JPS5928345A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5928345A
JPS5928345A JP13831882A JP13831882A JPS5928345A JP S5928345 A JPS5928345 A JP S5928345A JP 13831882 A JP13831882 A JP 13831882A JP 13831882 A JP13831882 A JP 13831882A JP S5928345 A JPS5928345 A JP S5928345A
Authority
JP
Japan
Prior art keywords
gas
film
cell
photochemical
xenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13831882A
Other languages
Japanese (ja)
Inventor
Yoichiro Numazawa
陽一郎 沼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13831882A priority Critical patent/JPS5928345A/en
Publication of JPS5928345A publication Critical patent/JPS5928345A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain deposited films of good quality in mass production basis at a low temperature by a method wherein a light source containing xenon gas as a photochemical sensitizing agent, and likewise xenon gas as a luminous body is used when an insulation film such as a Si oxide film and a Si nitride film, or an amorphous Si film is formed on a substrate by photochemical vapor reaction. CONSTITUTION:A reaction cell 1 is composed by means of a quartz tube which can transmit ultraviolet rays, and a plurality of substrates 2 desired for film deposition are contained therein and sealed by a ground-in part 3. The light source 9 made to contain xenon as the luminous body is arranged above the cell 1, and an infrared ray lamp 10 which heats the cell 1 is provided below. Storage vessels 8a, 8b, and 8c are connected respectively to the supply sources of SiH4, N2O, and Xe gasses, these gasses are fed into the cell 1 by operating each valve, resulting in deposition. Thereat, the volume of each vessel is kept adjusted so that the SiH4 gas is 15Torr or more, N2O gas 10Torr, and Xe gas as the photochemical sensitizing agent 5Torr.

Description

【発明の詳細な説明】 本発明は化学気相反応を用いて膜を形成する装置に関し
、特に、光照射下での膜を形成する方法に関している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for forming a film using a chemical vapor phase reaction, and particularly to a method for forming a film under light irradiation.

従来、低温で膜を形成する方法として、プラズマ化学気
相反応を用いるのが一般的であった。しかしながら、プ
ラダiを用いた化学気相成長に於いては、膜の堆積過程
で、プラズマ中に含まれるイオン、電子等の荷電粒子や
又プラズマから発生ずるX線等に因る下地や堆積膜への
照射損傷を避けることが回前「であった。近年プラズマ
エネルギーに代わって、光エネルギーを用いた光化学気
相反応に依る膜形成法が提唱された。この光化学気相反
応を用いることに依シ、上述したプラズマ法に因る損傷
の問題をとシ除く仁とが可能となる。
Conventionally, plasma chemical vapor phase reactions have been commonly used as a method for forming films at low temperatures. However, in chemical vapor deposition using Prada i, during the film deposition process, charged particles such as ions and electrons contained in the plasma and In recent years, instead of plasma energy, a film formation method based on a photochemical vapor phase reaction using light energy has been proposed. In addition, it is possible to eliminate the problem of damage caused by the plasma method described above.

しかしながら、反応ガスへの光照射のみでd、堆積速度
が著しく遅く実用に供する事が難しかった。
However, simply irradiating the reaction gas with light results in an extremely slow deposition rate, making it difficult to put it to practical use.

この為に水銀蒸気を光増感剤として使用し、堆積水銀蒸
気を光増感剤として用いる製造方法によると、非常に微
量ではあるが堆積膜に水銀原子が入シ込み、それが膜質
の低下の要因となるという欠点や、又、水銀は有′R物
質であシ光増感剤として使用した水銀の処理法が難しく
かつ面倒であるという欠点がある。
For this reason, mercury vapor is used as a photosensitizer, and according to the production method that uses deposited mercury vapor as a photosensitizer, mercury atoms enter the deposited film, albeit in a very small amount, resulting in a decrease in film quality. Another drawback is that mercury is an R-containing substance and the method for treating mercury used as a photosensitizer is difficult and troublesome.

本発明の目的は、上記問題を除去し良質の堆fI(膜を
陸産的に形成する為の方法を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems and provide a method for producing a high-quality FI film on land.

木兄ツJの特徴は、光化学気相反応によシ堆積膜を形成
する際にキセノンガスを光増感剤として用い、発光体に
キセノンガスを含む光源を用いることを特徴とする。キ
セノンガスは、不活性ガスでありそのだめ堆積膜に微景
にはいったとしても、水銀の場合の様に膜質の低下をひ
きおとす事はない。さらに、光増感剤として使用したキ
セノンガスの後処理も水銀の場合の様に困)11Gでl
−,1:なく、使用し易い利点がある。
Kientsu J is characterized by using xenon gas as a photosensitizer when forming a deposited film by photochemical vapor phase reaction, and by using a light source containing xenon gas as a light emitter. Xenon gas is an inert gas, so even if it enters the deposited film, it will not reduce the quality of the film as it does with mercury. Furthermore, the post-treatment of the xenon gas used as a photosensitizer is also difficult as in the case of mercury).
-, 1: None, which has the advantage of being easy to use.

キセノンガスを光化学増感剤として使用して、例えば、
S目−14とN20を反応ガスに用い、5102膜を堆
積する際の反応過程は以下の通りである。
Using xenon gas as a photochemical sensitizer, e.g.
The reaction process when depositing the 5102 film using S-14 and N20 as reaction gases is as follows.

(1)X・(基底状態)」y−>X・(励起状態)(2
)  N20 +Na (励起状態)→N2−1−0 
(励起状μjl ) +Na (基底状態) (3)  S+ 1.T 4−F 20 (励起状態)
 −> 8 i 02↓」−21■2 ここで、光増感に主に開力しているXeの励起状態は、
λ=zs9.iiのものと考えられる。
(1) X・(ground state)”y−>X・(excited state)(2
) N20 +Na (excited state) → N2-1-0
(Excited state μjl) +Na (ground state) (3) S+ 1. T 4-F 20 (excited state)
-> 8 i 02↓"-21■2 Here, the excited state of Xe that is mainly active in photosensitization is
λ=zs9. It is thought to be from ii.

次に、実施例に基づき図面を用いて説明する。Next, an explanation will be given based on an example using drawings.

第1図は本実施例に用いたガスハンドリング系および反
応セルの概要を示す。第1図において、反応セル1は、
λ=2894人の紫外光を透過するように石英管を用い
ており、ガスノ・ンドリング系はパイレックスガラスを
用いている。まず、膜を堆積する基板2を反応セル1に
導入後sb合わせ部3を閉じ、パルプ4.パルプ5およ
びパルプ(3a。
FIG. 1 shows an overview of the gas handling system and reaction cell used in this example. In FIG. 1, the reaction cell 1 is
A quartz tube is used to transmit ultraviolet light of λ=2894, and Pyrex glass is used for the gas-no-end ring system. First, after introducing the substrate 2 on which a film is to be deposited into the reaction cell 1, the sb mating section 3 is closed, and the pulp 4. Pulp 5 and Pulp (3a.

6b 、5cを開き、反応セル1全体を赤外ランプ10
で200°Cに加熱し、クライオポンプで約10分間排
気しパルプ4を閉じ反応セル1全体を100°Cの温度
に降下させる。その後、パルプ5 a 、6b。
6b and 5c are opened, and the entire reaction cell 1 is illuminated with an infrared lamp 10.
The reaction cell 1 is heated to 200°C, evacuated for about 10 minutes using a cryopump, the pulp 4 is closed, and the temperature of the entire reaction cell 1 is lowered to 100°C. Then pulp 5a, 6b.

6Cを閉じ、パルプ7a、7b、7Cを開いて、ストレ
ージベッセル3a、8b、8cに8iH,ガス、N20
ガスおよび光化学増感剤のキセノンガスをそれぞれ導入
し、パルプ7 a 、 71) 、 7 cを閉じ、パ
ルプ6a、6b、6cを開き反応セル1にそれぞれのガ
スを導入してパルプ5を閉じる。
Close 6C, open pulp 7a, 7b, 7C, and add 8iH, gas, N20 to storage vessels 3a, 8b, 8c.
A gas and xenon gas as a photochemical sensitizer are respectively introduced, and the pulps 7a, 71) and 7c are closed.The pulps 6a, 6b and 6c are opened and the respective gases are introduced into the reaction cell 1, and the pulp 5 is closed.

この時点において、5ill、ガスは15 ’J”or
r、N20jJスはI Q Torrおよび光化学増感
剤のキセノンガスは5’l’orrになる様、それぞれ
のストレージベッセルの体積であらかじめ調整されてい
る。ここで、光増感剤としてのキセノンガスの分圧を5
1’ o r rと高くしている理由は、キセノン原子
の増感作用が水銀原子に比べ小さく、水銀の場合1O−
3Torrで充分であるのに対し、キセノンガスの場合
51’orr以上にしないと増感効果がみられない小実
圧基づくものである。次に基板2の幅度−1100℃の
状態のま咬で反応セル1に500Wの発光体にキセノン
を含む光源9によシ光を照射し、硅素酸化膜の」fl・
積を行なった。
At this point, 5ill, gas is 15'J”or
r, N20jJ, IQ Torr, and photochemical sensitizer xenon gas were adjusted in advance according to the volumes of the respective storage vessels so that the xenon gas was 5'l'orr. Here, the partial pressure of xenon gas as a photosensitizer is 5
The reason for the high value of 1'o r r is that the sensitizing effect of xenon atoms is smaller than that of mercury atoms, and in the case of mercury, 1O-
While 3 Torr is sufficient, in the case of xenon gas, the sensitizing effect is not seen unless the pressure is 51' or more, which is based on the small actual pressure. Next, with the width of the substrate 2 at -1100°C, the reaction cell 1 is irradiated with light from the light source 9 containing xenon as a 500W light emitter, and the silicon oxide film is
I did the product.

以上の様にして形成した硅素酸化膜を用いて、M08型
↑;2J造を作り、C−V特性を従来の水銀光増感法に
よる硅素酸化膜を用いたものと比較したととろ、同波数
分散が少なく特性の再現性も良く、又ヒステリシスも少
ない良好な結果を?’)ることかできた。
Using the silicon oxide film formed as described above, a M08 type ↑; 2J structure was fabricated, and the C-V characteristics were compared with those using a silicon oxide film formed by the conventional mercury photosensitization method. Good results with low dispersion, good reproducibility of characteristics, and low hysteresis? ') I was able to do that.

以上の様に木兄F!IJは、低温で良質の堆積膜を量産
的に形成するのに役立つものである。
As mentioned above, Ki-ni-F! IJ is useful for mass-producing deposited films of high quality at low temperatures.

尚、本実施例においては反応ガスとして5IH4とN2
0  を用い、硅素酸化膜を形成したが反応ガスとして
S目■4とN1.I3  を用い良質の硅素窒化膜を反
応ガスとして5III4のみを用いることにより、良質
の非晶質硅素膜を光増感剤としてキセノンガスを用いる
ことによシ、量産的に形成することが可能である。
In this example, 5IH4 and N2 are used as the reaction gases.
0 was used to form a silicon oxide film, but the reaction gases were S4 and N1. By using I3 and only 5III4 as a high quality silicon nitride film as a reaction gas, it is possible to form a high quality amorphous silicon film in mass production by using xenon gas as a photosensitizer. be.

【図面の簡単な説明】[Brief explanation of the drawing]

尚、第1図において1・・・・・・反応セル、2・・・
・・・基板、3・・・・・・磨υ合わせ、4,5,6.
7・・・・・・パルプ、8・・・・・・ストレージベッ
セル、9・・印・発光体にキセノンを含む光源、10・
・・・・・反応セル1を加熱する赤外ラングである。
In addition, in FIG. 1, 1... reaction cell, 2...
...Substrate, 3...Polishing, 4, 5, 6.
7...Pulp, 8...Storage vessel, 9...Mark, light source containing xenon in the luminous body, 10...
...This is an infrared rung that heats the reaction cell 1.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に、光化学気相反応によシ硅素酸化膜、硅
素窒化膜等の絶縁膜、あるいは非晶質硅素膜を形成する
工程において、光化学増感剤としてキセノンガスを用い
、発光体にキセノンガスを含む光源を用いることをl時
機とする半導体装置の製造方法。
(1) In the process of forming an insulating film such as a silicon oxide film, a silicon nitride film, or an amorphous silicon film on a substrate by photochemical vapor phase reaction, xenon gas is used as a photochemical sensitizer, and a luminescent material is used. A method of manufacturing a semiconductor device using a light source containing xenon gas.
(2)特許811求の範囲第1項に記載する半導体装置
の製造方法において、光増感剤のキセノンガスを5 T
orr以上で用いることを特徴とする半導体装置の製造
方法。
(2) Scope of Patent No. 811 In the method for manufacturing a semiconductor device described in item 1, xenon gas as a photosensitizer is
A method for manufacturing a semiconductor device, characterized in that it is used at orr or higher.
JP13831882A 1982-08-09 1982-08-09 Manufacture of semiconductor device Pending JPS5928345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13831882A JPS5928345A (en) 1982-08-09 1982-08-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13831882A JPS5928345A (en) 1982-08-09 1982-08-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5928345A true JPS5928345A (en) 1984-02-15

Family

ID=15219089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13831882A Pending JPS5928345A (en) 1982-08-09 1982-08-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5928345A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140175A (en) * 1984-12-13 1986-06-27 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS61144014A (en) * 1984-12-17 1986-07-01 Semiconductor Energy Lab Co Ltd Thin film formation
US4753818A (en) * 1986-07-25 1988-06-28 Hughes Aircraft Company Process for photochemical vapor deposition of oxide layers at enhanced deposition rates
EP0289963A1 (en) * 1987-05-04 1988-11-09 General Signal Corporation Apparatus for, and methods of, obtaining the movement of a substance to a substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124401A (en) * 1975-04-23 1976-10-29 Sony Corp Regenerative apparatus in stereophonic system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124401A (en) * 1975-04-23 1976-10-29 Sony Corp Regenerative apparatus in stereophonic system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140175A (en) * 1984-12-13 1986-06-27 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS61144014A (en) * 1984-12-17 1986-07-01 Semiconductor Energy Lab Co Ltd Thin film formation
US4753818A (en) * 1986-07-25 1988-06-28 Hughes Aircraft Company Process for photochemical vapor deposition of oxide layers at enhanced deposition rates
JPH01500444A (en) * 1986-07-25 1989-02-16 ヒユーズ・エアクラフト・カンパニー Photochemical vapor deposition method with increased oxide layer growth rate
JPH0219189B2 (en) * 1986-07-25 1990-04-27 Hughes Aircraft Co
EP0289963A1 (en) * 1987-05-04 1988-11-09 General Signal Corporation Apparatus for, and methods of, obtaining the movement of a substance to a substrate

Similar Documents

Publication Publication Date Title
US4371587A (en) Low temperature process for depositing oxide layers by photochemical vapor deposition
JPS6324923B2 (en)
JPH03286531A (en) Formation of silicon oxide film
JP2752235B2 (en) Semiconductor substrate manufacturing method
JPS5928345A (en) Manufacture of semiconductor device
JPS60117711A (en) Forming apparatus of thin film
JPS60117712A (en) Forming method of thin film
JPS5982732A (en) Manufacture for semiconductor device
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
JPH07118854A (en) Formation of silicon carbide film
JPS634454B2 (en)
JPH04111362A (en) Thin-film transistor and its manufacture
JPS5994829A (en) Manufacture of semiconductor device
JPH01152631A (en) Formation of sixoynz insulating film
JPS63317675A (en) Plasma vapor growth device
JPS63258016A (en) Manufacture of amorphous thin film
JPS6050168A (en) Production of thin solid film by photo cvd method
JPH04105314A (en) Manufacture of amorphous silicon
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPS60211847A (en) Forming method of insulating film
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPH0420982B2 (en)
JPS6193630A (en) Manufacture of silicon dioxide film
JPS6125213B2 (en)
JPS61281872A (en) Formation for amorphous silicon germanium film