JPS61186288A - Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor - Google Patents

Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor

Info

Publication number
JPS61186288A
JPS61186288A JP60027106A JP2710685A JPS61186288A JP S61186288 A JPS61186288 A JP S61186288A JP 60027106 A JP60027106 A JP 60027106A JP 2710685 A JP2710685 A JP 2710685A JP S61186288 A JPS61186288 A JP S61186288A
Authority
JP
Japan
Prior art keywords
reaction tube
susceptor
silicon carbide
substrate crystal
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60027106A
Other languages
Japanese (ja)
Inventor
Haruhiko Miyamoto
治彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60027106A priority Critical patent/JPS61186288A/en
Publication of JPS61186288A publication Critical patent/JPS61186288A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Abstract

PURPOSE:To uniformize the film thickness distribution, and to improve the uniformity of a film, by placing a square reaction tube and a susceptor having specific form in a round reaction tube having coolable structure, and enabling the uniform flow of the reaction gas at the upper layer of the substrate crystal. CONSTITUTION:An aquare reaction tube 31 is placed in a coolable round reaction tube 41 near the part where the substrate crystal 11 is to be placed. The reaction tube 31 has rectangular cross-section, and has a bottom part inclined upward toward the flowing direction of the reaction gas. A susceptor 20 for holding a substrate crystal 11 is placed downstream side of the reaction tube 31, and the bottom face in the susceptor 20 is positioned to the same level as the bottom in the reaction tube 31. The flow of the reaction gas can be uniformized by the above apparatus without being disturbed with the susceptor 20, and a uniform film can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大型基板結晶に炭化珪素化合物半導体結晶を均
一性良くエピタキシャル成長させる気相成長装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vapor phase growth apparatus for epitaxially growing a silicon carbide compound semiconductor crystal on a large substrate crystal with good uniformity.

〔従来の技術〕[Conventional technology]

従来、炭化珪素化合物半導体の気相エピタキシャル成長
装置としては、第2図に示したように水冷丸型反応管4
1の中に直接サセプター20を置き、その上にエピタキ
シャル成長させる基板結晶を設置する構造のものが用い
られている(電子通信学会技術研究報告5SD82−1
67 )。
Conventionally, as a vapor phase epitaxial growth apparatus for silicon carbide compound semiconductors, a water-cooled round reaction tube 4 is used as shown in FIG.
A structure is used in which a susceptor 20 is placed directly inside the susceptor 1, and a substrate crystal to be epitaxially grown is placed on top of the susceptor 20 (IEICE technical research report 5SD82-1).
67).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この構造では丸型反応管41の中にサセプター
20が直接置かれるため、反応ガスの流れがサセプター
20のところで乱され、基板結晶上に均一性良く炭化珪
素化合物半導体をエピタキシャル成長させることはでき
ないという欠点があった。
However, in this structure, since the susceptor 20 is placed directly inside the round reaction tube 41, the flow of the reaction gas is disturbed at the susceptor 20, making it impossible to epitaxially grow a silicon carbide compound semiconductor with good uniformity on the substrate crystal. There was a drawback.

本発明は、このような従来の欠点を除去し、大型基板結
晶に炭化珪素化合物半導体結晶を均一性良くエピタキシ
ャル成長せしめることのできる装置を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus capable of eliminating such conventional drawbacks and epitaxially growing a silicon carbide compound semiconductor crystal on a large substrate crystal with good uniformity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、炭化珪素化合物半導体の気相エピタキシャル
成長装置において、冷却可能な丸型反応管内の少なくと
もエピタキシャル成長させる基板結晶の設置部分近傍に
、断面が長方形でしかもその底部が反応ガスの流れの下
流方向に向がって高くなっている角型反応管を設置し、
さらに前記角型反応管内の下流側に、空洞を内部に有し
、該空洞の両端が反応ガスの流れ方向に対して開放され
た基板結晶搭載用サセプターをその内部の底面が前記角
型反応管の内部の底面と同一の平面をなすように設置し
、該、サセプターの壁面を炭化珪素にてコーティングし
たことを特徴とする炭化珪素化合物半導体の気相エピタ
キシャル成長装置である。
The present invention provides a vapor phase epitaxial growth apparatus for a silicon carbide compound semiconductor, in which a coolable round reaction tube has a rectangular cross section, and the bottom thereof is located at least in the vicinity of the installation part of a substrate crystal to be epitaxially grown, and the bottom thereof is located in the downstream direction of the flow of a reaction gas. Install a rectangular reaction tube that is facing higher,
Further, on the downstream side of the rectangular reaction tube, a susceptor for mounting a substrate crystal, which has a cavity inside and both ends of the cavity are open to the flow direction of the reaction gas, is arranged so that the bottom surface of the susceptor has a cavity inside the rectangular reaction tube. This is a vapor phase epitaxial growth apparatus for a silicon carbide compound semiconductor, characterized in that the wall surface of the susceptor is coated with silicon carbide.

〔作用〕[Effect]

まずエピタキシャル成長させる基板結晶の設置部分近傍
に、断面が長方形の形状を持った角型反応管を設置し、
前記角型反応管の下流に内部が空洞となっておりしかも
その空洞の両端が反応ガスの流れの方向に対して開放さ
れたサセプターをその内部の底面が前記角型反応管の内
部の底面と同一の平面となるように設置し前記サセプタ
ーの内部の底面上にエピタキシャル成長させる基板結晶
を設置することにより、反応ガスの流れが、サセプター
により乱されることがなくなるため基板結晶上層の反応
ガスの流れが一様となり、均一性の良い炭化珪素化合物
半導体のエピタキシャル膜が得られる。さらに反応ガス
の流れの一様性を増すためには、前記角型反応管及び前
記サセプターの内部の底面が同一平面上にあることのみ
ならず、前記角型反応管及び前記サセプターの内部の側
面及び上面も同一平面上にある構造とすることが好まし
い。
First, a square reaction tube with a rectangular cross section is installed near the location where the substrate crystal to be epitaxially grown is placed.
A susceptor is provided downstream of the rectangular reaction tube and has a hollow interior and both ends of the cavity are open to the flow direction of the reaction gas. By installing the substrate crystal to be epitaxially grown on the inner bottom surface of the susceptor so that they are on the same plane, the flow of the reaction gas is not disturbed by the susceptor, so the flow of the reaction gas in the upper layer of the substrate crystal is improved. As a result, a silicon carbide compound semiconductor epitaxial film with good uniformity can be obtained. Furthermore, in order to increase the uniformity of the flow of the reaction gas, it is necessary not only to make sure that the inner bottom surfaces of the square reaction tube and the susceptor are on the same plane, but also to make sure that the inner bottom surfaces of the square reaction tube and the susceptor are on the same plane. It is preferable to have a structure in which the upper surface and the upper surface are also on the same plane.

次に、前記角型反応管の底部を反応ガスの流れの下流方
向に向かって高くすることにより、基板結晶上への成長
膜の供給量が流れ方向に対し一定となるため、流れ方向
に関するエピタキシャル膜の膜厚分布も一定とすること
ができる。前記側角型反応管の傾きとしては、2度乃至
20度の範囲が好ましい。2度以下では基板結晶の前方
のエピタキシャル成長膜が後方のそれに比べて厚くなり
すぎ、20度以上では基板結晶の後方のエピタキシャル
膜が前方のそれと比べて厚くなシすぎ好ましくない。
Next, by raising the bottom of the rectangular reaction tube toward the downstream direction of the flow of the reaction gas, the amount of the grown film supplied onto the substrate crystal becomes constant with respect to the flow direction. The film thickness distribution of the film can also be made constant. The angle of the side square reaction tube is preferably in the range of 2 degrees to 20 degrees. If it is less than 2 degrees, the epitaxial film in front of the substrate crystal will be too thick compared to that in the rear, and if it is more than 20 degrees, the epitaxial film in the rear of the substrate crystal will be too thick compared to that in front, which is not preferable.

さらに、中が空洞となっており壁面が炭化珪素でコーテ
ィングされたサセプターを使用し、その中に基板結晶を
設置することにより基板結晶近傍の反応ガスに接する部
分はサセプターの内面であり結晶成長温度と同じとなる
。そのため反応ガスはサセプターの壁面で反応を起こし
炭化珪素を生成するが、この生成された炭化珪素は、サ
セプター壁面が炭化珪素でコーティングされているため
、その炭化珪素コーティング層を厚くするのみであり壁
面からはがれ落ちることはない・そのため基板結晶上に
は何も落下物がなくなシ、均一な成長相が得られるよう
になる。
Furthermore, by using a susceptor that is hollow inside and whose walls are coated with silicon carbide, and by placing the substrate crystal inside it, the part that comes into contact with the reaction gas near the substrate crystal is the inner surface of the susceptor, and the crystal growth temperature is is the same as Therefore, the reaction gas reacts on the wall surface of the susceptor and generates silicon carbide, but since the wall surface of the susceptor is coated with silicon carbide, this silicon carbide only thickens the silicon carbide coating layer, and the silicon carbide produced on the wall surface There is no falling off from the substrate.Therefore, there is no falling material on the substrate crystal, and a uniform growth phase can be obtained.

また、前記角型反応管のみでは強度的に弱く、内部を減
圧にすることはできないが、外部に丸型反応管を設ける
ことにより、反応管内部を減圧にできるようになり反応
管内部のガスの交換が迅速に行えるようになるとともに
減圧下での成長も可能となる。
In addition, using only the square reaction tube is weak in strength and cannot reduce the pressure inside the reaction tube, but by providing a round reaction tube on the outside, it is possible to reduce the pressure inside the reaction tube, and the gas inside the reaction tube can be reduced. This makes it possible to quickly replace the oil and grow under reduced pressure.

炭化珪素のエピタキシャル成長温度は1300℃以上の
高温であるが、前記丸型反応管を水冷できる構造とする
ことにより、反応管の劣化を防げるようになりさらに水
による赤外線の吸収効果も加わって反応管外部への熱の
ふく射が押さえられ反応管外部に出る熱も極めて少なく
なる。
The epitaxial growth temperature of silicon carbide is a high temperature of 1,300°C or higher, but by making the round reaction tube have a structure that can be water-cooled, it is possible to prevent deterioration of the reaction tube. The radiation of heat to the outside is suppressed, and the amount of heat coming out of the reaction tube is extremely reduced.

〔実施例〕〔Example〕

以下本発明の実施例について図面を参照して詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において、囚は本発明の実施例を示す断面1i[
あり、CB)は囚(7) a a’矢視図、(C)ii
囚のb b’矢視図である。第1図囚〜(0において、
管の外部に水冷室45を備えた丸型反応管41に、角型
反応管31を内装する。冷却水は冷却水人口43より水
冷室45内に流入し、冷却水出口44より流出する。前
記角型反応管31は(4)の33の部分より後方の断面
が(B)に示したように長方形の形状をなし、しかもそ
の底部が反応ガスの流れの下流方向に向かって上傾し、
その後端にサセプター20を設置できる構造となってい
る。
In FIG. 1, the cross section 1i [
Yes, CB) is a prisoner (7) a a' arrow view, (C) ii
It is a b b' arrow view of the prisoner. Figure 1 prisoner ~ (at 0,
A square reaction tube 31 is placed inside a round reaction tube 41 equipped with a water cooling chamber 45 on the outside of the tube. The cooling water flows into the water cooling chamber 45 from the cooling water port 43 and flows out from the cooling water outlet 44 . The rectangular reaction tube 31 has a rectangular cross section rearward from the portion 33 in (4) as shown in (B), and the bottom thereof is inclined upward toward the downstream direction of the flow of the reaction gas. ,
It has a structure in which a susceptor 20 can be installed at the rear end.

前記+j氾ブタ−20は内部が空洞となっておシ、該空
洞の両端が反応ガスの流れ方向に対して開放されている
。この角型反応管31内に空洞部を有し、断面が長方形
のサセプター20を導入し、前記サセプター20の底面
、側面及び上面が前記角型反応管31の内部の底面、側
面及び上面とそれぞれ同一の平面をなすようにその内部
にサセプター20を設置する。前記サセプター20はグ
ラファイトでできておシ、その壁面を炭化珪素でコーテ
ィングしたものである。前記サセプター20の内部の底
面上にエピタキシャル成長させる基板結晶11を後端開
放部を通して設置する。
The inside of the +j flood pipe 20 is hollow, and both ends of the hollow are open to the flow direction of the reaction gas. A susceptor 20 having a cavity and a rectangular cross section is introduced into the square reaction tube 31, and the bottom, side and top surfaces of the susceptor 20 are respectively connected to the bottom, side and top of the inside of the square reaction tube 31. The susceptor 20 is installed inside the susceptor so as to form the same plane. The susceptor 20 is made of graphite, and its wall surface is coated with silicon carbide. A substrate crystal 11 to be epitaxially grown is placed on the inner bottom surface of the susceptor 20 through the open rear end.

反応ガス導入管32よシ、SiH4,C3ルtaX ガ
スを導入し、ガス導入管42より迅ガスを導入する。加
熱は高周波コイル50より高周波電力を導入して行う。
SiH4, C3 and taX gases are introduced through the reaction gas introduction pipe 32, and a reaction gas is introduced through the gas introduction pipe 42. Heating is performed by introducing high frequency power from the high frequency coil 50.

第1図囚において内部の直径が150Hの丸型反応管4
1を使用し、内部の幅が100 mであり、その底部が
5度の傾きを持ち下流方向に向かって高くなっている角
型反応管31と、内部の幅が100鷹であり内部の底面
の傾きが5度の傾きを持ち下流方向に向かって高くなっ
ているサセプター20を用い、(Oにおいてサセプター
20の内部の上面と底面の間隔が15關となるように配
置し、基板結晶11として、直径3インチの81単結晶
を使用し、基板の面方位としては(100)面を使用し
た。
In Figure 1, a round reaction tube 4 with an internal diameter of 150H
A square reaction tube 31 with an internal width of 100 m and a bottom inclined at 5 degrees and rising toward the downstream direction, and a rectangular reaction tube 31 with an internal width of 100 m and an internal bottom surface A susceptor 20 having an inclination of 5 degrees and rising toward the downstream direction is used, and is arranged so that the distance between the top surface and the bottom surface inside the susceptor 20 is 15 degrees at (O), and as a substrate crystal 11. , 81 single crystal with a diameter of 3 inches was used, and the (100) plane was used as the plane orientation of the substrate.

Sl単結晶基板11を導入した後、成長前にロータリー
真空ポンプを使用し、後方開放端より反応管内の空気成
分を排気した。その後ガス導入管32及び42より水素
を導入し反応管内を大気圧の水素で満たした。
After introducing the Sl single crystal substrate 11 and before growth, a rotary vacuum pump was used to exhaust the air component in the reaction tube from the rear open end. Thereafter, hydrogen was introduced through the gas introduction pipes 32 and 42 to fill the inside of the reaction tube with hydrogen at atmospheric pressure.

反応ガスとして8LH4とC1H,とを使用し水素ガス
をキャリヤーガスとして反応ガス導入管32より導入し
、成長中は反応ガス導入管32よ勺導入される水素、S
iH4,C,H,の全体の流量を517m1xとして行
った。さらに全工程を通じてガス導入管42より水素を
31/m導入した・ まず水素のみを反応ガス導入管32より流し、基板結晶
温度を1200℃に10分間保ち、81基板のクリーニ
ングを行った。次に反応ガス導入管32よシ濃度0.0
8モルのC3H,を導入し、基板結晶温度を圃°Cに一
分間保ち、Si基板上に炭化珪素のバッファ層を形成し
た。その後、反応ガス導入管32より濃度0.03モル
チの5in4.0.01モルチのC3H,を同時に導入
し、基板結晶温度を1350℃に三時間保ち、炭化珪素
の結晶成長を行った。
8LH4 and C1H are used as reaction gases, and hydrogen gas is introduced as a carrier gas through the reaction gas introduction pipe 32. During growth, hydrogen, S, and
The total flow rate of iH4, C, H, was 517mlx. Furthermore, hydrogen was introduced at 31/m through the gas introduction pipe 42 throughout the entire process. First, only hydrogen was flowed through the reaction gas introduction pipe 32, the substrate crystal temperature was maintained at 1200° C. for 10 minutes, and 81 substrates were cleaned. Next, from the reaction gas introduction pipe 32, the concentration is 0.0.
8 mol of C3H was introduced, and the substrate crystal temperature was maintained at field temperature for 1 minute to form a silicon carbide buffer layer on the Si substrate. Thereafter, 5 inches of C3H with a concentration of 0.03 molar and 0.01 molar of C3H were simultaneously introduced from the reaction gas introduction pipe 32, and the substrate crystal temperature was maintained at 1350° C. for 3 hours to grow crystals of silicon carbide.

上記のようにして成長を行なった結果、三時間の成長後
においても基板結晶上への落下物は存在しなかった。さ
らに上記のようにして得られた成長膜はSt基板にエピ
タキシャル成長し、基板全面にわたって炭化珪素層のみ
で構成されておりしかもその膜厚分布は反応ガスの流れ
方向に対して14.5±0.5μmという均一性の優れ
たものが得られた。
As a result of the growth as described above, there was no falling object on the substrate crystal even after three hours of growth. Further, the grown film obtained as described above is epitaxially grown on the St substrate, and consists only of a silicon carbide layer over the entire surface of the substrate, and the film thickness distribution is 14.5±0. An excellent uniformity of 5 μm was obtained.

また、水冷丸型反応管の外面より10cIIL離れたと
ころの温度は成長中最大で40℃であり、反応管外部に
出る熱も極めて少ないものであった。
Furthermore, the temperature at a distance of 10 cIIL from the outer surface of the water-cooled round reaction tube was a maximum of 40° C. during growth, and the amount of heat released to the outside of the reaction tube was extremely small.

〔発明の効果〕〔Effect of the invention〕

以上詳細に述べた通り、本発明によれば均一性の良い珪
素化合物半導体のエピタキシャル膜が得られ、膜厚分布
が一様でしかも、基板結晶上には落下物は存在しない均
一なエピタキシャル成長層を得ることができる効果を有
するものである。
As described in detail above, according to the present invention, an epitaxial film of a silicon compound semiconductor with good uniformity can be obtained, and a uniform epitaxial growth layer with a uniform film thickness distribution and no falling particles on the substrate crystal can be obtained. It has the effect that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図囚は本発明の実施例を示す断面図、■)は囚のa
 a’矢視図、(C)ii囚のb b’矢視図、第2図
は従来法を示す断面図である。 11・・・基板結晶、20・・・サセプター、31・・
・角型反応管、32・・・反応ガス導入管、33・・・
断面が角型となりはじめる部分、41・・・水冷丸型反
応管、42・・・ガス導入管、43・・・冷却水入口、
44・・・冷却水出口、50・・・高周波コイル。 特許出願人  日本電気株式会社 代理人 弁理士   内   W、     晋′・4
.ル′11−+− 第1図 (A) 1に尾板系百晶 20:サセプタ− 31゛角型反爬管 41、水岸丸型反応管 第1図 (Bン (C)
Figure 1 is a sectional view showing an embodiment of the present invention;
A' arrow view, b b' arrow view of (C) ii, and FIG. 2 are cross-sectional views showing the conventional method. 11... Substrate crystal, 20... Susceptor, 31...
・Square reaction tube, 32...Reaction gas introduction tube, 33...
Portion where the cross section begins to become square, 41...Water-cooled round reaction tube, 42...Gas introduction tube, 43...Cooling water inlet,
44...Cooling water outlet, 50...High frequency coil. Patent applicant: NEC Corporation Patent attorney: W, Shin'4
.. Figure 1 (A) 1, tail plate system 20: susceptor 31゛ square reaction tube 41, waterside round reaction tube Figure 1 (B (C)

Claims (1)

【特許請求の範囲】[Claims] (1)炭化珪素化合物半導体の気相エピタキシャル成長
装置において、冷却可能な丸型反応管内の少なくともエ
ピタキシャル成長させる基板結晶の設置部分近傍に、断
面が長方形でしかもその底部が反応ガスの流れの下流方
向に向かつて高くなつている角型反応管を設置し、さら
に前記角型反応管内の下流側に、空洞を内部に有し、該
空洞の両端が反応ガスの流れ方向に対して開放された基
板結晶搭載用サセプターをその内部の底面が前記角型反
応管の内部の底面と同一の平面をなすように設置し、該
サセプターの壁面を炭化珪素にてコーティングしたこと
を特徴とする炭化珪素化合物半導体の気相エピタキシャ
ル成長装置。
(1) In a vapor phase epitaxial growth apparatus for silicon carbide compound semiconductors, at least the vicinity of the installation part of the substrate crystal to be epitaxially grown in the coolable round reaction tube has a rectangular cross section and the bottom is oriented in the downstream direction of the flow of the reaction gas. A rectangular reaction tube that had once been raised is installed, and further, on the downstream side of the rectangular reaction tube, a substrate crystal is mounted, which has a cavity inside, and both ends of the cavity are open to the flow direction of the reaction gas. A silicon carbide compound semiconductor gas susceptor, characterized in that a susceptor is installed so that its inner bottom surface is flush with the inner bottom surface of the square reaction tube, and the wall surface of the susceptor is coated with silicon carbide. Phase epitaxial growth equipment.
JP60027106A 1985-02-14 1985-02-14 Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor Pending JPS61186288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027106A JPS61186288A (en) 1985-02-14 1985-02-14 Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027106A JPS61186288A (en) 1985-02-14 1985-02-14 Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor

Publications (1)

Publication Number Publication Date
JPS61186288A true JPS61186288A (en) 1986-08-19

Family

ID=12211830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027106A Pending JPS61186288A (en) 1985-02-14 1985-02-14 Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor

Country Status (1)

Country Link
JP (1) JPS61186288A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291114A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
JPH02291113A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
US5370738A (en) * 1992-03-06 1994-12-06 Pioneer Electronic Corporation Compound semiconductor vapor phase epitaxial device
WO1999031306A1 (en) * 1997-12-17 1999-06-24 Cree, Inc. Growth of very uniform silicon carbide epitaxial layers
JP2013046020A (en) * 2011-08-26 2013-03-04 Taiyo Nippon Sanso Corp Silicon carbide deposition device and silicon carbide removal method
JP2016027635A (en) * 2014-06-27 2016-02-18 株式会社Flosfia Film forming apparatus and film forming method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291114A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
JPH02291113A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
US5370738A (en) * 1992-03-06 1994-12-06 Pioneer Electronic Corporation Compound semiconductor vapor phase epitaxial device
WO1999031306A1 (en) * 1997-12-17 1999-06-24 Cree, Inc. Growth of very uniform silicon carbide epitaxial layers
US6063186A (en) * 1997-12-17 2000-05-16 Cree, Inc. Growth of very uniform silicon carbide epitaxial layers
US6297522B1 (en) 1997-12-17 2001-10-02 Cree, Inc. Highly uniform silicon carbide epitaxial layers
JP2013046020A (en) * 2011-08-26 2013-03-04 Taiyo Nippon Sanso Corp Silicon carbide deposition device and silicon carbide removal method
JP2016027635A (en) * 2014-06-27 2016-02-18 株式会社Flosfia Film forming apparatus and film forming method

Similar Documents

Publication Publication Date Title
WO2007072855A1 (en) Apparatus for manufacturing semiconductor thin film
WO1992005577A1 (en) Method and apparatus for growing compound semiconductor crystals
KR101030422B1 (en) Susceptor
JPS61186288A (en) Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor
JP3057330B2 (en) Gas introduction device, epitaxial growth device and epitaxial growth method
JP3659564B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus using the same
JP2550024B2 (en) Low pressure CVD equipment
JPS61186286A (en) Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor
JPH0658880B2 (en) Vapor phase epitaxial growth system
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
JPS61177713A (en) Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor
KR100695536B1 (en) Chemical vapor deposition system having dual substrate
JPH0637355B2 (en) Method for producing silicon carbide single crystal film
JPH0443878B2 (en)
JP3104677B2 (en) Group III nitride crystal growth equipment
WO1996023912A1 (en) DEVICE FOR EPITAXIALLY GROWING SiC BY CVD
JPS60254610A (en) Manufacturing equipment of semiconductor
JPH01123413A (en) Vapor growth apparatus
JP4135543B2 (en) Method for growing silicon carbide crystal
JPH0682619B2 (en) Semiconductor growth equipment
JPH0529637B2 (en)
JPS61117195A (en) Vapor phase growth method
JPS62119919A (en) Device for crystal growth of compound semiconductor
JPH0637356B2 (en) Method for producing silicon carbide single crystal film
JPS63104417A (en) Semiconductor thin-film deposition system