JPS61129820A - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus

Info

Publication number
JPS61129820A
JPS61129820A JP25107584A JP25107584A JPS61129820A JP S61129820 A JPS61129820 A JP S61129820A JP 25107584 A JP25107584 A JP 25107584A JP 25107584 A JP25107584 A JP 25107584A JP S61129820 A JPS61129820 A JP S61129820A
Authority
JP
Japan
Prior art keywords
substrate
glass tube
quartz glass
thin film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25107584A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25107584A priority Critical patent/JPS61129820A/en
Publication of JPS61129820A publication Critical patent/JPS61129820A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To form efficiently a thin film with an uniform thickness on a large area substrate, by arraying in parallel a plural of arc line shaped lamps in the direction of the reaction chamber axis, with upward convex formed perpendicular to the reaction chamber axis. CONSTITUTION:Reaction gas 7 introduced into a quartz glass tube 1 is excited and decomposed by irradiating light from a light source 12, and the resulted products are deposited on a substrate 4 to form a thin film thereon. In this case, the light is irradiated from a plural of line shaped lamps 12a arrayed in parallel and axially of the tube 1, so that longitudinal illumination on the substrate 4 can be uniformed wholly at the both ends and center. Since each lamp 12a has an upward convex arc shape perpendicular to the glass tube axis, the both ends of the lamp 12a which have a smaller light quantity are nearer to the substrate 4. Thus the smaller light quantity can be compensated with the nearer distance, so that illumination perpendicular to the tube axis on the substrate 4 can be uniformed. As the result, on the entire surface of the substrate 4, a thin film with an uniform film thickness can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造装置に関し、特に光励起CV 
D (photo chemical vapour 
deposition)法により薄膜を形成する装置に
関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductor manufacturing equipment, and in particular to optically pumped CV
D (photo chemical vapor
The present invention relates to an apparatus for forming a thin film using a deposition method.

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成されるW
iIll[はダメージを受けやすいものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but in the conventional CVD method, the reaction gas is mainly heated to cause a chemical reaction, which results in a high reaction temperature. W formed by
iIll[ is susceptible to damage.

そこで最近、低温(、/D技術として光励起CVD法が
注目されている。この光励起CVD法は、CVDのエネ
ルギー源として光を用いるものであり、これによれば、
従来の熱励起CVD法、プラズマCVD法等に比較して
反応温度を低温にでき、薄膜へのダメージも少なくする
ことができる。
Therefore, recently, the photo-excited CVD method has been attracting attention as a low-temperature (/D) technology. This photo-excited CVD method uses light as the energy source for CVD, and according to this,
Compared to conventional thermally excited CVD methods, plasma CVD methods, etc., the reaction temperature can be lowered and damage to the thin film can be reduced.

また、一般的に光励起CVD法でば、光の基板上での照
度が薄膜の形成速度に太き(影響することが知られてお
り、例えば基板温度1反応ガス組成比、圧力を一定に保
った条件下では、Wi膜の形成速度は上記照度に比例し
て速くなる。
In general, in the photo-excited CVD method, it is known that the illuminance of the light on the substrate has a large effect on the thin film formation rate; for example, the substrate temperature, reactant gas composition ratio, and pressure are kept constant. Under these conditions, the rate of formation of the Wi film increases in proportion to the illuminance.

第3図及び第4図はこのような光励起CVD法による従
来の半導体製造装置の基本的な構成を示    ゛し、
図において、1は反応室である石英ガラス管であり、こ
れは円筒状のものでその両端は反応室側壁3により閉塞
されている。10.11はそれぞれ上記反応室内に反応
ガス7、カーテンガス8を供給するための反応ガス供給
口、カーテンガス供給口、工3ば排出ガス9を排出する
ためのガス排出口である。2は複数の線状ランプ2aか
らなる光源であり、この線状ランプ2aは上記石英ガラ
ス管の外側において該ガラス管1の軸方向に向けて、か
つ該ガラス管1の外表面に沿うよう並列配置されている
。6は基板4を搭載するためのサセプタ、5は上記基板
4を加熱するための赤外線ランプである。
FIGS. 3 and 4 show the basic configuration of a conventional semiconductor manufacturing apparatus using such a photo-excited CVD method.
In the figure, reference numeral 1 denotes a quartz glass tube serving as a reaction chamber, which is cylindrical and whose both ends are closed by side walls 3 of the reaction chamber. 10 and 11 are a reaction gas supply port for supplying the reaction gas 7 and curtain gas 8 into the reaction chamber, a curtain gas supply port, and a gas discharge port for discharging the exhaust gas 9, respectively. 2 is a light source consisting of a plurality of linear lamps 2a, and these linear lamps 2a are arranged in parallel on the outside of the quartz glass tube in the axial direction of the glass tube 1 and along the outer surface of the glass tube 1. It is located. 6 is a susceptor for mounting the substrate 4, and 5 is an infrared lamp for heating the substrate 4.

この従来装置では、反応ガス及びカーテンガス8が石英
ガラス管1内に導入されると、このカーテンガス8は石
英ガラス管lの内面上部を覆うようにして流れ、また該
反応ガス7は光源2からの光によって励起分解され、こ
れにより生じた反応生成物が赤外線ランフ′5により低
温加熱された基板4上に堆積し、その結果該基板4上に
薄膜が形成され、反応後のガス9は排出口13から排出
される。
In this conventional device, when the reaction gas and curtain gas 8 are introduced into the quartz glass tube 1, the curtain gas 8 flows to cover the upper inner surface of the quartz glass tube 1, and the reaction gas 7 flows into the light source 2. The reaction products generated thereby are deposited on the substrate 4 heated at a low temperature by the infrared lamp '5, and as a result, a thin film is formed on the substrate 4, and the gas 9 after the reaction is It is discharged from the discharge port 13.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記従来装置では、光源2として複数の線状ラ
ンプ2aを石英ガラス管1の軸方向に向けて配設してい
るが、この線状ランプ2aはその構造上、その両端部か
らの発光量が少なく、そのため基板4の上記ランプ2a
の軸方向両端部の照度が中央部より弱く、そのためこの
従来装置では基板4の両端部の膜形成速度が中央部より
遅くなってその厚さが薄くなり、形成される薄膜の厚さ
が不均一になるという問題があり、一方、線状ランプ2
aの中央部のみを光源として利用すれば照度は均一にな
る訳であるが、このようにすると今度は小さな基板しか
製造できないこととなり、製造能率が悪くなる。
By the way, in the above-mentioned conventional device, a plurality of linear lamps 2a are arranged as the light source 2 in the axial direction of the quartz glass tube 1, but due to its structure, the amount of light emitted from both ends of the linear lamps 2a is limited. Therefore, the lamp 2a of the substrate 4
The illuminance at both ends of the substrate 4 in the axial direction is weaker than that at the center. Therefore, in this conventional device, the film formation rate at both ends of the substrate 4 is slower than that at the center, resulting in a thinner film. There is a problem of uniformity, and on the other hand, linear lamp 2
If only the central part of a is used as a light source, the illuminance will be uniform, but if this is done, only small substrates can be manufactured, and manufacturing efficiency will deteriorate.

また、上記従来装置では、ガラス管1の外表面に沿って
線状ランプ2aを並列配置しているので、基板4のガラ
ス管軸と直角方向の照度分布は均一にし易いが、このよ
うな円弧状の形状に配置するのは困難なものである。
In addition, in the conventional device described above, since the linear lamps 2a are arranged in parallel along the outer surface of the glass tube 1, it is easy to make the illumination distribution in the direction perpendicular to the glass tube axis of the substrate 4 uniform. It is difficult to arrange them in an arc shape.

本発明は、上記従来の問題点に鑑みてなされたもので、
大きな面積の基板上に均一な膜厚の薄膜を能率よく形成
できる半導体製造装置を提供することを目的としている
The present invention has been made in view of the above-mentioned conventional problems.
It is an object of the present invention to provide a semiconductor manufacturing apparatus that can efficiently form a thin film of uniform thickness on a large area substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、半導体製造装置において、反応室である石英
ガラス管の外側に複数の円弧状の線状ランプを上方に凸
になるよう、かつ該石英ガラス管の軸と直角方向に向け
て該管軸方向に並列配置したものである。
The present invention provides a semiconductor manufacturing apparatus in which a plurality of arc-shaped linear lamps are arranged on the outside of a quartz glass tube, which is a reaction chamber, so as to convex upwardly and in a direction perpendicular to the axis of the quartz glass tube. They are arranged in parallel in the axial direction.

(作用〕 本発明では、基板への光は、石英ガラス管の軸方向に並
列配置された複数の線状ランプから照射されるので、基
板上の上記軸方向の照度分布は基板の該軸方向両端及び
中央にわたって均一となり、また上記各線状ランプは円
弧状で管軸と直角方向に向けてかつ上方に凸になるよう
に、即ち線状ランプの光量の少ない両端部はど基板に近
(なるように配設されているので、基板上の上記軸直角
方向の照度分布も基板の該軸直角方向両端及び中央にわ
たって均一となり、結局基板全面にわたって照度が均一
となり、その結果基板全面に同一厚さの薄膜が形成され
る。
(Function) In the present invention, the light to the substrate is irradiated from a plurality of linear lamps arranged in parallel in the axial direction of the quartz glass tube, so that the illuminance distribution in the axial direction on the substrate is The light intensity is uniform across both ends and the center, and each of the linear lamps has an arc shape and is convex upward in a direction perpendicular to the tube axis. As a result, the illuminance distribution in the direction perpendicular to the axis on the substrate becomes uniform across both ends and the center of the substrate in the direction perpendicular to the axis, and as a result, the illuminance becomes uniform over the entire surface of the substrate, and as a result, the entire surface of the substrate has the same thickness. A thin film is formed.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の一実施例を示す。1 and 2 show one embodiment of the present invention.

図において、第3図及び第4図と同一符号は同−又は相
当部分を示し、12は石英ガラス管1の外側にて該ガラ
ス管1の軸方向に並列配置された5本の線状ランプ12
aからなる光源であり、この各線状ランプ12aは円弧
状のもので、石英ガラス管lの外側にて上方に凸で、か
つ該石英ガラス管1の軸と直角方向に向いている。
In the figure, the same reference numerals as in FIGS. 3 and 4 indicate the same or equivalent parts, and 12 is five linear lamps arranged in parallel in the axial direction of the glass tube 1 on the outside of the quartz glass tube 1. 12
Each linear lamp 12a is arc-shaped, convex upward on the outside of the quartz glass tube 1, and oriented in a direction perpendicular to the axis of the quartz glass tube 1.

次に作用効果について説明する。Next, the effects will be explained.

本実施例装置においても従来装置と同様に、石英ガラス
管1内に導入された反応ガス7は光源12からの光が照
射されて励起分解し、これによる反応生成物が基板4上
に堆積して該基板4上に薄膜が形成される。
In the apparatus of this embodiment, as in the conventional apparatus, the reaction gas 7 introduced into the quartz glass tube 1 is irradiated with light from the light source 12 and is excited and decomposed, and the resulting reaction products are deposited on the substrate 4. A thin film is then formed on the substrate 4.

そしてこの際、本実施例では、石英ガラス管1の軸方向
、即ち基板4の長手方向に並列配置された5一本の線状
ランプ12aから光が照射されるから、上記基板4上の
長手方向の照度は、両端部も中央部も均一となり、また
上記各線状ランプ12aはガラス管軸と直角方向を向い
た上方に凸の円弧状のものであるから、該ランプ12a
の光量の少ない両端部はど基板4に近くなっており、こ
れによりこの光量の不足分は距離が近いことで補なわれ
、そのため基板4上の上記管軸と直角方向の照度も均一
となり、その結果基板4の全面において均一な膜厚の薄
膜が形成されることとなる。
At this time, in this embodiment, light is irradiated from five single linear lamps 12a arranged in parallel in the axial direction of the quartz glass tube 1, that is, in the longitudinal direction of the substrate 4. The illuminance in the direction is uniform at both ends and the center, and since each of the linear lamps 12a has an upwardly convex arc shape facing perpendicular to the glass tube axis, the lamp 12a
Both ends where the amount of light is low are close to the substrate 4, and the short distance is compensated for by the short distance, so that the illuminance on the substrate 4 in the direction perpendicular to the tube axis is also uniform, As a result, a thin film having a uniform thickness is formed over the entire surface of the substrate 4.

このように本実施例では、基板4の全面において光源1
2からの照度が均一となり、その結果膜厚の均一性を向
上でき、また基板4の長手方向に光量が均一となる結果
、大きな面積の基板に薄膜を形成でき、製造能率を向上
できる。
In this way, in this embodiment, the light source 1 is placed on the entire surface of the substrate 4.
The illuminance from 2 becomes uniform, and as a result, the uniformity of the film thickness can be improved. Also, as the amount of light becomes uniform in the longitudinal direction of the substrate 4, a thin film can be formed on a large area of the substrate, and manufacturing efficiency can be improved.

なお、上記実施例では、光源12が5本の線状ランプ1
2aからなる場合について説明したが、この線状ランプ
12aの数量は処理すべき基板の大きさによって適宜選
択されるものである。また上記実施例では、線状ランプ
12aを同じ間隔で並列配置した場合について説明した
が、本発明ではこの配置間隔は必ずしも同じでなくても
よく、例えば中央はど広くしてもよく、このようにすれ
ば基板上の照度分布をさらに均一にできる。
In the above embodiment, the light source 12 includes five linear lamps 1.
2a, the number of linear lamps 12a is appropriately selected depending on the size of the substrate to be processed. Furthermore, in the above embodiment, a case has been described in which the linear lamps 12a are arranged in parallel at the same interval, but in the present invention, the arrangement interval does not necessarily have to be the same; for example, the center may be widened; By doing so, the illuminance distribution on the substrate can be made even more uniform.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る半導体製造装置によれば、
複数の円弧状の線状ランプを上方に凸になるよう、かつ
石英ガラス管の軸直角方向に向けて該軸方向に並列配置
したので、基板上における光の照度分布を均一にして膜
厚を均一にでき、半導体の精度を向上できる効果があり
、また大面積の基板に薄膜を形成でき、製造能率を向上
できる効果がある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention,
A plurality of arc-shaped linear lamps are arranged in parallel in a direction perpendicular to the axis of the quartz glass tube so as to convex upward, so that the illuminance distribution of light on the substrate is uniform and the film thickness can be reduced. This has the effect of making it uniform and improving the precision of the semiconductor, and also allows forming a thin film on a large area substrate, which has the effect of improving manufacturing efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図はその断面正面図、第3図は従来の半導
体製造装置の断面側面図、第4図はその断面正面図であ
る。 1・・・石英ガラス管、4・・・基板、7・・・反応ガ
ス、12・・・光源、12a・・・線状ランプ。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing device according to an embodiment of the present invention, FIG. 2 is a cross-sectional front view thereof, FIG. 3 is a cross-sectional side view of a conventional semiconductor manufacturing device, and FIG. 4 is a cross-sectional front view thereof. It is. DESCRIPTION OF SYMBOLS 1... Quartz glass tube, 4... Substrate, 7... Reaction gas, 12... Light source, 12a... Linear lamp.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記反応室は
石英ガラス管からなり、上記光源は上記石英ガラス管の
外側にて該ガラス管の軸方向に並列配置された複数の円
弧状の線状ランプからなり、その各線状ランプは上方に
凸でかつ上記石英ガラス管の軸と直角方向に向いている
ことを特徴とする半導体製造装置。
(1) In a semiconductor manufacturing device that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the reaction chamber is connected to a quartz glass tube. The light source consists of a plurality of arc-shaped linear lamps arranged in parallel in the axial direction of the quartz glass tube on the outside of the quartz glass tube, and each of the linear lamps is convex upward and extends beyond the quartz glass tube. Semiconductor manufacturing equipment characterized by being oriented in a direction perpendicular to the axis.
JP25107584A 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus Pending JPS61129820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25107584A JPS61129820A (en) 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25107584A JPS61129820A (en) 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPS61129820A true JPS61129820A (en) 1986-06-17

Family

ID=17217258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25107584A Pending JPS61129820A (en) 1984-11-28 1984-11-28 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPS61129820A (en)

Similar Documents

Publication Publication Date Title
JPH05267177A (en) Optical chemical vapor deposition system
US20100096569A1 (en) Ultraviolet-transmitting microwave reflector comprising a micromesh screen
KR880013226A (en) Thermal / Microwave Remote Plasma Multiprocessing Reactor and How to Use It
JPS61129820A (en) Semiconductor manufacturing apparatus
JPS61129821A (en) Semiconductor manufacturing apparatus
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS61129816A (en) Semiconductor manufacturing apparatus
US4719122A (en) CVD method and apparatus for forming a film
JPS61129819A (en) Semiconductor manufacturing apparatus
JPS61129815A (en) Semiconductor manufacturing apparatus
US4768464A (en) Chemical vapor reaction apparatus
JPS61131419A (en) Semiconductor manufacturing equipment
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPS61131423A (en) Semiconductor manufacturing equipment
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JPS60253212A (en) Vapor growth device
JP3010066B2 (en) Optical excitation process equipment
JPH041730Y2 (en)
JP3010065B2 (en) Optical excitation process equipment
JPH04325686A (en) Heater for heating cvd device
JPS61131429A (en) Semiconductor manufacturing equipment
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61131428A (en) Semiconductor manufacturing equipment
JPS61129811A (en) Manufacturing apparatus for semiconductor