JPS61236691A - Vapor phase synthesis of diamond - Google Patents

Vapor phase synthesis of diamond

Info

Publication number
JPS61236691A
JPS61236691A JP7485285A JP7485285A JPS61236691A JP S61236691 A JPS61236691 A JP S61236691A JP 7485285 A JP7485285 A JP 7485285A JP 7485285 A JP7485285 A JP 7485285A JP S61236691 A JPS61236691 A JP S61236691A
Authority
JP
Japan
Prior art keywords
substrate
diamond
vacuum
gas
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7485285A
Other languages
Japanese (ja)
Other versions
JPH0518799B2 (en
Inventor
Kazutaka Fujii
和隆 藤井
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7485285A priority Critical patent/JPS61236691A/en
Publication of JPS61236691A publication Critical patent/JPS61236691A/en
Publication of JPH0518799B2 publication Critical patent/JPH0518799B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To deposit diamond selectively on a large area of a substrate at low temp. by irradiating gas or vapor of a carbon compd. with ultraviolet rays having specified wavelength and electron beam. CONSTITUTION:A valve 14 is closed and a rotary pump 9 is driven after evacuating previously a vacuum cell 5 to <=10<-6>Torr with a high vacuum evacuation device 10. Carbon compd. (e.g. CH4 from a CH4 cylinder 1) and gaseous H2 from a H2 cylinder 2 are introduced into the vacuum cell 5 through mass flowmeters 3, 4 to adjust the pressure to a specified value with a pressure regulating valve 15. Then, ultraviolet rays from a vacuum ultraviolet ray generator 11 is radiated, after passing through a differential evacuation system 13 and an orifice 12, on CH4 and H2 to excite and decompose the CH4 and H2. Diamond is deposited on the whole area of a substrate 7 which is fixed on a substrate supporting bed 8 and heated at a specified temp. with a heater 6 being movable with a substrate moving device 16 while continuing irradiation during deposition. The substrate 7 is irradiated simultaneously with electron beam from an electron gum 17. Thus, diamond film is synthesized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気相からダイヤモンドを基板上に析出させる
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for depositing diamond on a substrate from the gas phase.

(従来技術とその問題点) 炭素化合物気体の熱分解によってダイヤモンドを合成す
る方法として、従来数種の方法が知られている。
(Prior Art and its Problems) Several methods are conventionally known for synthesizing diamond by thermal decomposition of carbon compound gas.

例えば、  1982年発行のジャパニーズ・ジャーナ
ル・オプ・アプライド嗜フィジクス誌(Japanes
eJournal of Appl ied Phys
ics )第21巻第L183ページ記載の論文には、
約2000℃に加熱したタングステン・ヒーターに水素
全キャリア・ガスとして、メタンガスを接触加熱し、熱
分解させ、シリコン、モリブデン、ないしは石英ガラス
基板上にダイヤモンドを析出させる方法が述べられてい
る。この方法は、タングステン・ヒーターが約2000
℃という高温に加熱されているために、タングステン自
体の蒸気圧も高くなり、短時間で消耗したり、蒸発した
タングステンが、ダイヤモンド表面に付着したりする問
題もある。また、一度加熱したタングステン・ヒーター
はタングステンとカーボンの反応やガス分子の吸蔵等に
より、極めてもろくなり、簡単に切断されやすくなるた
め頻繁にタングステン・ヒーターを交換せねばならず、
長時間装置全運動するのが困難である。またタングステ
ン・ヒーター線の経時変化は、反応ガスの熱分解条件の
変動を招き、広い面積に均一に膜状ダイヤモンドを析出
させるのは困難である。
For example, the Japanese Journal of Applied Physics published in 1982.
eJournal of Applied Phys
ics) Volume 21, page L183 includes the following:
A method is described in which methane gas is heated in contact with a tungsten heater heated to about 2000° C. using hydrogen as a carrier gas, thermally decomposed, and diamond is deposited on a silicon, molybdenum, or quartz glass substrate. This method requires a tungsten heater of approximately 2,000
Because it is heated to a high temperature of 0.9°C, the vapor pressure of tungsten itself becomes high, causing problems such as it being consumed in a short period of time and evaporated tungsten adhering to the diamond surface. In addition, once heated, the tungsten heater becomes extremely brittle due to the reaction between tungsten and carbon and the absorption of gas molecules, making it easy to break, so the tungsten heater must be replaced frequently.
It is difficult to fully exercise the device for a long time. In addition, changes in the tungsten heater wire over time cause changes in the thermal decomposition conditions of the reaction gas, making it difficult to uniformly deposit film-like diamond over a wide area.

更に、ダイヤモンド析出温度は高く、室温付近での合成
は不可能である欠点を有している。
Furthermore, the diamond precipitation temperature is high, making synthesis near room temperature impossible.

四に、他の方法として、1980年発行のジャーナル轡
オブ9ノン・クリスタリン・ソリッズ誌(Journa
l of Non −Crystalline 5ol
its )第35&36巻第435ページ記載の論文に
は、ガラスないしは、モリブデンをガラス上に蒸着した
ものを基板に用い、圧力0.9トール、ガス流量毎分0
5〜]、QCC%基板温度25〜375℃、 放電電流
0,8〜加法、放電電圧300〜400vの条件下で、
アセチレンを直流グロー放電により分解し、アモルファ
ス・カーボンM ’fr: 得たことを述べている。
Fourth, another method is to use the Journal of 9 Non-Crystalline Solids published in 1980.
l of Non-Crystalline 5ol
ITS ) Vol. 35 & 36, page 435, the paper uses glass or molybdenum vapor-deposited on glass as a substrate, a pressure of 0.9 torr, a gas flow rate of 0.
5~], QCC% substrate temperature 25~375℃, discharge current 0.8~additive, discharge voltage 300~400v,
It is stated that amorphous carbon M'fr: was obtained by decomposing acetylene by direct current glow discharge.

前記のアモルファス畳カーボン膜の電気抵抗率はAu犬
10”Ω・鑞であり、絶縁性のカーボン膜が得られてい
る点では優れているが、膜厚が1μmf越えたり、熱処
理したりすると、カーボン膜が基板からはがれる欠点が
ある。また、基板温度が高い場合には、カーボン膜は黒
色になり、グラファイト状になる欠点がある。更に、結
晶性のダイヤモンド膜を合成できない欠点を有している
The electrical resistivity of the above-mentioned amorphous carbon film is 10" ohm (Au), which is excellent in that it provides an insulating carbon film, but if the film thickness exceeds 1 μm or if it is heat-treated, It has the disadvantage that the carbon film peels off from the substrate.Also, when the substrate temperature is high, the carbon film turns black and becomes graphite-like.Furthermore, it has the disadvantage that a crystalline diamond film cannot be synthesized. There is.

更に、別な方法として、減圧状態の反応気体をマイクロ
波放電ないしけ高周波放電によってプラズマを発生せし
め、直接プラズマ中にないしは、プラズマのアフターグ
ロー中に基板を設置し、基板上にダイヤモンド全析出さ
せる方法や、イオン化した炭素を基板に衝突させること
によって膜状ダイヤモンドを合成する方法もあるが、前
者の方法は、ダイヤモンド相を得るには基板を高温にし
なければならない欠点を有している。史に、プラズマ中
に基板を設置する為、基板のプラズマ損傷が避けられな
い。後者の方法は、常温付近でダイヤモンドを合成でき
る方法で、優れた方法であるが、装置が高価である欠点
を有している。更に、ビーム状にイオンを引き出す為、
ビーム強度にむらがあり、広い面積に均一なダイヤモン
ド相を得られない欠点を有している。
Furthermore, as another method, plasma is generated by microwave discharge or high frequency discharge in a reaction gas under reduced pressure, and a substrate is placed directly in the plasma or during the afterglow of the plasma, and diamond is completely deposited on the substrate. There is also a method of synthesizing diamond in the form of a diamond film by bombarding a substrate with ionized carbon, but the former method has the disadvantage that the substrate must be heated to a high temperature in order to obtain the diamond phase. Historically, since the substrate is placed in plasma, plasma damage to the substrate is unavoidable. The latter method is an excellent method as it allows diamond to be synthesized at around room temperature, but it has the disadvantage that the equipment is expensive. Furthermore, in order to extract ions in a beam shape,
It has the disadvantage that the beam intensity is uneven and a uniform diamond phase cannot be obtained over a wide area.

(発明の目的) 本発明の目的は、このような従来の欠点を除去せしめて
、低温でダイヤモンドだけを選択的に析出させ、基板上
に薄膜として、付着させるダイヤモンドの合成法を提供
することにある。
(Objective of the Invention) The object of the present invention is to eliminate such conventional drawbacks and to provide a method for synthesizing diamond in which only diamond is selectively precipitated at low temperature and deposited as a thin film on a substrate. be.

(発明の構成) 本発明によれば、炭素化合物の気体又は蒸気に所定の波
長の真空紫外線と電子線を照射する工程金偏えたこと全
%徴とするダイヤモンドの気相合成法が得られる。
(Structure of the Invention) According to the present invention, a diamond vapor phase synthesis method is obtained in which a gas or vapor of a carbon compound is irradiated with vacuum ultraviolet rays of a predetermined wavelength and an electron beam.

(構成の詳細な説明) 本発明は上述の構成をとることにより、従来技術の問題
点を解決した。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration.

気相からのダイヤモンド析出プロセスは、熱力学的に準
安定な相を安定化せしめる人工的操作を要求されるが、
反応ガスの熱分解からだけ遊離炭素原子を得ようとする
と、基板上に非ダイヤモンド炭素が析出するのは自明で
ある。
The process of diamond precipitation from the gas phase requires artificial manipulation to stabilize the thermodynamically metastable phase.
It is obvious that non-diamond carbon will be deposited on the substrate if free carbon atoms are obtained only from the thermal decomposition of the reactant gas.

またプラズマを利用する方法においても、プラズマの内
部エネルギー範囲は広く、ダイヤモンドとなるべき活性
種だけを作るのは困難で、非ダイヤモンド炭素が析出し
やすく、なるのも自明であろう。
Furthermore, in methods that utilize plasma, the internal energy range of the plasma is wide, and it is difficult to produce only the active species that will become diamond, so it is obvious that non-diamond carbon is likely to precipitate.

従って、不発明においては、ダイヤモンド生成に有効な
メチルラジカル、メチル陽イオン、i子状水素等を得る
ために決った波長を有する真空紫外線を用いて、主にメ
チル陽イオン、原子状水素等を効率的に作り、さらに電
子線を照射することKよってメチルラジカルを生成せし
め%基板上にダイヤモンドを合成するプロセスを提供す
る。
Therefore, in the present invention, in order to obtain methyl radicals, methyl cations, i-atomic hydrogen, etc. that are effective for diamond production, vacuum ultraviolet rays having a predetermined wavelength are used to mainly generate methyl cations, atomic hydrogen, etc. The present invention provides a process for efficiently producing diamond on a substrate by generating methyl radicals by irradiating it with an electron beam.

本発明の方法によるダイヤモンド合成プロ七スにおいて
は、光による活性種の合成を用いている為、基板温度が
上昇しない。また、光により活性種の表面拡散が盛んに
なり、ダイヤモンドの低温成長が可能となる。
In the diamond synthesis process according to the method of the present invention, since synthesis of active species by light is used, the substrate temperature does not rise. In addition, light increases the surface diffusion of active species, making it possible to grow diamonds at low temperatures.

活性種の光合成の例として、メタンガスを反応ガスに用
いた場合を述べる。メタンガスは、通常用いられる水銀
灯のような紫外線は吸収せず従って活性種を合成できな
い。吸収が始まるのが、約1460オングストローム以
下で、光の波長釦より種々のラジカルないしはイオンに
分解する。またそれぞnのラジカルまたはイオンも種々
の励起状態を持つ。メ゛f−ルラシカルを作るには、 
 1460オングストローム以下の真空紫外線が必要で
あり、更に光の強度も強い程良い。即ち、アルゴンエキ
シマ−レーデ−やシンクロトロンk 射+’J の高出
力な真空紫外源が望ましい。
As an example of photosynthesis of active species, we will discuss the case where methane gas is used as a reaction gas. Methane gas does not absorb ultraviolet light like commonly used mercury lamps, and therefore cannot synthesize active species. Absorption begins at a wavelength of about 1,460 angstroms or less, and the light is decomposed into various radicals or ions depending on the wavelength of the light. Further, each of the n radicals or ions has various excited states. To make a main radical,
Vacuum ultraviolet light of 1460 angstroms or less is required, and the stronger the light intensity, the better. That is, a high-output vacuum ultraviolet source such as argon excimer radiation or synchrotron radiation is desirable.

更に、メチル陽イオンは、870 A以下の光で4串的
に合成できるので、アルゴンエキシマ−レーザーの2y
t′、子吸収、利用したり、シンクロトロン放射光を用
いてもよい。また、これらを組み合わせて、2波長ない
しそれ以上の波長の光を同時に照射し、それぞれの活性
種を異なる波長で作ることもできる。
Furthermore, since methyl cations can be synthesized in a four-way manner using light of 870 A or less, the 2y of argon excimer laser
t', child absorption, or synchrotron radiation. Furthermore, by combining these methods, it is also possible to simultaneously irradiate light with two or more wavelengths to create active species with different wavelengths.

原子状水素は、メタンから真空紫外線により、メチルラ
ジカルを作る時に副生ずる。また、炭化水素ガスの光分
解によっても生成するが、更に一度を上げる為に、水素
ガスを反応ガスに混入させ、真空紫外線により、光分解
させるとより効率よくダイヤモンド全合成できる。
Atomic hydrogen is a by-product when methyl radicals are created from methane using vacuum ultraviolet light. It can also be produced by photodecomposition of hydrocarbon gas, but to increase the efficiency even further, diamond total synthesis can be made more efficiently by mixing hydrogen gas into the reaction gas and photodecomposing it with vacuum ultraviolet rays.

電子線を真空紫外線と共に照射する効果は、真空紫外線
によって効率よく生成しているメチル陽イオンを電子に
よって中性化せしめ、メチルラジカルを合成し、電子線
の強度により、メチルラジカルとメチル陽イオンの存在
比を変えることにより、最適な条件でダイヤモンドを合
成することIある。電子線を放射する装置は、電子銃で
もよいが、タングステン線全リング状あるいは線状で基
板上方の元の照射しない所に設置し、加熱してもよい。
The effect of irradiating an electron beam with vacuum ultraviolet rays is that the methyl cations that are efficiently generated by vacuum ultraviolet rays are neutralized by electrons, methyl radicals are synthesized, and the intensity of the electron beam causes the methyl radicals and methyl cations to be By changing the abundance ratio, diamond can be synthesized under optimal conditions. The device for emitting the electron beam may be an electron gun, or a tungsten wire in the form of a full ring or a line may be placed above the substrate at a location not originally irradiated and heated.

以下、第1面を用いて、本発明に使用した装置の例およ
び製造工程を説明する。真空槽5の甲を高真空排気装置
10ヲ用いて10’トール以下に予備排気後、バブル1
4を閉じて、ロータリーポンプ9に切り換え、メタンボ
ンベ1からメタンガス、水素ボンベ2から水素ガスをそ
れぞれの質量流量計3゜4を用いて真空槽5に導入する
Hereinafter, an example of the device used in the present invention and a manufacturing process will be described using the first page. After preliminary evacuation of the instep of the vacuum chamber 5 to below 10' Torr using the high vacuum evacuation device 10, the bubble 1 is
4 is closed, the system is switched to the rotary pump 9, and methane gas from the methane cylinder 1 and hydrogen gas from the hydrogen cylinder 2 are introduced into the vacuum chamber 5 using their respective mass flowmeters 3 and 4.

圧力調整バブル15により所定の圧力へ調整する。The pressure is adjusted to a predetermined pressure using the pressure adjustment bubble 15.

基板7は基板支持台I上に固定さIL、ヒーター6によ
り所定の温度へ調整する。真空紫外線源11より照射さ
れた光は、筒真空排気装置10およびオリフィス12に
より(10−5)−ル以下)に保たれた差動排気系13
およびオリフィス12ヲ通過して、反応ガスであるメタ
ンおよび水素を励起および分解しながら基板に照射され
る。また、基板全域にダイヤモンドを析出させるために
、基板移動機構16によって、基板全移動させ、基板全
域にオリフィス12を通過した光を照射する。光照射と
同時に、゛祇子銃17ヲ用い電子線を基板に照射しダイ
ヤモンドを合成する。
The substrate 7 is fixed on a substrate support I and adjusted to a predetermined temperature by a heater 6. The light irradiated from the vacuum ultraviolet source 11 is passed through the differential pumping system 13 which is maintained at (10-5) or less by the cylinder vacuum pumping device 10 and the orifice 12.
The light then passes through the orifice 12 and is irradiated onto the substrate while exciting and decomposing the reaction gases methane and hydrogen. Further, in order to deposit diamond over the entire area of the substrate, the entire substrate is moved by the substrate moving mechanism 16, and the entire area of the substrate is irradiated with the light that has passed through the orifice 12. Simultaneously with the light irradiation, the substrate is irradiated with an electron beam using the Geshi gun 17 to synthesize diamond.

(実施例) 基板は、シリコン、モリブテン、タングステン、ガラス
4用い、200℃から600 ’Cに加熱した。
(Example) The substrate was made of silicon, molybdenum, tungsten, and glass 4, and was heated from 200°C to 600'C.

反応時間は30分とし、ガスはメタン100%からメタ
ン/水素混合比001まで変化させ、圧力は05トール
とした。真空紫外の/l、源としてアルゴンエキシマレ
ー−+)’ −(1260Aングストローム)を用いた
。真空紫外線によってのみでもダイヤモンド膜は得られ
たが、400℃以上と比較的基板温度が高い場合に限ら
れた。電子銃に通電し、電子線を照射すると、基板温度
が200℃でもターイヤモンド膜が生成していた。この
膜の表面は滑らかでjあり、生成速度は最大毎時2ミク
ロンであった。
The reaction time was 30 minutes, the gas was varied from 100% methane to a methane/hydrogen mixing ratio of 001, and the pressure was 05 Torr. Argon excimer-+)'-(1260 Angstroms) was used as the vacuum ultraviolet/l source. A diamond film could be obtained using vacuum ultraviolet rays alone, but only when the substrate temperature was relatively high at 400° C. or higher. When the electron gun was energized and an electron beam was irradiated, a diamond film was formed even at a substrate temperature of 200°C. The surface of this film was smooth and the production rate was up to 2 microns per hour.

メタン/水素混合比は0.5以下の方が成長速度が大き
くなシ好ましいことが判明した。
It has been found that a methane/hydrogen mixing ratio of 0.5 or less is preferable because the growth rate is higher.

(発明の効果) 本発明により、ダイヤモンド単−相の薄ff1k基板上
に析出させることができる。さらに成長速度も速く、か
つ低温で合成できる。
(Effects of the Invention) According to the present invention, diamond single-phase can be deposited on a thin FF1K substrate. Furthermore, it has a fast growth rate and can be synthesized at low temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に直接使用する装置の概略図。 1・・・・・メタンボンベ、  2・・・・・水素ボン
ベ、3.4・・・・・質量流量計、  5・・・・・X
窄槽、  6・・・・ヒーター、  7・・・・・・基
板、  8・・・・基板支持台。
FIG. 1 is a schematic diagram of the apparatus used directly in the method of the invention. 1...Methane cylinder, 2...Hydrogen cylinder, 3.4...Mass flow meter, 5...X
Enclosed tank, 6... Heater, 7... Substrate, 8... Substrate support stand.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素化合物の気体又は蒸気に所定の波長の真空紫
外線と電子線を照射する工程を備えたことを特徴とする
ダイヤモンドの気相合成法。
(1) A diamond vapor phase synthesis method comprising a step of irradiating a gas or vapor of a carbon compound with vacuum ultraviolet rays and electron beams of a predetermined wavelength.
(2)炭素化合物の気体又は蒸気には水素ガスが混入さ
れている特許請求の範囲第1項記載のダイヤモンドの気
相合成法。
(2) The method for vapor phase synthesis of diamond according to claim 1, wherein hydrogen gas is mixed in the gas or vapor of the carbon compound.
JP7485285A 1985-04-09 1985-04-09 Vapor phase synthesis of diamond Granted JPS61236691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7485285A JPS61236691A (en) 1985-04-09 1985-04-09 Vapor phase synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7485285A JPS61236691A (en) 1985-04-09 1985-04-09 Vapor phase synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS61236691A true JPS61236691A (en) 1986-10-21
JPH0518799B2 JPH0518799B2 (en) 1993-03-12

Family

ID=13559261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7485285A Granted JPS61236691A (en) 1985-04-09 1985-04-09 Vapor phase synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS61236691A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882138A (en) * 1987-03-30 1989-11-21 Crystallume Method for preparation of diamond ceramics
US5075095A (en) * 1987-03-30 1991-12-24 Crystallume Method for preparation of diamond ceramics
US5346729A (en) * 1993-05-17 1994-09-13 Midwest Research Institute Solar-induced chemical vapor deposition of diamond-type carbon films
US5387443A (en) * 1992-07-09 1995-02-07 Sumitomo Electric Industries, Ltd. Laser CVD method for synthesizing diamond
US7255744B2 (en) 2002-12-27 2007-08-14 Sumitomo Electric Industries, Ltd. Low-resistivity n-type semiconductor diamond and method of its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882138A (en) * 1987-03-30 1989-11-21 Crystallume Method for preparation of diamond ceramics
US5075095A (en) * 1987-03-30 1991-12-24 Crystallume Method for preparation of diamond ceramics
US5387443A (en) * 1992-07-09 1995-02-07 Sumitomo Electric Industries, Ltd. Laser CVD method for synthesizing diamond
US5346729A (en) * 1993-05-17 1994-09-13 Midwest Research Institute Solar-induced chemical vapor deposition of diamond-type carbon films
WO1994026424A1 (en) * 1993-05-17 1994-11-24 Midwest Research Institute Solar-induced chemical vapor deposition of diamond-type carbon films
US7255744B2 (en) 2002-12-27 2007-08-14 Sumitomo Electric Industries, Ltd. Low-resistivity n-type semiconductor diamond and method of its manufacture
CN100337310C (en) * 2002-12-27 2007-09-12 住友电气工业株式会社 Low-resistance n type semiconductor diamond and process for producing the same

Also Published As

Publication number Publication date
JPH0518799B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US7125588B2 (en) Pulsed plasma CVD method for forming a film
JPS5927754B2 (en) Diamond synthesis method
JPH0346436B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS61236691A (en) Vapor phase synthesis of diamond
JPH0518796B2 (en)
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPH0419198B2 (en)
JPS6184379A (en) Production of high-hardness boron nitride film
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JPS6054996A (en) Synthesis of diamond
JPS616199A (en) Process and apparatus for synthesizing diamond in gaseous phase
JPS61201694A (en) Vapor phase synthesis method for diamond
JP2562921B2 (en) Method of synthesizing vapor phase diamond
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPH0419197B2 (en)
JPS593098A (en) Synthesizing method of diamond
JPS60145995A (en) Preparation of diamond-shaped carbon
JPH0518800B2 (en)
JPH0448758B2 (en)
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JPH01298095A (en) Production of diamondlike carbon film
JPS63297299A (en) Method for vapor synthesis of diamond
JPS63123898A (en) Synthesis of diamond by vapor-phase process
JPH06199595A (en) Method for synthesizing diamond