JPS59112613A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS59112613A
JPS59112613A JP22235982A JP22235982A JPS59112613A JP S59112613 A JPS59112613 A JP S59112613A JP 22235982 A JP22235982 A JP 22235982A JP 22235982 A JP22235982 A JP 22235982A JP S59112613 A JPS59112613 A JP S59112613A
Authority
JP
Japan
Prior art keywords
gas
plate
gas supply
reaction
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22235982A
Other languages
Japanese (ja)
Inventor
Junichi Nozaki
野崎 順一
Hirozo Shima
島 博三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22235982A priority Critical patent/JPS59112613A/en
Publication of JPS59112613A publication Critical patent/JPS59112613A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)

Abstract

PURPOSE:To prevent the reaction product from adhering to a transparent plate and an intermediate transparent plate, by a method wherein carrier gas is blown out between the transparent plate and along lower surface of the intermediate transparent plate. CONSTITUTION:Infrared rays radiated from an infrared lamp heater unit 11 transmit a transparent quartz plate 12 and H type plate 24 so as to heat Si substrate 14. If mixed gas of source gas and doping gas is supplied through a gas supply port 19, the mixed gas flows towards an exhaust port 21 and during this process an epitaxial layer is formed on the substrate 14. At the same time non-reaction gas is supplied through a carrier gas supply port 28. The non- reaction gas flows out along upper and lower surfaces of the plate 24. Flowing along the upper surface fills a space between the plate 12 and the plate 24 and then flows to the exhaust port 21; flowing along the lower surface forms a non- reaction gas film at the lower surface of the plate 24. Thus the reaction product is prevented from adhering to the lower surface of the plate 12 and the upper and lower surfaces of the plate 24.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、侍に半導体工業で利用される気相エピタキシ
ャル成長装置等の気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth apparatus such as a vapor phase epitaxial growth apparatus used in the semiconductor industry.

従来ρりの構成とその間、頂点 半導体工業1ておいては、シリコン基板上に反応カスを
供給して、その基板表面に反応物の膜を形成する工程か
ある。特にシリコン単結晶基板を通常1000℃以上の
適当な温度に加熱しておき、シクロール−ラン、又はモ
ノンランと水素との混合ガスを供給することによって、
シリコン単結晶膜が形成できエピタキシャル成長と呼ば
れている。
In the meantime, at Vertex Semiconductor Industry 1, there is a process of supplying reaction residue onto a silicon substrate and forming a film of the reactant on the surface of the substrate. In particular, by heating a silicon single crystal substrate to an appropriate temperature, usually above 1000°C, and supplying a mixed gas of cyclolan or monoran and hydrogen,
A silicon single crystal film can be formed using this method, which is called epitaxial growth.

こうして得られる膜の特許として、近年オートドーピン
グの低減と、スリップ等の結晶欠陥の低減とが強く要望
されており、これに答えるエピタキシャル成長方式とし
て赤外線ランプ加熱と減圧成長方式とがある。これらの
方式を採用した従来の装置を第1図に示す。この装置は
、透明石英チャンバ1と、シリコン基板22載置する基
台3と、透明石英チャンバ1の外にあって、基台3に対
面して設置されている赤外線ランプユニット4と、ガス
供給ノズル5と、排気口6とから構成されている。この
排気口6(l−j:図示していない真空排気装置に接続
されている。赤外線ランプユニット4から出た赤外光は
、透明石英チャンバ1を透過して基台3に載置されたシ
リコン基板2を照則し、これを100Q℃以上の温度に
加熱する。この時ガス供給ノズル6より水素中に所定の
濃度で混合されたンクロールシラン等の反応ガスを供給
することにより、これが排気口6に同かって流れる間に
反応ガスが分解析出し、ンリコン基板2上に膜が形成さ
れる。このようA赤外線ランプ加熱手段を採用した装置
は、減圧エピタキシャル成長が可能であること、更にシ
リコン基板を直接表面加熱できること等の特徴があるが
、透明石英チャンバ1自体がこれを透過していく赤外線
の一部を吸収するために、このチャンバ1自身が徐々に
昇温し、反応ガスがこれに触れることによってこのチャ
ツバ1の壁面にもシリコン結晶が堆積し易いという欠点
を付している。一旦チャンバ1の壁面にシリコン結晶が
付着し始めると、光の透過率が損なわれ吸収光が増大し
、昇温か早くなって加速度的にチャンバ1への付着が増
加していくこととなり、史にチャンバ1自体が加熱され
て強度が低下し、内部を水素を主体としたガスが流れる
容器としては極めて)6険な状態となる。このような問
題点を低減するために、透明石英チャンバ1と赤外線ラ
ンプユニット4との、H]を空冷する強力な冷却手段を
別途装σIHすることを余儀なくされており、かつ内部
の基台3を取り外した上で透明石英チャンバ1を外し、
これを洗浄乾燥した上で再組立し、リークチェックをす
るという保守作業を頻繁に行なうことが必要となってい
る。
In recent years, there has been a strong demand for patents for films obtained in this way to reduce autodoping and crystal defects such as slip, and epitaxial growth methods that meet these demands include infrared lamp heating and reduced pressure growth methods. A conventional device employing these methods is shown in FIG. This device includes a transparent quartz chamber 1, a base 3 on which a silicon substrate 22 is placed, an infrared lamp unit 4 installed outside the transparent quartz chamber 1 facing the base 3, and a gas supply. It is composed of a nozzle 5 and an exhaust port 6. This exhaust port 6 (l-j: connected to a vacuum evacuation device (not shown). Infrared light emitted from the infrared lamp unit 4 passes through the transparent quartz chamber 1 and is placed on the base 3. The silicon substrate 2 is heated to a temperature of 100Q°C or more.At this time, a reactive gas such as chlorosilane mixed in hydrogen at a predetermined concentration is supplied from the gas supply nozzle 6 to prevent this. The reaction gas is separated and separated while flowing through the exhaust port 6, and a film is formed on the silicon substrate 2.A device employing such an A infrared lamp heating means is capable of low-pressure epitaxial growth, and also The transparent quartz chamber 1 itself absorbs a portion of the infrared rays that pass through it, so the temperature of the chamber 1 gradually rises and the reaction gas The drawback is that silicon crystals are likely to deposit on the walls of the chamber 1 due to contact with the chamber 1. Once silicon crystals begin to adhere to the walls of the chamber 1, the light transmittance is impaired and the amount of absorbed light increases. However, as the temperature rises faster, adhesion to chamber 1 increases at an accelerated rate, and chamber 1 itself is heated and its strength decreases, making it difficult to use as a container in which a gas mainly composed of hydrogen flows. (extremely) 6. In order to reduce such problems, it is necessary to separately install a strong cooling means for air-cooling the transparent quartz chamber 1 and the infrared lamp unit 4, and the internal base 3 After removing the transparent quartz chamber 1,
It is necessary to frequently perform maintenance work such as cleaning, drying, reassembling, and checking for leaks.

発明の目的 本発明は上記従来の欠点を解消するもので、赤外線ラン
プ加熱方式を採用し、かつ反応室壁面への反応生成物の
付着のない気相成長装置を提供することを1」的として
いる。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and has the following objects: 1) to provide a vapor phase growth apparatus which employs an infrared lamp heating method and which does not allow reaction products to adhere to the wall surface of a reaction chamber; There is.

発明の構成 本発明の気相成長装置は、キャリヤガス供給管と反応ガ
スを含む混合ガス供給管の少くとも二系統の供給管を有
するガス供給装置と、シリコン基板を載置する基台と、
これらのシリコン基板および基台を加熱する光輻射加熱
手段と、混合ガス供給口、ガス排出口、更に上記キャリ
ヤガス供給管に連結されたキャリヤガス供給口を備え、
内部に上記基台か設置される反応室から構成され、この
反応室を形成する壁面部材において、少くとも上記光輻
射加熱手段と基台とに狭まれた部分が輻射光を透過する
透明プレートより構成されており、更に、反応室内にお
いてこの透明プレートに近接してこれに平行に中間透明
プレートが設置されており、上記キャリヤガス供給口か
ら導入されたキャリヤガスが前記透明プレートと中間透
明プレートとの問おまひ中間プレートの下面に沿って噴
出するように形成されている。従って、反応室壁面の一
部を形成する透明プレートにはキトリヤガスか接j強す
るのみで、反応ガスが触れることかなく反応生成物の付
着が生ずることはなく、強度が充分に維持できる。文中
間プレートーF面への生成物の付着も極度に抑えること
ができると伴にこの着脱は容易であって保守作業が大幅
に低減できるものである。
Composition of the Invention The vapor phase growth apparatus of the present invention comprises: a gas supply apparatus having at least two systems of supply pipes, a carrier gas supply pipe and a mixed gas supply pipe containing a reaction gas; a base on which a silicon substrate is placed;
comprising an optical radiation heating means for heating the silicon substrate and the base, a mixed gas supply port, a gas discharge port, and a carrier gas supply port connected to the carrier gas supply pipe,
It consists of a reaction chamber in which the base is installed, and in the wall member forming the reaction chamber, at least the part narrowed between the light radiant heating means and the base is wider than the transparent plate that transmits radiant light. Further, an intermediate transparent plate is installed in the reaction chamber adjacent to and parallel to this transparent plate, and the carrier gas introduced from the carrier gas supply port is connected to the transparent plate and the intermediate transparent plate. It is formed to eject along the lower surface of the middle plate. Therefore, the transparent plate forming a part of the wall surface of the reaction chamber is only brought into contact with the Kitriya gas, and the reactant gas does not come into contact with it, so that reaction products do not adhere to it, and its strength can be maintained sufficiently. It is possible to extremely suppress the adhesion of products to the F surface of the intermediate plate, and it is also easy to attach and detach, so maintenance work can be greatly reduced.

実施例の説明 以下に本発明の実施例を図面を参照して説明する。第2
図は、本発明の一実施例を具現化した装置における反応
室の断面図であり、反応室7ば、内部に水冷溝8が施さ
れたステンレス等の耐熱耐食性金属より成る壁面部材9
と、上部ヒータブロック10とから構成されている。こ
の上部ヒータブロック10には、内部に赤外線ランプヒ
ータユ  、ニット11が設置されており、更にこの赤
外線ランプヒータユニット11に近接した位置に透明石
英プレート12が○リング等の既知のガスシール手段を
介して2固定具13により固定されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. Second
The figure is a sectional view of a reaction chamber in an apparatus embodying an embodiment of the present invention, in which the reaction chamber 7 has a wall member 9 made of a heat-resistant and corrosion-resistant metal such as stainless steel and has a water cooling groove 8 inside.
and an upper heater block 10. An infrared lamp heater unit and a unit 11 are installed inside the upper heater block 10, and a transparent quartz plate 12 is installed near the infrared lamp heater unit 11 through a known gas sealing means such as a ring. 2 is fixed by a fixture 13.

これら上部ヒータブロック10は、○リンク等の既知の
ガスンール手段を介して壁面部材9の土面に締結されて
いる。反応室7の内部には、シリコン基板14を載置す
るSiCでコーティングされたカーボンより成る基台1
5(以下サセプタと呼ぶ)が透明石英プレート12を挾
んで赤外線ランプヒータユニット11に対面した位置に
設置されている。第3図はこの反応室の外観図を示して
いる。図より明らかなように、前部壁面部材には開閉扉
16を具1ifff した開口17が設けられており、
この開口17を通してシリコン基板14が出し入れされ
る。更に反応室7には、第2図より明らかなように、一
端にガス供給装置(図示せず)から伸びたガス供給管1
8が結合されたガス供給口19と他端に排気管20が結
合されている排気口21が備えられている。これらのガ
ス供給口19.および排気口21付近の壁面部材9は、
それぞれ内部形状がテーパ状に形成されており、従って
ガス供給口19から導入されたガスは、テーパ形状に沿
って徐々に広がっていき、反応室中央部では全体を満た
しながら流れ排気側ではテーパ状の絞りによって徐々に
N流となって淀みなく流れていくこととなる。
These upper heater blocks 10 are fastened to the earth surface of the wall surface member 9 via known gas connection means such as O links. Inside the reaction chamber 7 is a base 1 made of carbon coated with SiC on which a silicon substrate 14 is placed.
5 (hereinafter referred to as a susceptor) is installed at a position facing the infrared lamp heater unit 11 with a transparent quartz plate 12 in between. FIG. 3 shows an external view of this reaction chamber. As is clear from the figure, the front wall member is provided with an opening 17 equipped with an opening/closing door 16.
The silicon substrate 14 is taken in and out through this opening 17. Furthermore, as is clear from FIG. 2, the reaction chamber 7 has a gas supply pipe 1 extending from a gas supply device (not shown) at one end.
8 is connected to a gas supply port 19, and an exhaust port 21 to which an exhaust pipe 20 is connected to the other end is provided. These gas supply ports 19. And the wall member 9 near the exhaust port 21 is
The internal shape of each is tapered, so the gas introduced from the gas supply port 19 gradually spreads along the tapered shape, filling the entire center of the reaction chamber while flowing into a tapered shape on the exhaust side. Due to the restriction, the flow gradually becomes an N flow and flows without stagnation.

壁面部材9の上部にはガス供給口19側、および排気口
21側にそれぞれプレート受は部22゜23が設けられ
ており、これらのプレート受は部22.23の間に第3
図で示しているような透明石英で形成されたH形グレー
ト24か、透明石英グレート12と平行に載置されてい
る。上記プレート受は部22.23はそれぞれ上部ヒー
タブロック1Qの下部との間に局部ガス室25.26を
構成するようになっている。ガス供給[」19側の局部
ガス室25ば、ガス供給装置(図示せず)から伸びたキ
ャリヤガス供給管27が結合されたキャリヤガス供給口
28か連絡されており、又排気口21側の局部ガス室2
6は排気(」21側の壁面部材テーパ部に開口するガス
流路29を有している。
At the upper part of the wall member 9, plate holders 22 and 23 are provided on the gas supply port 19 side and the exhaust port 21 side, respectively.
An H-shaped grating 24 made of transparent quartz as shown in the figure is placed parallel to the transparent quartz grating 12. The plate holder portions 22 and 23 respectively constitute local gas chambers 25 and 26 between the lower portions of the upper heater block 1Q. The local gas chamber 25 on the gas supply side 19 is connected to a carrier gas supply port 28 connected to a carrier gas supply pipe 27 extending from a gas supply device (not shown), and is connected to the carrier gas supply port 28 on the exhaust port 21 side. Local gas chamber 2
6 has a gas passage 29 that opens in the tapered portion of the wall member on the exhaust side (21).

本実施例の装置における反応室は以上のような構造であ
り、エビタキンヤル成長時には、赤外線ランプヒータユ
ニット11から放射される熱線は、透明石英プレート1
2、およびH形プレート24を透過してサセプタ15、
およびこれに載置されている。シリコン基板14を照射
し、これを所定温度に加熱する。この時ガス供給口19
を曲してジクロールシラン等のソースガスおよびホスフ
ィン等のF〜ピングガスを適当な濃度で含有した水素ヘ
ースの混合ガスを供給することによって、この混合ガス
は排気口21に向かって流れ、この間に所定温度に加熱
されているシリコン基板14、およびサセプタ16に接
したガス相から反応ガスが分解析出し、シリコン基板1
4上にエビタキンヤル成長膜が形成される。
The reaction chamber in the apparatus of this embodiment has the above-mentioned structure, and during the growth of Evita quince, the heat rays emitted from the infrared lamp heater unit 11 pass through the transparent quartz plate 1.
2, and the susceptor 15 passing through the H-shaped plate 24,
and is listed here. The silicon substrate 14 is irradiated and heated to a predetermined temperature. At this time, gas supply port 19
By supplying a mixed gas of hydrogen haze containing a source gas such as dichlorosilane and an F-ping gas such as phosphine at an appropriate concentration, this mixed gas flows toward the exhaust port 21, and during this time A reaction gas is separated out from the gas phase in contact with the silicon substrate 14 and the susceptor 16 heated to a predetermined temperature, and the silicon substrate 1
An Evita kinial growth film is formed on 4.

この時同時に、キャリヤガス供給口28を通して非反応
ガスとしての水素ガスのみを供給する。
At this time, only hydrogen gas as a non-reactive gas is supplied through the carrier gas supply port 28.

この水素ガスは局部ガス室25で幅方向に広げられ、こ
こからH形プレート24の上下面に沿って流れ出ること
となる。上面に沿う流れは、透明石英プレート12とH
形プレート24との間の空間を満たして、局部ガス室2
6およびガス流路29を通って排気口21へ流れていく
。従って、ガス供給1」19から導入される反応ガスを
含む混合ガスがこの空間に入り込むことかないので、透
明石英プレート12の下面、およびH形プレート24の
上面には反応生成物が付着することはない。従って反応
室壁面の一部を構成している透明石英プレート12は、
従来装置のような反応生成物の付着に起因する異常過熱
を生することがなく、強度を充分に維持することかでき
る。
This hydrogen gas is expanded in the width direction in the local gas chamber 25 and flows out from there along the upper and lower surfaces of the H-shaped plate 24. The flow along the upper surface is caused by the transparent quartz plate 12 and H
filling the space between the shaped plate 24 and the local gas chamber 2
6 and gas flow path 29 to the exhaust port 21. Therefore, the mixed gas containing the reaction gas introduced from the gas supply 1'' 19 will not enter this space, so that reaction products will not adhere to the lower surface of the transparent quartz plate 12 and the upper surface of the H-shaped plate 24. do not have. Therefore, the transparent quartz plate 12 forming a part of the wall surface of the reaction chamber is
Unlike conventional devices, abnormal overheating due to adhesion of reaction products does not occur, and the strength can be maintained sufficiently.

更に、H形プレート24の下面と、プレート受は部22
の上面との間には、Hプレート24両端の垂直辺によっ
て狭い隙間が形成され、局部カス室25に供給された水
素ガスは、この隙間を通してH形プレート24の下面に
沿って流れ出ることとなる。従って、H形プレート24
の下面にも水素ガスのみから成る非反応カス膜が形成さ
れ、ガス供給口19から導入される反応ガスを含む混合
ガスが、H形プレート24下面に接触することが抑えら
れ、反応生成物の付着が生ずることが抑制される。但し
流れ方向の下流側においては、反応ガスの水素ガス中の
拡散によって反応ガスがH形プレート24−ド面に接触
する可能性かあるが、この時濃度は充分に希7沢されて
おり、生成物の付着速度は極めて遅くなっているために
、従来の(沃な頻繁な保守作業は犬1原に低減されてい
る。又洗浄作業はプレート受は部22’、23に単に載
せている着脱容易なH形プレート24のみを行なえばよ
く作業も非常に頭単に行なえる。
Furthermore, the lower surface of the H-shaped plate 24 and the plate holder are connected to the portion 22.
A narrow gap is formed by the vertical sides of both ends of the H-shaped plate 24, and the hydrogen gas supplied to the local waste chamber 25 flows out along the bottom surface of the H-shaped plate 24 through this gap. . Therefore, the H-shaped plate 24
A non-reactive scum film consisting only of hydrogen gas is also formed on the lower surface, and the mixed gas containing the reaction gas introduced from the gas supply port 19 is suppressed from coming into contact with the lower surface of the H-shaped plate 24, and the reaction products are prevented from coming into contact with the lower surface of the H-shaped plate 24. The occurrence of adhesion is suppressed. However, on the downstream side in the flow direction, there is a possibility that the reaction gas comes into contact with the surface of the H-shaped plate 24 due to diffusion of the reaction gas in the hydrogen gas, but at this time the concentration is sufficiently diluted. Since the deposition rate of the product is extremely slow, the conventional (difficult) frequent maintenance work has been reduced to just one step. Also, the cleaning work can be done by simply placing the plate holders on the parts 22' and 23. Only the H-shaped plate 24, which can be easily attached and detached, is required and the work can be done very easily.

なお本実施例では、中間の透明石英プレートをH形とし
たが、これを平板としこのプレート受は部に隙間を形成
するような段差を与えて構成することもtif能である
。又、反応室形状については壁面部イオの拐“剪・形状
等に種々の言及をしたか、これらに限定されるものでな
いことは明らかである。
In this embodiment, the intermediate transparent quartz plate is H-shaped, but it is also possible to use a flat plate with a stepped portion to form a gap. In addition, with regard to the shape of the reaction chamber, various references have been made to the shape and shape of the wall surface, but it is clear that the shape is not limited to these.

史に、本発明はエピタキシャル成長への適用に限らず、
膜形成を必要とする各種装置に適用が可能である。
Historically, the present invention is not limited to application to epitaxial growth;
It can be applied to various devices that require film formation.

発明の効果 り、上のように、本発明は反応室の一部を構成する透明
石英プレーi・の内面に更に中間透明石英プレートを設
け、これらの間および中間透明石英プレートの下面に沿
って反応ガスを含む混合カスとは別のキャリヤガスのみ
を噴出するようにすることによって、反応ガスがこれら
の透明石英グレートに接触することを抑えており、輻射
光の透過度が不変で透明石英プレートが過熱されること
がなく、強度の維接、安全性の維持に大きな効果がある
。文中間透明石英プレート下面については、ガス流れ方
向下流側で極めて徐々に反応生成物の付着のiiJ能性
があるが、このプレートが着脱容易に設置されており、
簡単な形状でもあるので、保守作業は従来に比し犬1p
Mに低減される。
Effects of the Invention As described above, the present invention further provides an intermediate transparent quartz plate on the inner surface of the transparent quartz plate i that constitutes a part of the reaction chamber, and extends between these plates and along the lower surface of the intermediate transparent quartz plate. By ejecting only the carrier gas that is separate from the mixed gas containing the reactive gas, the reactive gas is prevented from coming into contact with these transparent quartz plates, and the transmittance of radiant light remains unchanged. This prevents overheating, which has a great effect on maintaining strength and safety. Regarding the lower surface of the transparent quartz plate, there is a possibility that reaction products will adhere very gradually on the downstream side in the gas flow direction, but this plate is installed so that it can be easily attached and detached.
Since it has a simple shape, maintenance work is less than 1 p.m. compared to conventional models.
It is reduced to M.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエピタキシャル成長装置の断面図、第2
図は本発明の一実施例における気相成長装置蓋の反応室
の断面図、第3図は同装置の斜視図、第4図は中間透明
石英プレー川・の斜視図である。 7・・・・反応室、9・・・・・・壁面部材、11・・
・・赤外線ランプヒータユニット、12・・・・透明石
英クレート、14 ・・・シリコン基板、15・・・・
・丈セグタ、24・・・・・H形プレート。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 第3図 (0 第4図 55−
Figure 1 is a cross-sectional view of a conventional epitaxial growth apparatus;
The figure is a sectional view of a reaction chamber of a lid of a vapor phase growth apparatus in one embodiment of the present invention, FIG. 3 is a perspective view of the same apparatus, and FIG. 4 is a perspective view of an intermediate transparent quartz plate. 7... Reaction chamber, 9... Wall member, 11...
...Infrared lamp heater unit, 12...Transparent quartz crate, 14...Silicon substrate, 15...
・Length segment, 24...H-shaped plate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 (0 Figure 4 55-

Claims (1)

【特許請求の範囲】[Claims] キャリヤガスを供給するキャリヤガス供給管および反応
カスあるいは反応ガスとキャリヤガスとの混合ガスを供
給する混合ガス供給管との少なくとも二系統の供給管を
有するガス供給手段と、気相成長υ莫を形成する基板を
載置する基台と、前記基板および塙台を加熱する光輻射
加熱手段と、外気を遮断し、前記ガス供給手段より供給
されるガス雰囲気を形成するための壁面部材おまひ上記
基台と光輻射加熱手段との間に設けられ、輻射光を透過
する相貫より成る透明グレートから構成され、前記基台
が内部に設置される反応室と、この反応室の一端(・で
設けられ、がJ記混合ガス供給管と連結された第1のガ
ス供給口と、上記反応室の他端に設けられ排気管に連結
され反応室内のガスを排気する排気口と、 7ii記反
応室に設けられ、前記透明プレートと近接して平行に設
置され、輻射光を透過する材質より成る中間透明プレー
トと、0り記キャリヤガス供給管に連結され、キャリヤ
ガス供給管を通して導入されたキャリヤガスをAiLt
E透明プレートと中間透明プレートとの間およびこの中
間プレートの下面に沿って1噴出するようになされた第
2のガス供給口とから成る気相成長装置。
A gas supply means having at least two systems of supply pipes, a carrier gas supply pipe for supplying a carrier gas and a mixed gas supply pipe for supplying a reaction residue or a mixed gas of a reaction gas and a carrier gas; A base on which a substrate to be formed is placed; a light radiation heating means for heating the substrate and the base; and a wall member for blocking outside air and forming a gas atmosphere supplied by the gas supply means. It consists of a transparent grate that is installed between the base and the optical radiant heating means and consists of a mutually transparent grating that transmits radiant light, and includes a reaction chamber in which the base is installed, and one end of the reaction chamber. a first gas supply port connected to the mixed gas supply pipe described in J; an exhaust port provided at the other end of the reaction chamber and connected to the exhaust pipe for exhausting the gas in the reaction chamber; an intermediate transparent plate made of a material that transmits radiant light, which is provided in the chamber, is placed close to and parallel to the transparent plate, and is connected to a carrier gas supply pipe, and a carrier introduced through the carrier gas supply pipe; AiLt gas
E. A vapor phase growth apparatus comprising a second gas supply port configured to eject one gas between a transparent plate and an intermediate transparent plate and along the lower surface of the intermediate plate.
JP22235982A 1982-12-17 1982-12-17 Vapor growth apparatus Pending JPS59112613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22235982A JPS59112613A (en) 1982-12-17 1982-12-17 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22235982A JPS59112613A (en) 1982-12-17 1982-12-17 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS59112613A true JPS59112613A (en) 1984-06-29

Family

ID=16781103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22235982A Pending JPS59112613A (en) 1982-12-17 1982-12-17 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS59112613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003075A1 (en) * 1989-08-21 1991-03-07 Fsi International, Inc. Gas substrate processing module
US5042153A (en) * 1988-02-16 1991-08-27 Toyota Jidosha Kabushiki Kaisha Method for producing a sliding part
US5820686A (en) * 1993-01-21 1998-10-13 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042153A (en) * 1988-02-16 1991-08-27 Toyota Jidosha Kabushiki Kaisha Method for producing a sliding part
WO1991003075A1 (en) * 1989-08-21 1991-03-07 Fsi International, Inc. Gas substrate processing module
US5820686A (en) * 1993-01-21 1998-10-13 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors

Similar Documents

Publication Publication Date Title
US6232580B1 (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
JP4219441B2 (en) Method and apparatus for depositing film
JP3699147B2 (en) Semiconductor wafer processing chamber having a susceptor coated on the back side
US5194401A (en) Thermally processing semiconductor wafers at non-ambient pressures
JP2000150513A (en) Deposition of silicon nitride thin film
WO1999025909A1 (en) Epitaxial growth furnace
JPS59112613A (en) Vapor growth apparatus
JPS594434A (en) Vapor phase reactor
JPS6126218A (en) Vapor growth apparatus
JPH0638402B2 (en) Gas phase reaction vessel
JPS6251919B2 (en)
JPS60111416A (en) Vapor reaction vessel
JPS59159980A (en) Vapor growth device
JPS61289623A (en) Vapor-phase reaction device
JPS60208824A (en) Vapor growth unit
JP3174787B2 (en) Optical CVD equipment
JPH01241818A (en) Device for forming light excitation film
JPS61117827A (en) Vapor growth apparatus
JPS6050919A (en) Vapor growth device
JPS59147428A (en) Reaction furnace for semicondcutor vapor growth device
JPH10242060A (en) Cvd equipment and cvd method
JPS61121324A (en) Vapor growth equipment
JPS59112615A (en) Vapor phase reaction device
JPH0626182B2 (en) Infrared heating device
JPH04236780A (en) Formation of film by photo assisted cvd