JPH04105314A - Manufacture of amorphous silicon - Google Patents

Manufacture of amorphous silicon

Info

Publication number
JPH04105314A
JPH04105314A JP2222793A JP22279390A JPH04105314A JP H04105314 A JPH04105314 A JP H04105314A JP 2222793 A JP2222793 A JP 2222793A JP 22279390 A JP22279390 A JP 22279390A JP H04105314 A JPH04105314 A JP H04105314A
Authority
JP
Japan
Prior art keywords
substrate
silicon
reaction chamber
hydrogen compound
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2222793A
Other languages
Japanese (ja)
Inventor
Yasuo Nara
安雄 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2222793A priority Critical patent/JPH04105314A/en
Publication of JPH04105314A publication Critical patent/JPH04105314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form amorphous Si excellent in film quality by a practical photo assisted CVD method instead of a plasma CVD method, by supplying gas of hydrogen compound of Si in a space on a substrate surface, decomposing the hydrogen compound by projecting electromagnetic waves containing specified wavelength light, and depositing generated simple substance Si or low- hydrogenated on the substrate. CONSTITUTION:Gas of hydrogen compound of silicon is supplied in a space on a substrate 3; electromagnetic waves containing light whose wavelength is suitable to excite 2P electrons of silicon atoms is projected, thereby decomposing the hydrogen compound; generated single substance silicon or low- hydrogenated silicon is deposited on the substrate 3. For example, the substrate 3 on a substrate mounting stand 2 in a reaction chamber 1 is cooled at 95K by making liquid nitrogen flow in a cooling pipe 4. Material gas obtained by diluting SiH4 to be concentration of 5% with He is fed into a reaction chamber via a leak valve 8 and a solenoid valve 9. Gas in the reaction chamber is discharged by an exhauster constituted of a turbo pump 10 and a rotary pump 11, and the inside pressure is kept at 0.1-1Torr. SOR light 12 is projected from above the substrate 3.

Description

【発明の詳細な説明】 〔概 要] 本発明は、太陽電池、薄膜トランジスタ或いは電子写真
感光材等に利用される非晶質シリコン層の形成に関し、 荷電粒子の衝突に因る膜質の劣化を伴うプラズマCVD
法に代わるべき光励起CVD法の提供を目的とし、 本発明の光励起CVD法は、 基板面上の空間にシリコンの水素化合物のガスを供給し
、シリコン原子の2P電子を励起する波長の光を含むS
OR光を照射して該水素化合物を分解し、それにより生
じた単体シリコン若しくは低水素化シリコンを、該基板
上に堆積させることで構成される。
[Detailed description of the invention] [Summary] The present invention relates to the formation of an amorphous silicon layer used in solar cells, thin film transistors, electrophotographic photosensitive materials, etc. plasma CVD
The purpose of the present invention is to provide a photo-excited CVD method that is an alternative to the conventional method, and the photo-excited CVD method of the present invention involves supplying a silicon hydrogen compound gas to a space above a substrate surface and including light having a wavelength that excites 2P electrons of silicon atoms. S
It is constructed by irradiating OR light to decompose the hydrogen compound and depositing the resulting single silicon or low hydrogenation silicon on the substrate.

更に本出願の一発明では、基板表面における反応確率を
増加させるため、基板を125に以下に冷却しながら上
記の光励起CVDを行う。
Furthermore, in one invention of the present application, in order to increase the probability of reaction on the substrate surface, the above-mentioned photo-excited CVD is performed while cooling the substrate to a temperature below 125°C.

〔産業上の利用分野〕[Industrial application field]

本発明は非晶質シリコン(以下、シリコンはSiと表記
)の形成に関わり、特にSiどうしの結合に関与しない
結合手が水素と結合していることにより、良好な電子的
性質を持つ非晶1isiの形成に関わる。
The present invention is concerned with the formation of amorphous silicon (silicon is hereinafter referred to as Si), and in particular, the amorphous silicon has good electronic properties because the bonds that do not participate in bonding between Si are bonded to hydrogen. Involved in the formation of 1isi.

近年、太陽電池や薄膜トランジスタ或いは電子写真感光
体用材料として水素を含む非晶質Siが質層されるよう
ムこなっている。非晶質Slは格子配列を持たないため
、Siどうしの結合に関与しない結合手が生しる。この
空結合手が水素(H)と結合していれば、該非晶質Si
は良好な電子的特性を持ち、このような非晶質S1によ
って構成される上記電子素子或いは材料の特性も優秀な
ものとなる。
In recent years, hydrogen-containing amorphous Si has been increasingly used as a material for solar cells, thin film transistors, and electrophotographic photoreceptors. Since amorphous Sl does not have a lattice arrangement, bonds are generated that do not participate in bonding between Si. If this vacant bond is bonded to hydrogen (H), the amorphous Si
has good electronic properties, and the properties of the electronic device or material made of such amorphous S1 are also excellent.

(従来の技術と発明が解決しようとする課題)水素を含
む非晶質S1はシラン(S i H=)やジシラン(S
izHb)ガスを原料とする化学気相成長法(CVD法
)によって形成されるのが通常である。
(Problem to be solved by the prior art and the invention) Amorphous S1 containing hydrogen is silane (S i H=) or disilane (S
It is usually formed by chemical vapor deposition (CVD) using izHb) gas as a raw material.

このCVD法の最も簡単な処理では、原料ガスの熱分解
によりSiを遊離して基板上に堆積成長させるが、原料
ガスの分解速度を高めて非晶質Siの堆積速度を向上さ
せるべく、高周波電界を印加し、放電プラズマ中で原料
ガスを分解させるプラズマCVD法が一般に行われてい
る。
In the simplest process of this CVD method, Si is liberated by thermal decomposition of the raw material gas and deposited on the substrate. A plasma CVD method is generally used in which a source gas is decomposed in discharge plasma by applying an electric field.

この処理では、プラズマ中で発生じた荷電粒子が印加電
界により加速されて基板表面に衝突し、それにより生じ
た損傷が成長層の膜質を劣化させることが起こる。本明
細書でsitと言うのは、それを用いて形成した素子や
感光材料の特性に影響が及ぶような非晶1isi層の化
学的、物理的性質のことである。
In this process, charged particles generated in the plasma are accelerated by the applied electric field and collide with the substrate surface, and the damage caused thereby deteriorates the film quality of the grown layer. In this specification, sit refers to the chemical and physical properties of the amorphous 1isi layer that affect the characteristics of elements and photosensitive materials formed using it.

この障害はCVD実施時に電界を印加することに起因す
るものであるから、荷電粒子が加速される状況が生じな
いような方法で原料ガスの分解を促進すれば良いことに
なる。そのような条件を満たすCVD法として光励起C
VD法が知られているが、水銀灯やレーザの光にはシラ
ンやジシランを励起・分解し得る波長の光は僅かしか含
まれず、更に照射対象が気体であるから励起光の吸収効
率が低く、十分な処理速度を得ることは困難である。
Since this problem is caused by the application of an electric field during CVD, it is sufficient to promote the decomposition of the source gas in a manner that does not cause a situation in which charged particles are accelerated. Photoexcitation C is a CVD method that satisfies such conditions.
The VD method is known, but the light from a mercury lamp or laser contains only a small amount of light with a wavelength that can excite and decompose silane or disilane, and furthermore, since the irradiation target is a gas, the absorption efficiency of the excitation light is low. It is difficult to obtain sufficient processing speed.

本発明の目的はプラズマCVD法に代わる実用的な光励
起CVD処理法を提供することであり、それによって膜
質の良好な非晶質Siの形成法を提供することである。
An object of the present invention is to provide a practical photo-excited CVD treatment method to replace the plasma CVD method, and thereby to provide a method for forming amorphous Si with good film quality.

(課題を解決するための手段〕 上記目的を達成するため、本発明の一発明である光励起
CVD法では、 基板面上の空間にSiの水素化合物のガスを供給し、S
1原子の2P電子を励起する波長の光を含む電磁波を照
射して該水素化合物を分解し、それにより生じた単体S
1若しくは低水素化Siを、該基板上に堆積させること
が行われる。
(Means for Solving the Problems) In order to achieve the above object, in the photo-excited CVD method, which is one invention of the present invention, a gas of a hydrogen compound of Si is supplied to the space above the substrate surface, and
The hydrogen compound is decomposed by irradiating electromagnetic waves containing light with a wavelength that excites the 2P electrons of one atom, and the resulting simple substance S
1 or low hydrogenation Si is deposited on the substrate.

また、本出願の他の発明では、基板表面における反応確
率を増加させるため、基板を125に以下に冷却しなが
ら上記の光励起CVDを行う。
Further, in another invention of the present application, in order to increase the reaction probability on the substrate surface, the above-mentioned photo-excited CVD is performed while cooling the substrate to 125°C or less.

更に、これ等の本出願の発明の実施態様においては、S
i原子の2P電子を励起する光源としてシンクロトロン
放射光(SOR光)を利用する。
Furthermore, in these embodiments of the invention of the present application, S
Synchrotron radiation light (SOR light) is used as a light source to excite the 2P electrons of the i atom.

〔作 用] シランやモノシランのような分子を効率良く分解するに
は、分子の中心にあるSi原子の内殻電子を励起するだ
けのエネルギを供給することが必要である。Slの2P
電子による吸収は約+00eVの位置にあり、このよう
な短波長光は水銀灯のような従来の光源では得られない
のであるが、SOR光には上記エネルギ範囲の光が実用
上十分な強度で含まれるから、これを利用すればプラン
やジンランを効率良く分解し、光励起CVD法による非
晶質Siの堆積が可能となる。
[Function] In order to efficiently decompose molecules such as silane and monosilane, it is necessary to supply enough energy to excite the inner shell electrons of the Si atom at the center of the molecule. 2P of Sl
Absorption by electrons is at a position of approximately +00 eV, and such short wavelength light cannot be obtained with conventional light sources such as mercury lamps, but SOR light contains light in the above energy range with sufficient intensity for practical use. Therefore, if this is used, it becomes possible to efficiently decompose Plan and Jinran and deposit amorphous Si by photo-excited CVD method.

また、原料ガスがI Torr或いはそれ以下といった
低い圧力では励起光の吸収が十分に起こらず、非晶質S
iの堆積速度も低いが、本発明のように基板を冷却する
と、基板表面に原料ガスが凝集することになり、その部
分で励起光の吸収が効率良く行われるため、基板上の表
面反応が活性化され、非晶質Siの堆積速度が向上する
In addition, if the raw material gas is at a low pressure of I Torr or lower, sufficient absorption of excitation light will not occur, resulting in amorphous S
The deposition rate of i is also low, but when the substrate is cooled as in the present invention, the raw material gas aggregates on the substrate surface, and the excitation light is efficiently absorbed in that area, so that the surface reaction on the substrate increases. Activated, the deposition rate of amorphous Si is increased.

[実施例] 第1図は本発明に用いられる光CVD装置の構成を模式
的に示す図である。以下、該図面を参照しながら、本発
明の非晶質Siの堆積方法の実施例を説明する。
[Example] FIG. 1 is a diagram schematically showing the configuration of an optical CVD apparatus used in the present invention. Hereinafter, embodiments of the amorphous Si deposition method of the present invention will be described with reference to the drawings.

反応室1の内部には基板載置台2があり、台上の基板3
は冷却管4に液体窒素を流すことにより95Kに冷却さ
れる。単純に冷却するだけでなく、基板温度を特定値に
維持する場合は温度制御装置5によって制御される加熱
電力がヒーター6ムこ加えられる。基板温度の測定は熱
電対7により行われる。また、本実施例では前記基板は
40nmの熱酸化膜が付けられたS1ウエハである。
There is a substrate mounting table 2 inside the reaction chamber 1, and a substrate 3 on the table is placed inside the reaction chamber 1.
is cooled to 95 K by flowing liquid nitrogen through the cooling pipe 4. In addition to simple cooling, when maintaining the substrate temperature at a specific value, heating power controlled by the temperature control device 5 is applied to the heater 6. The substrate temperature is measured by a thermocouple 7. Further, in this embodiment, the substrate is an S1 wafer on which a 40 nm thermal oxide film is attached.

シラン(S i H4)をヘリウム(He)によって5
%の濃度に希釈した原料ガスはリークバルブ8、ソレノ
イドバルブ9を通して反応室に送り込まれる。
Silane (S i H4) with helium (He)
% of the raw material gas is sent into the reaction chamber through a leak valve 8 and a solenoid valve 9.

反応室内のガスはターボポンプ10とロータリーポンプ
11から成る排気装置によって排気され、内部の圧力は
0.1〜I Torrに維持される。この時、5iHa
の分圧は5 X 10−’〜5 X 10−”Torr
となっている。
The gas in the reaction chamber is evacuated by an exhaust system consisting of a turbo pump 10 and a rotary pump 11, and the internal pressure is maintained at 0.1 to I Torr. At this time, 5iHa
The partial pressure of is 5 X 10-' to 5 X 10-''
It becomes.

SOR光12は基板の上方から照射される。ゲートバル
ブ13で仕切られた反応室の上方には、図では省略され
ているが、差動排気によって順次高真空に維持される光
路空間が設けられており、シンクロトロンの電子蓄積リ
ングから放射されたSOR光は、この光路菟間を経由し
て反応室に到達し、基板を照射する。本実施例ではSO
R光の有効な屋短波長は123eVであり、Siの2p
′1子を励起するに十分なエネルギを持つものである。
The SOR light 12 is irradiated from above the substrate. Although not shown in the figure, above the reaction chamber partitioned by the gate valve 13, there is an optical path space that is successively maintained at a high vacuum by differential pumping, and the space is filled with light emitted from the electron storage ring of the synchrotron. The generated SOR light reaches the reaction chamber via this optical path and irradiates the substrate. In this example, SO
The effective short wavelength of R light is 123 eV, and the 2p wavelength of Si
It has enough energy to excite the '1 child.

更に、図の14はバラトロンゲージ、15はコールドカ
ソードゲージである。
Furthermore, 14 in the figure is a baratron gauge, and 15 is a cold cathode gauge.

第2図は上記処理条件のうち基板温度だけを変えて、1
時間づつ非晶tSiを堆積した時のSi層の厚さ、即ち
時間当たりの堆積速度と基板温度との間係を示す図であ
る。この図から明らかなように、堆積速度は基板温度が
約120に以下で直線的に増加し、基板冷却の効果が顕
著になるが、堆積速度増加の傾向は125に程度から現
れている。
Figure 2 shows the results obtained by changing only the substrate temperature among the above processing conditions.
FIG. 3 is a diagram showing the relationship between the thickness of the Si layer when amorphous tSi is deposited over time, that is, the deposition rate per hour, and the substrate temperature. As is clear from this figure, the deposition rate increases linearly when the substrate temperature is below about 125°C, and the effect of substrate cooling becomes significant, but the tendency for the deposition rate to increase appears from about 125°C onwards.

また、低温域では原料ガスの圧力が異なっても堆積速度
は殆ど変化しない。
Further, in a low temperature range, the deposition rate hardly changes even if the pressure of the source gas changes.

第3図は上記実施例による堆積物がSiであることを確
認するために行ったオージェ分析結果を示すグラフであ
る。すなわち、非晶tsiが堆積した基板を表面からア
ルゴン・スパッタによって研削しながら、SiとOに相
当するオージェ信号の強度を測定したもので、横軸の時
間は表面からの深さに対応しており、Oのオージェ信号
強度が高くなっている部分はSiウェハの表面に形成さ
れた熱酸化膜の領域である。これを挟む両側の部分、す
なわち堆積層とS1ウエハの領域では、Siを示す信号
かは−等しい強度で現れていることから、堆積層はSi
であると判定される。
FIG. 3 is a graph showing the results of an Auger analysis conducted to confirm that the deposits according to the above examples were Si. In other words, the intensity of Auger signals corresponding to Si and O was measured while the substrate on which amorphous TSI was deposited was ground by argon sputtering from the surface, and the time on the horizontal axis corresponds to the depth from the surface. The part where the Auger signal intensity of O is high is the region of the thermal oxide film formed on the surface of the Si wafer. In the areas on both sides of this, that is, the area between the deposited layer and the S1 wafer, the signals indicating Si appear with equal intensity, so the deposited layer is Si.
It is determined that

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明における非晶質Siの堆積形
成では、SOR光を利用した光励起C■Dにより非晶質
Siの堆積が行われ、更に基板を冷却することによって
非晶質Siの堆積速度を大幅に向上させている。
As explained above, in the deposition formation of amorphous Si in the present invention, amorphous Si is deposited by photoexcitation CD using SOR light, and the amorphous Si is deposited by cooling the substrate. The speed has been significantly improved.

本発明の方法によって膜質の優れた非晶質Siが得られ
ることから、これを利用する太陽電池、薄膜トランジス
タ、電子写真感光材の特性も優秀なものとなる。
Since amorphous Si with excellent film quality can be obtained by the method of the present invention, solar cells, thin film transistors, and electrophotographic photosensitive materials using the amorphous Si also have excellent properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられる光CVD装置を示す図、 第2図は基板温度と堆積速度の関係を示す図、第3図は
SiとOのオージェ分析結果を示す図であって、図にお
いて 1は反応室、 2は基板載置台、 3は基板、 4は冷却管、 5は温度制御装置、 6はヒーター 7は熱電対、 8はリークバルブ、 9はソレノイドバルブ、 10はターボポンプ、 11はロータリーポンプ、 12はSOR光、 13はゲートバルブ である。 基板温度(K) 基板温度と堆積速度の関係を示す間 第2図 本発明に用いられる光CVD装置を示す図第1図 スパッタ時間(分) SiとOのオージェ分析結果を示す図 第3図
FIG. 1 is a diagram showing the optical CVD apparatus used in the present invention, FIG. 2 is a diagram showing the relationship between substrate temperature and deposition rate, and FIG. 3 is a diagram showing the results of Auger analysis of Si and O. 1 is a reaction chamber, 2 is a substrate mounting table, 3 is a substrate, 4 is a cooling pipe, 5 is a temperature control device, 6 is a heater 7 is a thermocouple, 8 is a leak valve, 9 is a solenoid valve, 10 is a turbo pump, 11 is a rotary pump, 12 is an SOR light, and 13 is a gate valve. Substrate temperature (K) Figure 2 shows the relationship between substrate temperature and deposition rate Figure 1 shows the optical CVD apparatus used in the present invention Sputtering time (minutes) Figure 3 shows the results of Auger analysis of Si and O

Claims (5)

【特許請求の範囲】[Claims] (1)基板面上の空間にシリコンの水素化合物のガスを
供給し、シリコン原子の2P電子を励起する波長の光を
含む電磁波を照射して該水素化合物を分解し、それによ
り生じた単体シリコン若しくは低水素化シリコンを該基
板上に堆積させることを特徴とする非晶質シリコンの製
造方法。
(1) A silicon hydrogen compound gas is supplied into the space above the substrate surface, and the hydrogen compound is decomposed by irradiation with electromagnetic waves containing light with a wavelength that excites the 2P electrons of silicon atoms, resulting in the generation of simple silicon Alternatively, a method for producing amorphous silicon, comprising depositing low hydrogenation silicon on the substrate.
(2)請求項1の非晶質シリコンの製造方法において、
照射する該電磁波がシンクロトロン放射光であることを
特徴とする非晶質シリコンの製造方法。
(2) In the method for manufacturing amorphous silicon according to claim 1,
A method for producing amorphous silicon, characterized in that the electromagnetic wave to be irradiated is synchrotron radiation light.
(3)前記基板を125K以下に冷却し、該基板表面に
前記電磁波を照射して行うことを特徴とする請求項1若
しくは請求項2の非晶質シリコンの製造方法。
(3) The method for manufacturing amorphous silicon according to claim 1 or 2, characterized in that the process is performed by cooling the substrate to 125K or less and irradiating the electromagnetic wave onto the surface of the substrate.
(4)請求項1乃至請求項3の方法で形成された非晶質
シリコンによって、一部若しくは全体が構成されて成る
ことを特徴とする太陽電池若しくは薄膜トランジスタ若
しくは電子写真感光材。
(4) A solar cell, a thin film transistor, or an electrophotographic photosensitive material, characterized in that the solar cell, thin film transistor, or electrophotographic photosensitive material is partially or entirely constructed of amorphous silicon formed by the method according to any one of claims 1 to 3.
(5)反応室と、 該反応室にシリコンの水素化合物である原料ガスを一定
速度で供給する原料ガス供給装置と、該反応室内の圧力
を一定に保ちながら該反応室のガスを排出する排気装置
と、 シンクロトロンの電子蓄積リングと該反応室を結合する
SOR光の光路であって、差動排気により真空度が連続
的に変化して設定されるSOR光の光路空間と、 該反応室内に設けられ、冷却用液体の流通により載置さ
れた基板を冷却することができる基板載置台とを備えて
成ることを特徴とする非晶質シリコンの製造装置。
(5) A reaction chamber, a source gas supply device that supplies a raw material gas, which is a hydrogen compound of silicon, to the reaction chamber at a constant rate, and an exhaust that discharges the gas from the reaction chamber while keeping the pressure inside the reaction chamber constant. An optical path for SOR light that couples the electron storage ring of the synchrotron with the reaction chamber, an optical path space for the SOR light that is set by continuously changing the degree of vacuum by differential pumping, and an optical path space for the SOR light that connects the electron storage ring of the synchrotron and the reaction chamber; 1. An apparatus for manufacturing amorphous silicon, comprising: a substrate mounting table, which is provided on a substrate mounting table, and is capable of cooling a substrate mounted thereon by circulating a cooling liquid.
JP2222793A 1990-08-24 1990-08-24 Manufacture of amorphous silicon Pending JPH04105314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2222793A JPH04105314A (en) 1990-08-24 1990-08-24 Manufacture of amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2222793A JPH04105314A (en) 1990-08-24 1990-08-24 Manufacture of amorphous silicon

Publications (1)

Publication Number Publication Date
JPH04105314A true JPH04105314A (en) 1992-04-07

Family

ID=16787986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2222793A Pending JPH04105314A (en) 1990-08-24 1990-08-24 Manufacture of amorphous silicon

Country Status (1)

Country Link
JP (1) JPH04105314A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083915A1 (en) * 2002-03-29 2003-10-09 Miyatsu Co., Ltd. Method for forming thin film
JP2004146781A (en) * 2002-10-22 2004-05-20 Samsung Electronics Co Ltd Vacuum/purging method for load lock chamber for manufacturing semiconductor device
CN107116304A (en) * 2017-04-14 2017-09-01 常州大学 Laser thermal spraying prepares the quickly cooling device of amorphous aluminized coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083915A1 (en) * 2002-03-29 2003-10-09 Miyatsu Co., Ltd. Method for forming thin film
JP2004146781A (en) * 2002-10-22 2004-05-20 Samsung Electronics Co Ltd Vacuum/purging method for load lock chamber for manufacturing semiconductor device
JP4658243B2 (en) * 2002-10-22 2011-03-23 三星電子株式会社 Vacuum / purge method of load lock chamber for semiconductor device manufacturing
CN107116304A (en) * 2017-04-14 2017-09-01 常州大学 Laser thermal spraying prepares the quickly cooling device of amorphous aluminized coating

Similar Documents

Publication Publication Date Title
JP3517934B2 (en) Method of forming silicon film
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
JPH01296611A (en) Semiconductor thin film deposition
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
US7960252B2 (en) Method for forming a semiconductor film including a film forming gas and decomposing gas while emitting a laser sheet
JPH1098032A (en) Formation of thin film and thin film forming device
JPH04105314A (en) Manufacture of amorphous silicon
JPS60117712A (en) Forming method of thin film
JPS5982732A (en) Manufacture for semiconductor device
JPS60180999A (en) Method for synthesizing diamond
JP2629773B2 (en) Method of forming multilayer thin film
JPS63258016A (en) Manufacture of amorphous thin film
JPS629189B2 (en)
JPS61160926A (en) Photo-excited thin film former
JPS61236691A (en) Vapor phase synthesis of diamond
JPH0644553B2 (en) Optical vapor deposition method and optical vapor deposition apparatus
JPS60182127A (en) Photoexcitation reactor
JPS5928345A (en) Manufacture of semiconductor device
JPH09260251A (en) Manufacture of mask membrane for x-ray lithography use
JP2562662B2 (en) Method for forming amorphous silicon film
JPH0689455B2 (en) Thin film formation method
JPS6272114A (en) Radical-beam photo-cvd device
JPH0294430A (en) Photo-assisted cvd apparatus
JPS63155611A (en) Manufacture of semiconductor thin film
JPH02134814A (en) Manufacture of thin film through plasma cvd method and its device