JPS63155611A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPS63155611A
JPS63155611A JP30230486A JP30230486A JPS63155611A JP S63155611 A JPS63155611 A JP S63155611A JP 30230486 A JP30230486 A JP 30230486A JP 30230486 A JP30230486 A JP 30230486A JP S63155611 A JPS63155611 A JP S63155611A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
semiconductor thin
thin film
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30230486A
Other languages
Japanese (ja)
Inventor
Shingo Terakado
寺門 伸悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30230486A priority Critical patent/JPS63155611A/en
Publication of JPS63155611A publication Critical patent/JPS63155611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To eliminate the requirement of using a sensitizer such as mercury, which is a poisonous material, by depositing a semiconductor thin film on the surface of a supporting substrate by irradiating with soft X-rays an SiH4 gas introduced in a reduced pressure reaction chamber. CONSTITUTION:A reaction chamber 2 is closed and the pressure in the chamber is reduced to 10<-5> Torr or less by operating an exhaust system 1. An SiH4 gas is introduced in the reaction chamber 2 from a raw material gas inlet 5 keeping a supporting substrate 3 at approx. 200-300 deg.C and the pressure of the gas is adjusted to 0.1-1 Torr. In this state, soft X-rays of wavelength approx. 78 nm selected by a beam line 5 and the optical system on the way of the beam line 5 within a beam radiated from a synchrotron radiation equipment of 2.5 GeV electron storage ring are introduced in the reaction chamber 2. Under these conditions, a-Si is deposited on the deposition surface of the supporting substrate 3 at a film forming speed of 1.5-2 Angstrom /sec. This eliminates the requirement of using a sensitizer such as mercury, which is a poisonous material.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアモルファスシリコン(a−3i )、アモル
ファスシリコンカーバイド(a−3i1−xCx)アモ
ルファスシリコンゲルマニウム(a−8i1−XGex
)、微結晶シリコン(uc−8t)等の半導体薄膜の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention is applicable to amorphous silicon (a-3i), amorphous silicon carbide (a-3i1-xCx), amorphous silicon germanium (a-8i1-XGex)
), relates to a method for manufacturing semiconductor thin films such as microcrystalline silicon (UC-8T).

11ff+  従来の技術 a −3i、a−8i1−xc”+a−8i1−xGe
x、、uc−3i等の半導体薄膜はモノシラン(SiH
リガス、ジシラン(Si2H6)ガス、四フッ化シリコ
ン(SiF4)ガス等を原料ガスとし、高周波グロブ放
電によるプラズマCVD法により形成することができる
11ff+ Conventional technology a-3i, a-8i1-xc”+a-8i1-xGe
Semiconductor thin films such as x, uc-3i, etc. are made of monosilane (SiH
It can be formed by a plasma CVD method using high-frequency glob discharge, using a raw material gas such as silane gas, disilane (Si2H6) gas, or silicon tetrafluoride (SiF4) gas.

特に太陽電池や光センサ、更には電子写真の感光体ドラ
ム等の光デバイスに実用化されている上記λ−3i等の
半導体薄膜の製造には、SiH4ガスが他のガスに比し
て入手が容易で且つ安価である等の理由で最も使用され
ている。プラズマCVD法は、上記光デバイスの大面積
化要求も満足することができるために有効なプロセスで
ある。
In particular, SiH4 gas is difficult to obtain compared to other gases in the production of semiconductor thin films such as the above-mentioned λ-3i, which are used in optical devices such as solar cells, optical sensors, and electrophotographic photoreceptor drums. It is the most used because it is easy and inexpensive. The plasma CVD method is an effective process because it can satisfy the above requirement for increasing the area of optical devices.

しかし乍ら、大面積化に有効なプラズマCVD法であっ
ても、形成されつつある半導体薄膜の膜面ばプラズマに
曝されるために、高速荷電粒子によるアタックを受け、
半導体薄膜の膜質を悪化させたり、界面特性を低下させ
るという問題点がある。
However, even with the plasma CVD method, which is effective for increasing the area, the surface of the semiconductor thin film that is being formed is exposed to plasma, so it is attacked by high-speed charged particles.
There are problems in that the film quality of the semiconductor thin film is deteriorated and the interface properties are deteriorated.

Japanese Journal of Appli
ed physicsVOl、23. ff12 、2
月、1984年、PPL91−L93に開示された紫外
線を輻射する光源の光エネルギによりSi2H6の原料
ガスを直接分解する光CVD法は上記高速荷電粒子によ
るプラズマダメージに対し極めて有効である。ところが
、斯る直接分解光CVD法の場合、原料ガスとして3 
i )(4ガスを用いてを当該SiH4ガスは紫外線に
より直接分解されず、紫外線で分解可能なSiH4の高
次ガスである高価なSi2H6ガスを使用しなければな
らない。
Japanese Journal of Appli
ed physics VOl, 23. ff12,2
The photo-CVD method, which is disclosed in PPL91-L93 published in May, 1984, in which Si2H6 raw material gas is directly decomposed by the light energy of a light source that radiates ultraviolet rays, is extremely effective against plasma damage caused by the above-mentioned high-speed charged particles. However, in the case of such direct decomposition photoCVD method, 3
i) (Using 4 gases) The SiH4 gas is not directly decomposed by ultraviolet light, and expensive Si2H6 gas, which is a higher-order gas of SiH4 that can be decomposed by ultraviolet light, must be used.

一方、紫外線で直接分解することのできない3iH4ガ
スに対しては、第14回薄膜・光面物理セミナー、第1
05頁乃至第115頁に示された如く、反応室内に3i
)(4ガスの原料ガスと共に水銀を導入し、水銀が紫外
線を吸収して励起され、斯る水銀がSiH4ガスと衝突
することにより分解する水銀増感反応が有力な手段とな
る。
On the other hand, for 3iH4 gas which cannot be directly decomposed by ultraviolet rays, the 14th Thin Film and Optical Surface Physics Seminar,
3i in the reaction chamber as shown on pages 05 to 115.
) (Mercury sensitization reaction in which mercury is introduced together with the four raw material gases, the mercury absorbs ultraviolet rays and is excited, and the mercury decomposes by colliding with SiH4 gas is an effective method.

しかし、斯る水銀増感反応を利用した光CVD法にあっ
ては、工業的に有利な5iH4ガスを原料ガスとして用
いることができるものの、増感剤として有毒物質である
水銀を使用しなければならない上に、水銀が膜中に混入
したり、真空系を汚染したりする。
However, in the photoCVD method using such a mercury sensitization reaction, although 5iH4 gas, which is industrially advantageous, can be used as a raw material gas, it is necessary to use mercury, which is a toxic substance, as a sensitizer. In addition, mercury may enter the membrane or contaminate the vacuum system.

(ハ)発明が解決しようとする問題点 本発明製造方法は、上述のプラズマCVD法、直接分解
光CVD法及び水銀増感光CVD法が持つ、プラズマダ
メージ、3i)(4ガスを使用できず工業的でない及び
増感剤として水銀を用いなければならないという問題点
を解決しようとするものである。
(c) Problems to be Solved by the Invention The manufacturing method of the present invention is capable of reducing plasma damage caused by the above-mentioned plasma CVD, direct decomposition photoCVD, and mercury-sensitized photoCVD. This is an attempt to solve the problems that mercury is not a sensitizer and that mercury must be used as a sensitizer.

に)問題点を解決するための手段 本発明製造方法は上記問題点を解決すべく、減圧された
反応室内に原料ガスとしてSiH4ガスを導入し、該S
iH・1ガスに軟X線を照射して支持基板表面に半導体
薄膜を堆積せしめることを特徴とする1゜ (ホ)作用 上述の如く原料ガスとして5i14ガスを使用したにも
拘らず、該SiH4ガスに軟X線を照射することによっ
て、水銀等の増感剤を用いることなく原料ガスである5
iH4ガスを直接分解し得る。
B) Means for Solving the Problems In order to solve the above problems, the production method of the present invention introduces SiH4 gas as a raw material gas into the reaction chamber under reduced pressure, and
1°(e) action characterized by depositing a semiconductor thin film on the surface of a supporting substrate by irradiating iH.1 gas with soft X-rays. By irradiating the gas with soft X-rays, the raw material gas 5
iH4 gas can be decomposed directly.

(へ)実施例 第1図は本発明製造方法に用いられる反応装置の概略図
を示し、排気系(1)を介して減圧し得る反応室(21
のほぼ中央に、堆積される半導体薄膜を支持するための
支持基板(3)を保持すべく図示していないヒータを内
蔵したサンプルホルダ(4)が設けられている。斯る反
応室(2)の側面には、上記支持基板(3)の堆積面に
近接して平行に波長70〜130nmの軟X線のビーム
を導入すべくシンクロトン八 放射装置のビームライン(5)が接続されており、その
途中には図示していない光学系が設けられ上記ジンクロ
ト−放射装置から出射したビームから任意の波長光を選
択する。減圧された反応室(2)内には支持基板(3)
の堆積面に対向して設けられた原料ガス導入口(6)か
ら少なくとも5iH4ガスを含む原料ガスが導入される
(f) Example FIG. 1 shows a schematic diagram of a reaction apparatus used in the production method of the present invention, in which a reaction chamber (21
A sample holder (4) with a built-in heater (not shown) is provided approximately in the center of the sample holder (4) to hold a support substrate (3) for supporting the semiconductor thin film to be deposited. On the side of the reaction chamber (2), there is a beam line (of a synchrotron radiation device) for introducing a soft X-ray beam with a wavelength of 70 to 130 nm close to and parallel to the deposition surface of the support substrate (3). 5) is connected, and an optical system (not shown) is provided in the middle thereof to select light of an arbitrary wavelength from the beam emitted from the zinc chromatography radiator. A support substrate (3) is placed inside the reduced pressure reaction chamber (2).
A source gas containing at least 5iH4 gas is introduced from a source gas inlet (6) provided opposite the deposition surface of the substrate.

而して、反応室(2)内に例えは単結晶半導体基板、ガ
ラス基板、5n02或いはITOをコートした導電性ガ
ラス基板、金属基板等から選択使用された支持基板(3
+を配置し、反応室(2)をクローズして排気系(1)
を稼動させて10  TOrr以下に減圧する。
In the reaction chamber (2), a support substrate (3) selected from a single crystal semiconductor substrate, a glass substrate, a conductive glass substrate coated with 5N02 or ITO, a metal substrate, etc. is placed in the reaction chamber (2).
+, close the reaction chamber (2), and open the exhaust system (1).
The pressure is reduced to below 10 Torr.

支持基板(3)を約200〜300℃に保持しつつSi
H4ガスを原料ガス尋人口(51から反応室(2)内に
導入し斯るガス圧を0.1〜ITorrに調整する。こ
の状態で2.50 e V電子蓄積リングのシンクロト
ロン放射装置を出射したビームの内、ビームライン(5
)及びその途中の光学系により・5−選択された波長約
713nmの軟X線を反応室(21内に導入する。
Si
H4 gas is introduced into the reaction chamber (2) from the raw material gas pressure port (51) and the gas pressure is adjusted to 0.1 to ITorr.In this state, the synchrotron radiation device with the 2.50 eV electron storage ring is Among the emitted beams, the beam line (5
) and an optical system in the middle of the process to introduce soft X-rays with a selected wavelength of about 713 nm into the reaction chamber (21).

導入する軟X線の強度は7オトン数にして10 〜10
  個(蓄積電流100mAのとき)であり、この条件
のFでa−3iが1.5〜2 A/Sec (7)成膜
速度で支持基板(3)の堆積面に堆積した。
The intensity of the soft X-rays introduced is 10 to 10 in terms of 7 otons.
(at a storage current of 100 mA), and a-3i was deposited on the deposition surface of the supporting substrate (3) at a film formation rate of 1.5 to 2 A/Sec (7) under these conditions.

fト)発明の効果 本発明製造方法は以上の説明から明らかな如く、原料ガ
スとして5iH4ガスを使用したにも拘らず、該5iH
4ガスに軟X線を照射することによって、直接分解する
ことができるので、有毒物質である水銀等の増感剤を用
いる必要がなく斯る増感剤が膜中に混入したり、真空系
を汚染したりすることもない。しかも、支持基板表面は
プラズマCVD法のようにプラズマに曝されず、従って
原料ガスとして入手が容易で安価なSiH4ガスを使用
してもプラズマダメージのない良質な半導体薄膜を得る
ことかできる。
g) Effects of the invention As is clear from the above explanation, the production method of the present invention, despite using 5iH4 gas as the raw material gas,
4 gases can be directly decomposed by irradiating them with soft X-rays, so there is no need to use sensitizers such as mercury, which is a toxic substance. It will not contaminate the water. Furthermore, the surface of the supporting substrate is not exposed to plasma as in the plasma CVD method, so even if SiH4 gas, which is easily available and inexpensive, is used as a raw material gas, a high quality semiconductor thin film without plasma damage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造方法に用いられる製造装置の概略図
であって、(2)は反応室、(3)は支持基板、(5)
はビームライン、(6)は原料ガス導入口、を夫々示し
ている。
FIG. 1 is a schematic diagram of the manufacturing apparatus used in the manufacturing method of the present invention, in which (2) is a reaction chamber, (3) is a support substrate, and (5) is a reaction chamber.
(6) indicates the beam line, and (6) indicates the source gas inlet.

Claims (1)

【特許請求の範囲】[Claims] (1)減圧された反応室内に原料ガスとしてモノシラン
(SiH_4)ガスを導入し、該モノシランガスに軟X
線を照射して支持基板表面に半導体薄膜を堆積せしめる
ことを特徴とした半導体薄膜の製造方法。
(1) Monosilane (SiH_4) gas is introduced as a raw material gas into the reaction chamber under reduced pressure, and the monosilane gas is
1. A method for producing a semiconductor thin film, comprising depositing a semiconductor thin film on the surface of a support substrate by irradiating the semiconductor thin film with radiation.
JP30230486A 1986-12-18 1986-12-18 Manufacture of semiconductor thin film Pending JPS63155611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30230486A JPS63155611A (en) 1986-12-18 1986-12-18 Manufacture of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30230486A JPS63155611A (en) 1986-12-18 1986-12-18 Manufacture of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS63155611A true JPS63155611A (en) 1988-06-28

Family

ID=17907358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30230486A Pending JPS63155611A (en) 1986-12-18 1986-12-18 Manufacture of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS63155611A (en)

Similar Documents

Publication Publication Date Title
US4585671A (en) Formation process of amorphous silicon film
JP3148004B2 (en) Optical CVD apparatus and method for manufacturing semiconductor device using the same
JP3517934B2 (en) Method of forming silicon film
US4525382A (en) Photochemical vapor deposition apparatus
JPS6248753B2 (en)
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
JPH08333684A (en) Formation of deposited film
JPS63155611A (en) Manufacture of semiconductor thin film
JPS63258016A (en) Manufacture of amorphous thin film
JP2629773B2 (en) Method of forming multilayer thin film
JPH04105314A (en) Manufacture of amorphous silicon
JPH0639702B2 (en) Deposited film formation method
JPS61216318A (en) Photo chemical vapor deposition device
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPS63234516A (en) Formation of thin film multilayer structure
JPS6216512A (en) Manufacture of semiconductor thin film
JPH0691018B2 (en) Optical excitation processor
JPH02234429A (en) Manufacture of silicon nitride film
JPH02228024A (en) Method for forming amorphous silicon film
JPS61223751A (en) Electrophotographic sensitive body
JPS6065525A (en) Method of photo chemical vapor deposition and device therefor
JPS63234517A (en) Formation of thin film multilayer structure
JPS63155610A (en) Manufacture of semiconductor film
JPH0212265A (en) Production of electrophotographic sensitive body
Yoshida et al. Hydrogenated amorphous silicon films prepared from trisilane by windowless hydrogen discharge lamp