JPH041730Y2 - - Google Patents

Info

Publication number
JPH041730Y2
JPH041730Y2 JP1982164864U JP16486482U JPH041730Y2 JP H041730 Y2 JPH041730 Y2 JP H041730Y2 JP 1982164864 U JP1982164864 U JP 1982164864U JP 16486482 U JP16486482 U JP 16486482U JP H041730 Y2 JPH041730 Y2 JP H041730Y2
Authority
JP
Japan
Prior art keywords
reaction tube
substrate
reaction
substrates
large number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982164864U
Other languages
Japanese (ja)
Other versions
JPS5970333U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16486482U priority Critical patent/JPS5970333U/en
Publication of JPS5970333U publication Critical patent/JPS5970333U/en
Application granted granted Critical
Publication of JPH041730Y2 publication Critical patent/JPH041730Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【考案の詳細な説明】 半導体デバイス製造プロセスにおけるSiN,
SiO2及びPSG(リンケイ酸ガラス)の薄膜生成及
び太陽電池用のアモルフアスSi(a−Si:H)の
薄膜生成に、グロー放電を応用したプラズマ化学
気相生成法がある。
[Detailed explanation of the idea] SiN in the semiconductor device manufacturing process,
There is a plasma chemical vapor phase production method that applies glow discharge to the production of thin films of SiO 2 and PSG (phosphosilicate glass) and amorphous Si (a-Si:H) for solar cells.

本考案は上記各種薄膜を生成するためのプラズ
マ化学気相生成装置に関する。
The present invention relates to a plasma chemical vapor phase generation apparatus for producing the various thin films mentioned above.

第1図は従来装置の一例を示す説明用縦断面図
を示し、1a,1bは上、下部板状電極で、両電
極1a,1b間に高周波電源2が接続されてい
る。3は下部板状電極1b上に配置された多数の
基板、4は基板3を加熱するためのヒータで、電
極1a,1b、基板3及びヒータ4は金属製反応
室5a1内に収設されている。6は反応ガス注入
管、7は反応ガス注入用バルブ、8は排気管で、
排気ポンプに連結される。
FIG. 1 shows an explanatory vertical cross-sectional view showing an example of a conventional device, in which 1a and 1b are upper and lower plate-shaped electrodes, and a high frequency power source 2 is connected between both electrodes 1a and 1b. 3 is a large number of substrates arranged on the lower plate-shaped electrode 1b, 4 is a heater for heating the substrate 3, and the electrodes 1a, 1b, the substrate 3, and the heater 4 are housed in a metal reaction chamber 5a1 . ing. 6 is a reaction gas injection pipe, 7 is a reaction gas injection valve, 8 is an exhaust pipe,
Connected to the exhaust pump.

このような従来の平行平板型プラズマ化学気相
生成装置は、多数の基板3を一度に処理するため
には電極1a,1bを極めて大きくせねばなら
ず、装置全体が大形になる欠点がある。
Such a conventional parallel plate plasma chemical vapor generation apparatus has the disadvantage that the electrodes 1a and 1b must be extremely large in order to process a large number of substrates 3 at once, making the entire apparatus large. .

第2図aは従来装置の他例を示す説明用縦断面
図、第2図bはその電極部の説明用横断面図を示
し、これは石英製反応管5内に多数の板状電極1
a,1b,1a,1bを平行に並べて配置し、1
つ置きの板状電極1a,1aと1b,1bをそれ
ぞれ一群として両群間に高周波電源2を接続せし
め、各電極間1a,1bに基板3を配置した構成
になつている。
FIG. 2a is an explanatory longitudinal cross-sectional view showing another example of the conventional device, and FIG. 2b is an explanatory cross-sectional view of the electrode section of the device.
Arrange a, 1b, 1a, 1b in parallel, 1
Alternate plate-shaped electrodes 1a, 1a and 1b, 1b are each grouped together, a high frequency power source 2 is connected between both groups, and a substrate 3 is arranged between each electrode 1a, 1b.

このような従来のホツトウオール型プラズマ化
学気相生成装置は、多数の電極1a,1b間に多
数の基板3を配置できるので、多数の基板3を一
度に処理することができるが、基板3の着脱に時
間がかかる欠点がある。
In such a conventional hot wall plasma chemical vapor generation apparatus, a large number of substrates 3 can be arranged between a large number of electrodes 1a and 1b, and therefore a large number of substrates 3 can be processed at once. The disadvantage is that it takes time.

また、第1,第2図示のいずれの装置も反応室
5a1や反応管5内に金属、カーボン製等の電極1
a,1bを収設して各基板3上に気相薄膜を生成
するため、電極1a,1bよりの金属、カーボン
等により反応室5a1や反応管5内の高温領域でグ
ロー放電に晒される反応ガス流通路10の部分が
汚染され、生成薄膜が汚染される欠点がある。
In addition, both the apparatuses shown in the first and second figures have an electrode 1 made of metal, carbon, etc. in the reaction chamber 5a 1 or the reaction tube 5.
In order to generate a vapor phase thin film on each substrate 3 by accommodating the electrodes 1a and 1b, the metal, carbon, etc. from the electrodes 1a and 1b are exposed to glow discharge in the high temperature region in the reaction chamber 5a 1 and the reaction tube 5. There is a disadvantage that the reaction gas flow path 10 is contaminated and the produced thin film is contaminated.

本考案は上記の欠点を解決することを目的とし
てなされたものであつて、反応管を同心状に配置
した内、外側筒状反応管で構成し、この内側筒状
反応管の内側及び外側筒状反応管の外側にそれぞ
れ内側筒状電極及び外側筒状電極を配置すること
により生成薄膜の汚染を防止できると共に、内側
筒状反応管の外周面及び外側筒状反応管の内周面
の少なくとも一方の周面に沿つて多数の基板トレ
ーにより多数の基板を設けることにより基板の処
理数をホツトウオール型と同等以上に向上でき、
かつ基板の着脱を基板トレーの開口縁保持部側方
より用意に行なうことができるプラズマ化学気相
生成装置を提供するものである。
The present invention was made with the aim of solving the above-mentioned drawbacks, and consists of an inner and an outer cylindrical reaction tube arranged concentrically, and an inner and an outer cylindrical reaction tube of the inner cylindrical reaction tube. By arranging the inner cylindrical electrode and the outer cylindrical electrode on the outside of the cylindrical reaction tube, it is possible to prevent contamination of the produced thin film, and also to prevent at least the outer circumferential surface of the inner cylindrical reaction tube and the inner circumferential surface of the outer cylindrical reaction tube. By providing a large number of substrates with a large number of substrate trays along one circumferential surface, the number of substrates processed can be increased to the same level or higher than that of the hot wall type.
Further, it is an object of the present invention to provide a plasma chemical vapor phase generation apparatus in which the substrate can be easily attached and detached from the side of the opening edge holder of the substrate tray.

以上図面によつて本考案の実施例を説明する。 Embodiments of the present invention will be described above with reference to the drawings.

第3図は第1実施例の説明用縦断面図、第4図
はその電極部の説明用横断面図、第5図aは基板
トレーに基板を挿入保持した状態を示す断面図で
ある。
3 is an explanatory longitudinal cross-sectional view of the first embodiment, FIG. 4 is an explanatory cross-sectional view of the electrode portion thereof, and FIG. 5a is a cross-sectional view showing a state in which a substrate is inserted and held in a substrate tray.

第1実施例においては、反応管5を第3、第4
図示のように同心状に配置した例えば石英製の
内、外側円筒状反応管5a,5bで構成し、この
内側円筒状反応管5aの内側及び外側円筒状反応
管5bの外側にそれぞれ例えば内側円筒状電極1
a1及び外側円筒状電極1b1を配置せしめ、内側円
筒状反応管5aの外周面に沿つて開口9a側が両
反応管5a,5bの間に形成された反応ガス流通
路10に向くよう多数の石英製基板トレー9を多
角形状に並設すると共に、この各基板トレー9の
開口縁保持部9bに第3、第4図及び第5図a示
のようにそれぞれ基板3を挿入保持して構成す
る。
In the first embodiment, the reaction tube 5 is
As shown in the figure, the inner and outer cylindrical reaction tubes 5a and 5b made of, for example, quartz are arranged concentrically. shaped electrode 1
a 1 and the outer cylindrical electrode 1b 1 are arranged, and a large number of electrodes are arranged along the outer peripheral surface of the inner cylindrical reaction tube 5a so that the opening 9a side faces the reaction gas flow passage 10 formed between the reaction tubes 5a and 5b. The quartz substrate trays 9 are arranged side by side in a polygonal shape, and the substrates 3 are inserted and held in the opening edge holding portions 9b of each substrate tray 9, respectively, as shown in FIGS. 3, 4, and 5a. do.

なお、11は排気管8に介挿したコンダクタン
スバルブ、12は排気管8に連結した排気ポンプ
である。
Note that 11 is a conductance valve inserted into the exhaust pipe 8, and 12 is an exhaust pump connected to the exhaust pipe 8.

第1実施例は上記のような構成であるから、反
応ガス注入管6ょりSiH4の反応ガスまたはSi2H6
及びP層、N層の場合はB2H6,PH3をそれぞれ
添加した反応ガスを注入しつつ排気ポンプ12に
より排気し、バルブ7,11の調整により反応管
5内の圧力を10〜数百パスカル程度の一定値に保
ちつつ反応ガス流通路10に反応ガスを流通させ
る。反応管5の外部に設けられたヒータ4により
基板3の設置領域を均一な温度になるよう加熱
し、電極1a1,1b1間に高周波電源2により高周
波電圧を印加すると、電極1a1,1b1間の反応ガ
ス流通路10の部分にグロー放電が発生し、この
グロー放電により化学的な活性分子(ラジカル)
が創生するのであるが、基板3は電極1a1の近く
に沿つて配置されているので、電極1a1附近での
荷電粒子(電子、イオン)のエネルギーが十分に
高く、高密度のラジカルが創生する。このラジカ
ルは基板3上で反応し、しかも基板3の表面に高
エネルギーの荷電粒子が衝突して反応を促進させ
るのでその反応促進効果により基板3上に気相薄
膜(この場合a−Si:Hの薄膜)が迅速に堆積し
生成するものである。
Since the first embodiment has the above-mentioned configuration, the reaction gas injection pipe 6 can be used to inject SiH 4 reaction gas or Si 2 H 6 into the reaction gas injection pipe 6.
In the case of the P layer and the N layer, the reaction gas added with B 2 H 6 and PH 3 is injected and evacuated by the exhaust pump 12, and the pressure inside the reaction tube 5 is adjusted to 10 to several times by adjusting the valves 7 and 11. The reaction gas is caused to flow through the reaction gas flow path 10 while being maintained at a constant value of about 100 Pascals. When the installation area of the substrate 3 is heated to a uniform temperature by the heater 4 provided outside the reaction tube 5, and a high frequency voltage is applied between the electrodes 1a 1 and 1b 1 by the high frequency power supply 2, the electrodes 1a 1 and 1b Glow discharge occurs in the reaction gas flow path 10 between 1 and 1 , and this glow discharge causes chemically active molecules (radicals) to
However, since the substrate 3 is arranged near the electrode 1a 1 , the energy of charged particles (electrons, ions) near the electrode 1a 1 is sufficiently high, and high-density radicals are generated. Create. These radicals react on the substrate 3, and high-energy charged particles collide with the surface of the substrate 3 to promote the reaction, so that a vapor-phase thin film (in this case a-Si:H (thin film) is rapidly deposited and formed.

第6図は第2実施例における電極部の説明用横
断面図を示し、この第2実施例では第1実施例に
おいて更に外側円筒状反応管5bの内周面に沿つ
て開口9a側が両反応管5a,5bの間に形成さ
れた反応ガス流通路10に向くよう多数の石英製
基板トレー9を多角形状に並設し、この各基板ト
レー9の開口縁保持部9bにそれぞれ基板3を挿
入保持して構成した場合である。この第2実施例
の場合も上記第1実施例と同様の作用を行なう。
FIG. 6 shows an explanatory cross-sectional view of the electrode section in the second embodiment. A large number of quartz substrate trays 9 are arranged side by side in a polygonal shape so as to face the reaction gas flow path 10 formed between the tubes 5a and 5b, and the substrate 3 is inserted into the opening edge holding portion 9b of each substrate tray 9. This is the case when it is retained and configured. This second embodiment also operates in the same way as the first embodiment.

なお、本考案は多数の基板トレー9を外側円筒
状反応管5bの内周面のみに沿つて多角形状に並
設してもよく、また、電極1a1,1b1及び反応管
5a,5bの形状は第1、第2実施例のように円
筒状に限定する必要はなく、多角筒状であつても
よいことは勿論である。また、各基板トレー9に
は基板3のみならず、第5図b示のように石英製
マスク13を挿入保持させてもよく、この場合は
ガラス基板上へアモルフアスシリコン太陽電池を
作製することができる。更に、本考案による装置
(炉)をゲートバルブを介して複数台連結し、基
板トレー9の搬送機構を設けてもよく、この場合
は最初の炉で基板3上に膜生成を行なつた後、次
の炉に基板トレー9を搬送して更にその上に別の
膜生成を行なうという工程を経ることによりPIN
の連続生成等、多層膜の生成を連続的に行なうこ
とができる。
In addition, in the present invention, a large number of substrate trays 9 may be arranged in parallel in a polygonal shape only along the inner peripheral surface of the outer cylindrical reaction tube 5b, and the electrodes 1a 1 and 1b 1 and the reaction tubes 5a and 5b may be arranged in parallel. The shape does not need to be limited to a cylindrical shape as in the first and second embodiments, and of course may be a polygonal cylindrical shape. In addition, not only the substrate 3 but also a quartz mask 13 may be inserted and held in each substrate tray 9 as shown in FIG. I can do it. Furthermore, a plurality of apparatuses (furnaces) according to the present invention may be connected via gate valves to provide a transport mechanism for the substrate tray 9. In this case, after the film is formed on the substrate 3 in the first furnace, , the substrate tray 9 is transported to the next furnace and another film is formed on it.
It is possible to continuously produce multilayer films, such as continuous production of .

以上の説明により明らかなように本考案によれ
ば、高周波電圧を印加した電極間において反応管
5内に設けられた多数の基板3を、反応管5内に
反応ガスを流通させながら加熱して各基板3上に
気相薄膜を生成する装置において、反応管5を同
心状に配置した内、外側筒状反応管5a,5bで
構成し、この内側筒状反応管5aの内側及び外側
筒状反応管5bの外側にそれぞれ内側筒状電極1
a1及び外側筒状電極1b1を配置せしめた構成にし
たので、反応管5の内部の高温領域でグロー放電
に晒される反応ガス流通路10の部分には石英物
(基板トレー、マスク)と基板3以外の金属、カ
ーボン製等の電極1a1,1b1は存在しないので、
生成薄膜が金属、カーボン等によつて汚染される
ことはなく、特性の優れた生成薄膜を得ることが
できるばかりでなく、内側筒状反応管5aの外周
面及び外側筒状反応管5bの内周面の少なくとも
一方の周囲に沿つて多数の石英製基板トレー9を
多面形状に並設したので、多数の基板3を一度に
処理することができ、特に両反応管5a,5bの
周面に沿つて基板トレー9を多面形状に並設した
場合には多量の基板処理ができる。また、基板3
の着脱は基板トレー9の開口縁保持部9bの側方
(第5図a,bの紙面に垂直な方向)より行なう
ことができるので、極めて容易である等の効果を
奏する。
As is clear from the above description, according to the present invention, a large number of substrates 3 provided in the reaction tube 5 are heated between the electrodes to which a high frequency voltage is applied while a reaction gas is passed through the reaction tube 5. In an apparatus for producing a gas phase thin film on each substrate 3, a reaction tube 5 is composed of inner and outer cylindrical reaction tubes 5a and 5b arranged concentrically, and the inner and outer cylindrical reaction tubes 5a and 5b are arranged concentrically. Each inner cylindrical electrode 1 is provided on the outside of the reaction tube 5b.
Since the configuration is such that the outer cylindrical electrode 1b1 and the outer cylindrical electrode 1b1 are arranged, a quartz material (substrate tray, mask) is provided in the part of the reaction gas flow path 10 that is exposed to glow discharge in the high temperature region inside the reaction tube 5. Since there are no electrodes 1a 1 , 1b 1 made of metal or carbon other than the substrate 3,
The produced thin film is not contaminated by metals, carbon, etc., and it is possible to obtain a produced thin film with excellent properties. Since a large number of quartz substrate trays 9 are arranged in a multifaceted manner along at least one of the circumferential surfaces, a large number of substrates 3 can be processed at once. If the substrate trays 9 are arranged side by side in a multifaceted manner, a large amount of substrates can be processed. Also, the board 3
Since the attachment and detachment can be carried out from the side of the opening edge holding portion 9b of the substrate tray 9 (in the direction perpendicular to the paper plane of FIGS. 5a and 5b), it is extremely easy to attach and detach.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の一例を示す説明用縦断面
図、第2図aは従来装置の他例を示す説明用縦断
面図、第2図bはその電極部の説明用横断面図、
第3図は本考案装置の第1実施例の説明用縦断面
図、第4図はその電極部の説明用横断面図、第5
図aは基板トレーに基板を挿入保持した状態を示
す断面図、第5図bは基板トレーにマスクと共に
基板を挿入保持した状態を示す断面図、第6図は
第2実施例における電極部の説明用横断面図であ
る。 1a1,1b1……内側、外側筒状電極、2……高
周波電源、3……基板、4……ヒータ、5……反
応管、5a……内側(円)筒状反応管、5b……
外側(円)筒状反応管、6……反応ガス注入管、
7……反応ガス注入用バルブ、8……排気管、9
……基板トレー、9a……開口、9b……開口縁
保持部、10……反応ガス流通路、11……コン
ダクタンスバルブ、12……排気ポンプ、13…
…マスク。
FIG. 1 is an explanatory longitudinal sectional view showing an example of a conventional device, FIG. 2 a is an explanatory longitudinal sectional view showing another example of the conventional device, and FIG.
3 is an explanatory longitudinal cross-sectional view of the first embodiment of the device of the present invention, FIG. 4 is an explanatory cross-sectional view of the electrode portion thereof, and FIG.
Figure a is a cross-sectional view showing a state in which a substrate is inserted and held in a substrate tray, Figure 5 b is a cross-sectional view showing a state in which a substrate is inserted and held together with a mask in a substrate tray, and Figure 6 is a cross-sectional view showing a state in which a substrate is inserted and held in a substrate tray together with a mask. It is a cross-sectional view for explanation. 1a 1 , 1b 1 ... Inner and outer cylindrical electrodes, 2 ... High frequency power supply, 3 ... Substrate, 4 ... Heater, 5 ... Reaction tube, 5a ... Inner (circular) cylindrical reaction tube, 5b ... …
Outer (circular) cylindrical reaction tube, 6...reaction gas injection tube,
7... Reaction gas injection valve, 8... Exhaust pipe, 9
... Substrate tray, 9a ... Opening, 9b ... Opening edge holding part, 10 ... Reaction gas flow path, 11 ... Conductance valve, 12 ... Exhaust pump, 13 ...
…mask.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高周波電圧を印加した電極間において反応管内
に設けられた多数の基板を、反応管内に反応ガス
を流通させながら加熱して各基板上に気相薄膜を
生成する装置において、前記反応管を同心状に配
置した内、外側筒状反応管で構成し、この内側筒
状反応管の内側及び外側筒状反応管の外側にそれ
ぞれ内側筒状電極及び外側筒状電極を配置せし
め、内側筒状反応管の外周面及び外側筒状反応管
の内周面の少なくとも一方の周面に沿つて開口側
が両反応管の間に形成された反応ガス流通路に向
くよう多数の石英製基板トレーを多角形状に並設
すると共に、この各基板トレーの開口縁保持部に
それぞれ基板を挿入保持して構成したプラズマ化
学気相生成装置。
In an apparatus in which a large number of substrates provided in a reaction tube are heated between electrodes to which a high frequency voltage is applied while a reaction gas is passed through the reaction tube to generate a vapor phase thin film on each substrate, the reaction tubes are arranged concentrically. An inner cylindrical electrode and an outer cylindrical electrode are arranged inside the inner cylindrical reaction tube and outside the outer cylindrical reaction tube, respectively. A large number of quartz substrate trays are formed into a polygonal shape so that the opening side faces the reaction gas flow passage formed between both reaction tubes along at least one of the outer peripheral surface of the outer peripheral surface and the inner peripheral surface of the outer cylindrical reaction tube. The plasma chemical vapor phase generation device is constructed by arranging the substrates in parallel and inserting and holding the substrates into the opening edge holding portions of each of the substrate trays.
JP16486482U 1982-10-29 1982-10-29 Plasma chemical vapor phase generator Granted JPS5970333U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16486482U JPS5970333U (en) 1982-10-29 1982-10-29 Plasma chemical vapor phase generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16486482U JPS5970333U (en) 1982-10-29 1982-10-29 Plasma chemical vapor phase generator

Publications (2)

Publication Number Publication Date
JPS5970333U JPS5970333U (en) 1984-05-12
JPH041730Y2 true JPH041730Y2 (en) 1992-01-21

Family

ID=30361335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16486482U Granted JPS5970333U (en) 1982-10-29 1982-10-29 Plasma chemical vapor phase generator

Country Status (1)

Country Link
JP (1) JPS5970333U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus
JPS5673428A (en) * 1979-11-21 1981-06-18 Canon Inc Method of forming film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694037U (en) * 1979-12-20 1981-07-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus
JPS5673428A (en) * 1979-11-21 1981-06-18 Canon Inc Method of forming film

Also Published As

Publication number Publication date
JPS5970333U (en) 1984-05-12

Similar Documents

Publication Publication Date Title
KR860009480A (en) Manufacturing method of planar thin film
JPH11340151A (en) Thin film deposition system
JPH041730Y2 (en)
JPS62203328A (en) Plasma cvd apparatus
JPH0568096B2 (en)
US6526910B2 (en) Apparatus and method for forming a deposited film by means of plasma CVD
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH057462B2 (en)
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JP2608456B2 (en) Thin film forming equipment
JPS622544A (en) Noiseless discharge type gas plasma treating device
JP2907403B2 (en) Deposition film forming equipment
JP2562686B2 (en) Plasma processing device
JPS57113214A (en) Manufacture of amorphous semiconductor film
JPH0341722A (en) Thin-film manufacturing apparatus
JPH042118A (en) Formation of cvd film
JP2504489B2 (en) Chemical vapor deposition
JPS6132513A (en) Thin film growing method
JPS59161828A (en) Reaction device
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JPH0429217B2 (en)
JPS6086277A (en) Formation of deposited film by discharge
JPS62213118A (en) Formation of thin film and device therefor
JPS60177180A (en) Plasma cvd device
JP2968085B2 (en) Vapor phase growth equipment