイヤモンド粒子の流動化ガス速度が流動
開始速度の5倍以上である請求項1に記載のX線リソグ
ラフィ用マスクメンブレンの製造方法。
2. The method for producing a mask membrane for X-ray lithography according to claim 1, wherein the fluidizing gas velocity of the diamond particles is 5 times or more the flow initiation velocity.
【請求項3】製膜におけるシリコン基板上のダイヤモン
ド核発生密度が1×106 個mm-2以上である請求項1また
は2に記載のX線リソグラフィ用マスクメンブレンの製
造方法。
3. The method for producing a mask membrane for X-ray lithography according to claim 1, wherein the diamond nucleus generation density on the silicon substrate in the film formation is 1 × 10 6 pieces mm −2 or more.
JP06684296A 1996-03-22 1996-03-22 Substrate pretreatment method and method for producing polycrystalline diamond membrane using the same Expired - Fee Related JP3459152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06684296A JP3459152B2 (en) 1996-03-22 1996-03-22 Substrate pretreatment method and method for producing polycrystalline diamond membrane using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06684296A JP3459152B2 (en) 1996-03-22 1996-03-22 Substrate pretreatment method and method for producing polycrystalline diamond membrane using the same

Publications (2)

Publication Number Publication Date
JPH09260251A true JPH09260251A (en) 1997-10-03
JP3459152B2 JP3459152B2 (en) 2003-10-20

Family

ID=13327515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06684296A Expired - Fee Related JP3459152B2 (en) 1996-03-22 1996-03-22 Substrate pretreatment method and method for producing polycrystalline diamond membrane using the same

Country Status (1)

Country Link
JP (1) JP3459152B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509124B1 (en) 1999-11-10 2003-01-21 Shin-Etsu Chemical Co., Ltd. Method of producing diamond film for lithography
EP1344841A1 (en) * 2002-03-11 2003-09-17 Shin-Etsu Chemical Co., Ltd. Base material for forming diamond film
KR100746869B1 (en) * 1999-12-24 2007-08-07 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparation of diamond film
JP2022503834A (en) * 2018-09-28 2022-01-12 広東工業大学 Diamond-coated silicon nitride ceramic whole tool and its manufacturing method and application of the tool in graphite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509124B1 (en) 1999-11-10 2003-01-21 Shin-Etsu Chemical Co., Ltd. Method of producing diamond film for lithography
KR100746869B1 (en) * 1999-12-24 2007-08-07 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparation of diamond film
EP1344841A1 (en) * 2002-03-11 2003-09-17 Shin-Etsu Chemical Co., Ltd. Base material for forming diamond film
JP2022503834A (en) * 2018-09-28 2022-01-12 広東工業大学 Diamond-coated silicon nitride ceramic whole tool and its manufacturing method and application of the tool in graphite

Also Published As

Publication number Publication date
JP3459152B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JP3728465B2 (en) Method for forming single crystal diamond film
JPH0218392A (en) Production of polycrystalline diamond film
WO1993019022A1 (en) Thin polysilicon film and production thereof
US5240749A (en) Method for growing a diamond thin film on a substrate by plasma enhanced chemical vapor deposition
US20050277224A1 (en) Base material for forming diamond film and diamond film
JP4214250B2 (en) Method and apparatus for producing silicon nanocrystal structure
JPH09260251A (en) Manufacture of mask membrane for x-ray lithography use
KR100746869B1 (en) Method for preparation of diamond film
US6509124B1 (en) Method of producing diamond film for lithography
US6875708B2 (en) Method of producing diamond film and diamond film produced thereby
JP3317959B2 (en) Method for producing mask membrane for lithography
JPH10101481A (en) Heteroepitaxy cyclic texture growth of diamond thin film
JPH03139824A (en) Depositing method for semiconductor device
JP3728466B2 (en) Method for producing single crystal diamond film
JPH05339730A (en) Forming method of diamond coating film
JPS59216625A (en) Photochemical vapor phase growing method
JPH0491427A (en) Chemical vapor growth method
JPH05892A (en) Diamond crystal and substrate for forming diamond
JPH062139A (en) Formation of diamond film
JPH03236470A (en) Production of diamond
JPH04105314A (en) Manufacture of amorphous silicon
JPH0616499A (en) Diamond coated member
JP2001240489A (en) Diamond film manufacturing method
JPH03285897A (en) Production of diamond
JPH06321691A (en) Optical parts using highly oriented thin diamond film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees