JPS6050919A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS6050919A
JPS6050919A JP15860383A JP15860383A JPS6050919A JP S6050919 A JPS6050919 A JP S6050919A JP 15860383 A JP15860383 A JP 15860383A JP 15860383 A JP15860383 A JP 15860383A JP S6050919 A JPS6050919 A JP S6050919A
Authority
JP
Japan
Prior art keywords
gas
susceptor
reaction chamber
reaction
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15860383A
Other languages
Japanese (ja)
Inventor
Junichi Nozaki
野崎 順一
Hirozo Shima
島 博三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15860383A priority Critical patent/JPS6050919A/en
Publication of JPS6050919A publication Critical patent/JPS6050919A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To prevent the deposit of product on a wall surface and increase the efficiency of reaction of reaction gas by a method wherein an exhaust nozzle is provided facing a mixed gas supply nozzle across a susceptor, and gas flows are formed only on the surface of an Si substrate. CONSTITUTION:A carrier gas released from a carrier gas supply port 18 flows toward an exhaust port 22. On the other hand, the mixed gas of the reaction gas released from a nozzle 24 with the carrier gas flows along the surfaces of the Si substrate 15 and the susceptor 23. In this case, the exhaust nozzle 27 is arranged in back of the susceptor 23 and made to act a compulsive exhaust force through an aperture 26, therefore the flow of the mixed gas on the surface of the susceptor 23 and the flow of carrier gas above it flow over the susceptor 23 while keeping parallel. Thereby, the amount of source gas or that of doping gas can be kept to a necessary minimum. Besides, the generation of unnecessary deposits on the wall surface of a reaction chamber 8 can be suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、特に半導体工業で利用される気相成長装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth apparatus used in particular in the semiconductor industry.

従来例の構成とその問題点 半導体工業においては、シリコン基板上に反応ガスを供
給して、その基板表面に反応物の膜を形成する工程があ
る。特にシリコン単結晶基板を通常1000°C以」二
の摘出な温度に加熱しておき、四塩化珪素、又はジクロ
ールシラン、又はモノンランと、水素との混合ガスを供
給することによってシリコン単結晶膜が形成でき、エピ
タキシャル成長工程と呼ばれている。このような膜を形
成する従来の装置の反応室部分を第1図に示す。この装
置は、石英管1と、被膜形成するシリコン基板2を載せ
る基台3.(以下サセフリと呼ぶ)と、ザセブタ3を加
熱するワークコイル4と、ガス供給ノズル5、および排
気口6、扉7とから構成されている。ワークコイル4に
高周波電力を印加することによって、サセプタ3とシリ
コン基板2とが1000″C以上の適当な温度に加熱さ
れる。一方、図示していないガス供給装置では、四塩化
珪素等の反応ガスと、ホスフィン等のドーピングガスと
を所定の濃度で水素ガスに混合し、この混合ガスがガス
供給ノズル5から反応室内に供給される。
Conventional Structure and Problems There is a process in the semiconductor industry in which a reactive gas is supplied onto a silicon substrate to form a film of a reactant on the surface of the substrate. In particular, by heating a silicon single crystal substrate to a temperature usually above 1000°C and supplying a mixed gas of silicon tetrachloride, dichlorosilane, or monorane with hydrogen, a silicon single crystal film is formed. can be formed and is called an epitaxial growth process. A reaction chamber portion of a conventional apparatus for forming such a film is shown in FIG. This device consists of a quartz tube 1 and a base 3 on which a silicon substrate 2 on which a film is to be formed is mounted. (hereinafter referred to as a sasefuri), a work coil 4 that heats the sasefuri 3, a gas supply nozzle 5, an exhaust port 6, and a door 7. By applying high frequency power to the work coil 4, the susceptor 3 and the silicon substrate 2 are heated to an appropriate temperature of 1000"C or more. On the other hand, a gas supply device (not shown) is used to heat the reaction of silicon tetrachloride, etc. A doping gas such as phosphine is mixed with hydrogen gas at a predetermined concentration, and this mixed gas is supplied from the gas supply nozzle 5 into the reaction chamber.

この混合ガスは、反応室全体に広がって排気口6に向か
って流れ、この時サセプタ3およびシリコン基板2に接
触して熱を奪い所定温度以上に達した反応ガス分子が分
解析出して膜を形成する。このような装置においては、
混合ガスの温度はサセプタ3上でガス流れ方向に沿って
急激な温度変化を示し、従って分解析出に寄与するガス
層の厚味の変化も大きく、膜厚、比抵抗がガス流れ方向
に沿って変化し易い。そこで、膜厚、比抵抗の均一性を
上げるために、平均流速を大きくしてガスの流れ方向に
沿う温度変化、濃度変化の勾配を抑さえることがまず第
1に必要とされ、結果として毎分1007程の大量のガ
ス供給が必要となっている。更に、サセプタ3およびシ
リコン基板2がら離れたガス層中の反応ガスは、未反応
の1−1排出されることとなり、反応効率も低いという
欠点がある。また、1000°C以上の高温に加熱され
たサセプタ3およびシリコン基板2に接触し、熱を与え
られた高温ガスは、対流によって上昇気流となり、サセ
プタ3を離れて石英管1の上面に向かう流れとなり、そ
の結果石英管1の内面にも反応生成物が付着し、度々こ
の石英管1を洗浄する保守作業を余儀なくされている。
This mixed gas spreads throughout the reaction chamber and flows toward the exhaust port 6, and at this time, it contacts the susceptor 3 and the silicon substrate 2, absorbs heat, and the reaction gas molecules that reach a predetermined temperature or higher are separated and separated to form a film. Form. In such a device,
The temperature of the mixed gas shows a rapid temperature change along the gas flow direction on the susceptor 3, and therefore the thickness of the gas layer that contributes to the fractional separation also changes greatly, and the film thickness and resistivity change along the gas flow direction. It is easy to change. Therefore, in order to increase the uniformity of film thickness and resistivity, it is first necessary to increase the average flow velocity and suppress the gradient of temperature and concentration changes along the gas flow direction. A large amount of gas supply of about 1007 minutes is required. Furthermore, the reactant gas in the gas layer separated from the susceptor 3 and the silicon substrate 2 is discharged as unreacted 1-1, resulting in a disadvantage that the reaction efficiency is low. Furthermore, the high-temperature gas that comes into contact with the susceptor 3 and the silicon substrate 2, which are heated to a high temperature of 1000°C or more, becomes an upward air current due to convection, leaves the susceptor 3, and flows toward the top surface of the quartz tube 1. As a result, reaction products also adhere to the inner surface of the quartz tube 1, necessitating frequent maintenance work to clean the quartz tube 1.

発明の目的 本発明は、上記従来の欠点を解消するもので、簡単な構
成で、反応ガスの反応効率を上げ、全体のガス消費量を
低減し、更に反応室壁面への反応生成物の付着のない気
相成長装置を提供することを目的としている。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and has a simple structure that increases the reaction efficiency of reaction gas, reduces the overall gas consumption, and further reduces the adhesion of reaction products to the wall surface of the reaction chamber. The purpose is to provide a vapor phase growth apparatus that is free of

発明の構成 本発明の気相成長装置は、キャリヤガス供給管と反応ガ
スを含む混合ガス供給管との二系統の供給管を有するガ
ス供給装置と、サセプタと、サセプタおよびこれに載置
されるシリコン基板とを加熱する手段と、キャリヤガス
供給口、ガス排出口更に上記混合ガスの供給管に連結さ
れた混合ガス供給ノズルと、上記サセプタをはさんでこ
の混合ガス供給ノズルに対面した位置に開口を有する排
気ノズルとを備えた反応室とから構成されており反応室
全体には反応ガスを含まないキャリヤガス流れを形成し
、この流れの中で、シリコン基板表面にのみ反応ガスを
含むガス流れを形成するようにすることで、ガスの消費
量を低減し、又反応室壁面への不要な堆積物の発生を抑
えることができるものである。
Composition of the Invention The vapor phase growth apparatus of the present invention includes a gas supply apparatus having two supply pipes, a carrier gas supply pipe and a mixed gas supply pipe containing a reaction gas, a susceptor, and a susceptor mounted on the susceptor. a means for heating the silicon substrate, a carrier gas supply port, a gas discharge port, a mixed gas supply nozzle connected to the mixed gas supply pipe, and a position facing the mixed gas supply nozzle with the susceptor in between. A carrier gas flow containing no reactive gas is formed in the entire reaction chamber, and in this flow, a gas containing reactive gas is generated only on the surface of the silicon substrate. By forming a flow, the amount of gas consumed can be reduced and the generation of unnecessary deposits on the wall surface of the reaction chamber can be suppressed.

実施例の説明 以下に本発明の実施例を第2図、第3図にもとづいて読
切する。第2図は、本発明の一実施例を具現化した装置
における反応室の断面図であり、反応室8は、内部に水
冷溝9が施されたステンレス等の耐熱耐食性金属より成
る壁面部材1oと、上部開閉ブロック11とから構成さ
れている。この上部開閉ブロック11には、内部に赤外
線ランプヒータユニット12が設置されており、更にと
の赤外線ランプヒータユニット12に近接しだ位置に透
明石英プレート13が、○リング等の既知のガスシール
手段を介して固定具14により固定されている。この上
部開閉ブロック11は、第3図の斜視図で明らかなよう
に上下昇降動作が可能であり、上方へ持ち上げることに
よって、反応室上部が開口し、シリコン基板150投入
、取出しが行なわれる。又この上部開閉ブロック11を
降下させ、+1417ング16を挾んで壁面部材1Qに
接する位置に固定することで、外気が遮断された気密室
が形成される。又、この反応室8の一端には、ガス供給
装置(図示せず)から伸びたキャリヤガス供給管17が
結合されたキャリヤガス供給口18と、更に他端には、
可変絞りバルブ19を介して真空ポンプ20に連結され
た排気管21が結合されている排気口22とを有してい
る。これらのキャリヤガス供給口18と排気口22付近
の壁面部材10は、それぞれ内部形状がテーパ状に形成
されており、従ってキャリヤガス供給口18から導入さ
れたガスは、テーパ形状に沿って徐々に広がっていき、
反応室中央部では全体を満たしながら流れ、排気側では
テーパ状の絞りによって徐々に縮流となって淀みなく流
れていくこととなる。反応室8の内部には、シリコン基
板15を載置するサセプタ23が透明石英プレート13
を挾んで赤外線ランプヒータユニット12に対面した位
置に設置されている。更に、反応室8内へはガス供給装
置(図示していない)の混合ガス供給管に連結されてい
るノズル24が壁面部材1oを貫通し、サセプタ23の
キャリヤガス供給側で、これに近接して設置されている
○このノズル24は透明石英より成り、第3図に示して
いるように、一端が封止されたパイプ形状をなし、サセ
プタ側にサセプタ23の幅とほぼ同等の長さのガス吹き
出しスリット25が設けられている。又、サセプタ23
をはさんでノズル24と対面する位置に開口部26を有
する排気ノズル27が設置されている。この排気ノズル
27は第3図に見られるように、可変絞りバルブ28を
介して真空ポンプ29に連結された排気管30に結合さ
れている。
DESCRIPTION OF THE EMBODIMENTS The embodiments of the present invention will be explained below with reference to FIGS. 2 and 3. FIG. 2 is a cross-sectional view of a reaction chamber in an apparatus embodying an embodiment of the present invention, and the reaction chamber 8 has a wall member 1o made of a heat-resistant and corrosion-resistant metal such as stainless steel and provided with water cooling grooves 9 inside. and an upper opening/closing block 11. An infrared lamp heater unit 12 is installed inside the upper opening/closing block 11, and a transparent quartz plate 13 is installed near the infrared lamp heater unit 12 using known gas sealing means such as a ring. It is fixed by a fixture 14 via. As is clear from the perspective view of FIG. 3, this upper opening/closing block 11 can move up and down, and by lifting it upward, the upper part of the reaction chamber opens and silicon substrates 150 can be loaded and taken out. Further, by lowering this upper opening/closing block 11 and fixing it in a position where it is in contact with the wall member 1Q while sandwiching the +1417 ring 16, an airtight chamber is formed from outside air. Further, at one end of this reaction chamber 8, there is a carrier gas supply port 18 connected to a carrier gas supply pipe 17 extending from a gas supply device (not shown), and at the other end,
It has an exhaust port 22 to which an exhaust pipe 21 is connected to a vacuum pump 20 via a variable throttle valve 19. The wall member 10 near the carrier gas supply port 18 and the exhaust port 22 has a tapered internal shape, so that the gas introduced from the carrier gas supply port 18 gradually flows along the tapered shape. It spreads,
In the center of the reaction chamber, the flow fills the entire area, and on the exhaust side, the flow gradually becomes contracted due to the tapered throttle and flows without stagnation. Inside the reaction chamber 8, a susceptor 23 on which a silicon substrate 15 is placed is a transparent quartz plate 13.
It is installed at a position facing the infrared lamp heater unit 12 with the lamp in between. Further, a nozzle 24 connected to a mixed gas supply pipe of a gas supply device (not shown) penetrates the wall member 1o into the reaction chamber 8, and is adjacent to the carrier gas supply side of the susceptor 23. This nozzle 24 is made of transparent quartz and has a pipe shape with one end sealed, as shown in Fig. 3, and has a length approximately equal to the width of the susceptor 23 on the susceptor side. A gas blowing slit 25 is provided. Also, the susceptor 23
An exhaust nozzle 27 having an opening 26 is installed at a position facing the nozzle 24 across the exhaust nozzle 27 . This exhaust nozzle 27 is connected to an exhaust pipe 30 connected to a vacuum pump 29 via a variable throttle valve 28, as seen in FIG.

本実施例の装置における反応室は以上のような構造であ
シ、エピタキシャル成長時には、反応室B内へはキャリ
ヤガス供給口18を通して、水素等のキャリヤガスが供
給されると同時に、ノズル24を通してジクロールシラ
ン等のソースガスおよびホスフィン等のドーピングガス
を適当な濃度で含有した水素ベースの混合ガスか供給さ
れる。
The reaction chamber in the apparatus of this embodiment has the above structure, and during epitaxial growth, a carrier gas such as hydrogen is supplied into the reaction chamber B through the carrier gas supply port 18, and at the same time, a carrier gas such as hydrogen is supplied through the nozzle 24. A hydrogen-based gas mixture containing a source gas such as chlorosilane and a doping gas such as phosphine at appropriate concentrations is supplied.

キャリヤガス供給口18より出たキャリヤガスは反応室
8の入口テーパ形状に沿って広がり、排気口22に向か
って反応室8全体を満たしながら流れていくこととなる
。一方、ノズル24のスリット25から出た混合ガスは
、反応室8の中央部に位置し、所定温度に加熱されてい
るシリコン基板16およびこれを載置しているサセプタ
23の表面に沿って流れる。この間、サセプタ23より
熱が与えられ、徐々に高温ガスとなっていく。この時従
来例では、上層を流れるガス流は温度が低いために、サ
セプタ23の表面高温ガス層との間で対流が生じ、従っ
てサセプタ23の後半部での表面ガス流れは極めて複雑
な流れを呈し、結果成長膜厚の均一な制御が困難となる
。又反応室上方壁面に不必要な反応生成物が付着するこ
ととなる。
The carrier gas discharged from the carrier gas supply port 18 spreads along the tapered shape of the entrance of the reaction chamber 8 and flows toward the exhaust port 22 while filling the entire reaction chamber 8. On the other hand, the mixed gas coming out of the slit 25 of the nozzle 24 flows along the surface of the silicon substrate 16, which is located in the center of the reaction chamber 8 and is heated to a predetermined temperature, and the susceptor 23 on which it is placed. . During this time, heat is applied from the susceptor 23 and the gas gradually becomes high temperature. At this time, in the conventional example, since the temperature of the gas flow flowing in the upper layer is low, convection occurs between the surface high temperature gas layer of the susceptor 23, and therefore the surface gas flow in the rear half of the susceptor 23 becomes an extremely complicated flow. As a result, it becomes difficult to uniformly control the thickness of the grown film. Moreover, unnecessary reaction products will adhere to the upper wall surface of the reaction chamber.

しかしながら、本実施例ではサセプタ23の後方に排気
ノズル27を配し、開口部26を通して強制的な排気力
を作用させているために、熱対流現象は緩和され、サセ
プタ23表面の混合ガスの流れとその上層のキャリヤガ
ス流れとは平行を保ったままサセプタ23上を流れるこ
ととなる0このように、反応室8内の圧力状態或いは反
応室8内全体の流れ状態はキャリヤガス供給口18を通
して送るキャリヤガス流量によって制御し、一方、シリ
コン基板150表面ガス層のみで決定されるこのシリコ
/基板16への気相成長反応は、ノズル24を通して供
給する混合ガス量、および可変絞リパルプ19,2Bの
調整により決まる排気ノズル27を通しての排気能力に
よって制御することができる。従ってソースガス量或い
はドーピングガス量を必要感小眼に抑えることができる
。又成長膜の均質性を得るためには、毎秒10cm、以
上の反応室内平均流速が従来の装置では必要とされてい
るが、本実施例では、ノズル24を通して噴き出すガス
流速を所定値以上にすればよく、反応室8全体の流速を
決定するキャリヤガス供給口18を通して供給するキャ
リヤガス流量も必要最小限で良い。
However, in this embodiment, the exhaust nozzle 27 is arranged behind the susceptor 23 and a forced exhaust force is applied through the opening 26, so the thermal convection phenomenon is alleviated, and the flow of the mixed gas on the surface of the susceptor 23 is reduced. The flow of the carrier gas in the upper layer remains parallel to the susceptor 23. In this way, the pressure state within the reaction chamber 8 or the flow state of the entire reaction chamber 8 is controlled through the carrier gas supply port 18. This vapor phase growth reaction on the silicon/substrate 16 is controlled by the flow rate of the carrier gas to be sent, while being determined only by the gas layer on the surface of the silicon substrate 150. can be controlled by the exhaust capacity through the exhaust nozzle 27, which is determined by the adjustment of the exhaust nozzle 27. Therefore, the amount of source gas or doping gas can be kept to a small level. Furthermore, in order to obtain homogeneity of the grown film, an average flow rate in the reaction chamber of 10 cm per second or more is required in the conventional apparatus, but in this embodiment, the gas flow rate ejected through the nozzle 24 is set to a predetermined value or higher. The flow rate of the carrier gas supplied through the carrier gas supply port 18, which determines the flow rate of the entire reaction chamber 8, may also be the minimum necessary.

更に、従来装置において問題となっていた反応室壁面へ
の不必要な堆積も解消され、排気ノズル27の交換、洗
浄のみで反応室8内が清浄に維持でき、保守作業等が大
幅に低減される。
Furthermore, unnecessary deposition on the walls of the reaction chamber, which was a problem in conventional devices, is eliminated, and the inside of the reaction chamber 8 can be kept clean simply by replacing and cleaning the exhaust nozzle 27, greatly reducing maintenance work, etc. Ru.

なお、本実施例では、加熱手段として赤外線加熱法を採
用し、それに応じた反応室構造を採用したが、本発明は
その他の加熱法を採用した装置についても適用できるこ
とは明らかである。う又ノズル24、或いは排気ノズル
27はそれぞれ壁面部材10の両サイドから貫通するよ
うに設けることも可能である。更に本発明はシリコン単
結晶成長への適用に限らず、その他の膜形成装置に適用
できることは明らかである。
In this example, an infrared heating method was used as the heating means, and a corresponding reaction chamber structure was adopted, but it is clear that the present invention can also be applied to devices using other heating methods. It is also possible to provide the nozzle 24 or the exhaust nozzle 27 so as to penetrate the wall member 10 from both sides. Furthermore, it is clear that the present invention is not limited to application to silicon single crystal growth, but can be applied to other film forming apparatuses.

発明の効果 以上のように、本発明は反応室全体を流れるキャリヤガ
スの供給口および排気口とは別に、シリコン基板を載置
したサセプタをはさんで、それぞれ混合ガス供給ノズル
と排気ノズルを設ける構成であり、気相成長反応に寄与
するシリコン基板表面ガス層を反応室全体のガス流れと
は別に制御できるので、反応効率も上かっ、又全体のガ
スの消費計を抑えることができると共に、反応室壁面へ
の不必要な堆積を生ずることもなく、保守作業を大幅に
低減でき、効果大なるものである。
Effects of the Invention As described above, the present invention provides a mixed gas supply nozzle and an exhaust nozzle, respectively, with a susceptor on which a silicon substrate is mounted, in addition to the supply port and exhaust port for the carrier gas flowing through the entire reaction chamber. With this structure, the gas layer on the surface of the silicon substrate that contributes to the vapor phase growth reaction can be controlled separately from the gas flow throughout the reaction chamber, increasing the reaction efficiency and reducing the overall gas consumption. There is no unnecessary deposition on the wall surface of the reaction chamber, and maintenance work can be significantly reduced, which is highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高周波加熱方式のエピタキシャル成長装
置の反応室の断面図、第2図は本発明の一実施例の気相
成長装置の反応室を示す断面図、第3図は同装置の一部
破断の斜視図である08・・・・・反応室、12・・・
・・・赤外線ランプヒータユニット、13・・・・・・
透明石英プレート、15・・・・・シリコン基板、18
・・・・・・キャリヤガス供給口、22・・・・・・排
気口、23・・・・・・サセプタ、24・・・・ノズル
、27・・・・・・排気ノズル。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第 3 図
FIG. 1 is a sectional view of a reaction chamber of a conventional high-frequency heating type epitaxial growth apparatus, FIG. 2 is a sectional view of a reaction chamber of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 08...reaction chamber, 12... which is a perspective view of a section broken away.
...Infrared lamp heater unit, 13...
Transparent quartz plate, 15...Silicon substrate, 18
... Carrier gas supply port, 22 ... Exhaust port, 23 ... Susceptor, 24 ... Nozzle, 27 ... Exhaust nozzle. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] キャリヤガスを供給するキャリヤガス供給管および反応
ガス或いは反応ガスとキャリヤガスとの混合ガスを供給
する混合ガス供給管との少くとも二系統の供給管を有す
るガス供給手段と、気相成長膜を形成する基板を載置す
る基台と、上記基板および基台を加熱する手段と、上記
基台が内部に設置される反応室と、この反応室の一端に
あって前記キャリヤガス供給管と連結された第1のガス
供給口と、上記反応室の他端にあシ、第1の強制排気手
段を有する第1の排気管に連結された第1の排気口と、
前記混合ガス供給管に連結され、上記反応室を形成する
壁面部材を貫通してこの反応室内に伸び、前記基台に載
置された基板表面に反応ガス、或いは反応ガスとキャリ
ヤガスとの混合ガスが吹き付けられるような開口部を有
する第2のガス供給口と、第2の強制排気手段を有する
第2の排気管に連結され、前記反応室の壁面部材を貫通
してこの反応室内に伸び、前記基台をはさんで、上記第
2のガス供給口に対面した位置に開口を有する第2の排
気口とから成る気相成長装置。
A gas supply means having at least two systems of supply pipes, a carrier gas supply pipe for supplying a carrier gas and a mixed gas supply pipe for supplying a reaction gas or a mixed gas of a reaction gas and a carrier gas; A base on which a substrate to be formed is placed, a means for heating the substrate and the base, a reaction chamber in which the base is installed, and one end of the reaction chamber connected to the carrier gas supply pipe. a first exhaust port connected to a first exhaust pipe having a reed and a first forced exhaust means at the other end of the reaction chamber;
Connected to the mixed gas supply pipe and extending into the reaction chamber through the wall member forming the reaction chamber, a reaction gas or a mixture of reaction gas and carrier gas is applied to the surface of the substrate placed on the base. A second gas supply port having an opening through which gas is blown, and a second exhaust pipe having a second forced exhaust means, and extending into the reaction chamber through a wall member of the reaction chamber. and a second exhaust port having an opening at a position facing the second gas supply port across the base.
JP15860383A 1983-08-30 1983-08-30 Vapor growth device Pending JPS6050919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15860383A JPS6050919A (en) 1983-08-30 1983-08-30 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15860383A JPS6050919A (en) 1983-08-30 1983-08-30 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS6050919A true JPS6050919A (en) 1985-03-22

Family

ID=15675303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15860383A Pending JPS6050919A (en) 1983-08-30 1983-08-30 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS6050919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2561678A (en) * 2017-02-22 2018-10-24 Daido Metal Co Vertical bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2561678A (en) * 2017-02-22 2018-10-24 Daido Metal Co Vertical bearing device

Similar Documents

Publication Publication Date Title
JP2679833B2 (en) Improvement of reaction chamber and chemical vapor deposition
JP5209022B2 (en) Method and apparatus for controlling deposit formation in a deposition system, and deposition system and method including them
US5525157A (en) Gas injectors for reaction chambers in CVD systems
WO2007072855A1 (en) Apparatus for manufacturing semiconductor thin film
JP2000150513A (en) Deposition of silicon nitride thin film
US5244694A (en) Apparatus for improving the reactant gas flow in a reaction chamber
TW200527511A (en) Chemical vapor deposition apparatus and film deposition method
JP4058364B2 (en) Semiconductor manufacturing equipment
JPS59159980A (en) Vapor growth device
JPS6050919A (en) Vapor growth device
JPH05251359A (en) Vapor silicon epitaxial growth device
JP3948577B2 (en) Manufacturing method of semiconductor single crystal thin film
JPH0560256B2 (en)
JPH06302519A (en) Semiconductor manufacturing equipment
JPS61186288A (en) Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor
JPH0518452B2 (en)
JP2881828B2 (en) Vapor phase growth apparatus and vapor phase growth method
JPS5967622A (en) Vapor growth device
JPH0544824B2 (en)
JPS59112613A (en) Vapor growth apparatus
JPS6240720A (en) Vapor phase epitaxial growing device
JPS61117826A (en) Vapor growth apparatus
JPH01123413A (en) Vapor growth apparatus
JPH06177048A (en) Manufacture of semiconductor element
JPS61117824A (en) Vapor phase reaction container