JPS61131429A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS61131429A
JPS61131429A JP25345684A JP25345684A JPS61131429A JP S61131429 A JPS61131429 A JP S61131429A JP 25345684 A JP25345684 A JP 25345684A JP 25345684 A JP25345684 A JP 25345684A JP S61131429 A JPS61131429 A JP S61131429A
Authority
JP
Japan
Prior art keywords
substrate
linear lamps
thin film
light
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25345684A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25345684A priority Critical patent/JPS61131429A/en
Publication of JPS61131429A publication Critical patent/JPS61131429A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To enable to form a thin film having a uniform film thickness over the whole surface of the substrate with a wide area at a speedy rate by a method wherein plural pieces of linear lamps are used as this light source, and at the same time, the linear lamps are arranged in such a way that the central ones among the linear lamps are particularly made higher the heights thereof from the substrate. CONSTITUTION:Linear lamps 2 are disposed in such a way that the central linear lamps among the linear lamps are particularly made higher the heights thereof from a substrate 5. By this way, the illuminance difference of light in a reaction chamber 1 can be remarkably lessened over a wide extent in the interior of the reaction chamber 1. Accordingly, a thin film having a uniform film thickness can be formed on the substrate 5 with a wide area and the high- accuracy semiconductor can be easily manufactured efficiently. It is most desir able to dispose each linear lamp 2 in such a way that the angle theta becomes about 10 deg. or thereabouts. If so, the fluctuations of the illuminance of light on the substrate 5, whereon the thin film is formed, can be suppressed to + or -5%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造装置に関し、特に光励起CV 
D (photo chen+1cal vapour
 deposition)法により薄膜を形成する装置
に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductor manufacturing equipment, and in particular to optically pumped CV
D (photo chen+1cal vapor
The present invention relates to an apparatus for forming a thin film using a deposition method.

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は、主として反応ガ
スを加熱して化学反応を起こさせるようにしており、こ
のため反応温度が高温となり、これにより形成される薄
膜はダメージを受けやすいものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but in the conventional CVD method, the reaction gas is mainly heated to cause a chemical reaction, which results in a high reaction temperature. The thin film formed by this method is easily damaged.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にでき、薄膜へのダメージも少なくするこ
とができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and there is no damage to thin films. It can be reduced.

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度1反応ガスの組成比、圧力を一定に保った条件下
では、薄膜の形成速度は光の照射強度に比例して速くな
ることが知られている。
In general, in the photo-excited CVD method, it is known that the intensity of light has a large effect on the rate of thin film formation. It is known that the formation speed of is increased in proportion to the intensity of light irradiation.

第2図はこのような光励起CVD法による従来の薄膜形
成装置の基本的な構成を示し、図において、1は薄膜形
成時にその中が高真空状態に減圧される反応室、2は線
状の低圧水銀ランプからなる光源、3は基板加熱用ヒー
タ、4はシラン等の反応ガス、5は薄膜が形成される基
板、6は光透過材からなる光入射窓、7は反応ガス供給
口、8は反応後のガス4aを排出するためのガス排出口
、9は基板5を載せる固定台である。
Figure 2 shows the basic configuration of a conventional thin film forming apparatus using such a photo-excited CVD method. A light source consisting of a low-pressure mercury lamp, 3 a heater for heating the substrate, 4 a reactive gas such as silane, 5 a substrate on which a thin film is formed, 6 a light entrance window made of a light-transmitting material, 7 a reactive gas supply port, 8 9 is a gas outlet for discharging the gas 4a after the reaction, and 9 is a fixing table on which the substrate 5 is placed.

この装置では、反応ガス4が供給ロアから反応室1内に
□導入されると、該反応ガス4は入射窓6から投射され
た光線により励起分解される。そしてこれにより生じた
反応生成物がヒータ3によって低温加熱された基板5上
に堆積し、該基板5上に薄膜が形成される0反応後のガ
ス4aは排出口8から排出される。
In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 from the supply lower, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction products are deposited on the substrate 5 heated at a low temperature by the heater 3, and the gas 4a after the zero reaction in which a thin film is formed on the substrate 5 is discharged from the exhaust port 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるにこの従来の装置では、光源として単一の線状ラ
ンプ2を用いているために、ランプ軸と垂直な方向にお
ける基板5両端部の照射強度が中央部に比べて弱くなっ
てしまう、このため基板5両端部の膜形成速度が中央部
分より遅くなってその厚さが薄くなり、形成される薄膜
の膜厚が不均一になるという問題があった。
However, since this conventional device uses a single linear lamp 2 as a light source, the irradiation intensity at both ends of the substrate 5 in the direction perpendicular to the lamp axis is weaker than at the center. There is a problem in that the film formation rate at both ends of the substrate 5 is slower than that at the center, resulting in a thinner film, resulting in non-uniform film thickness of the formed thin film.

この発明は、かかる点に鑑みてなされたもので、基板上
での照度差をなくして均一な膜厚の膜形成ができ、さら
に照射強度を広い範囲にわたって増加させて、より広い
面積の基板上に、速い速度で膜形成をすることのできる
半導体製造装置を提供することを目的としている。
This invention was made in view of the above points, and it is possible to form a film with a uniform thickness by eliminating the difference in illuminance on the substrate, and furthermore, by increasing the irradiation intensity over a wide range, it is possible to form a film with a uniform thickness on the substrate. Another object of the present invention is to provide a semiconductor manufacturing apparatus that can form a film at a high speed.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、線状ランプを複数個
配置したものを光源として用いるとともに、該線状ラン
プの基板からの高さを中央のものほど高くしたものであ
る。
A semiconductor manufacturing apparatus according to the present invention uses a plurality of linear lamps as a light source, and the height of the linear lamps from the substrate is increased toward the center.

〔作用〕[Effect]

この発明においては、光源として複数の線状ランプを用
いているから広範囲にわたって強い照度の光が照射され
、また線状ランプは中央のものほど基板からの高さが高
くなっているから基板上での照度差がなくなり、均一な
膜厚の薄膜が効率よく形−成される。
In this invention, since a plurality of linear lamps are used as light sources, strong illuminance light is emitted over a wide range, and since the linear lamps in the center are higher in height from the substrate, The difference in illuminance is eliminated, and a thin film of uniform thickness can be efficiently formed.

(実施例〕 以下、本発明の実施例を図について説明する。(Example〕 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置を示し
、図において、1は反応室、3は基板加熱用ヒータ、4
は反応ガス、5は基板、6は光透過材からなる光入射窓
、7,8はそれぞれ反応ガス供給口、排出口、9は基板
積載用の固定台であり、これらは第2図に示したものと
同様のものである。
FIG. 1 shows a semiconductor manufacturing apparatus according to an embodiment of the present invention, in which 1 is a reaction chamber, 3 is a heater for heating a substrate, and 4
5 is a reactive gas, 5 is a substrate, 6 is a light entrance window made of a light-transmitting material, 7 and 8 are a reactive gas supply port and a discharge port, respectively, and 9 is a fixed stand for loading the substrate, and these are shown in FIG. It is similar to the one.

また、2は光源としての線状ランプであり、この線状ラ
ンプ2は反応室1の外側上方に等間隔で複数個設けられ
、これらは相互に平行に、かつ中央のものほど基板5か
らの高さが高くなるよう配置されている。
Further, reference numeral 2 denotes a linear lamp as a light source, and a plurality of linear lamps 2 are provided at equal intervals above the outside of the reaction chamber 1, and the linear lamps 2 are arranged parallel to each other, and the center one is more distant from the substrate 5. It is arranged so that it is high in height.

次に作用効果について説明する。Next, the effects will be explained.

反応室1内に導入された反応ガス4が、線状ランプ2か
らの光によって光化学反応を生じ、これによる反応生成
物がヒータ3によって加熱された基板5上に堆積し、該
基板5上に薄膜が形成されるという過程は従来と同様で
ある。
The reaction gas 4 introduced into the reaction chamber 1 causes a photochemical reaction by the light from the linear lamp 2, and the resulting reaction product is deposited on the substrate 5 heated by the heater 3. The process of forming a thin film is the same as in the conventional method.

この際、本実施例装置では、反応ガス4の流れる方向に
沿って線状ランプ2を複数個配置しているので、この方
向における基板5上の光の照度分布は従来装置に比し均
一になり、かつその照射強度も増加し、これにより膜形
成速度は大きく向上する。
At this time, in the device of this embodiment, a plurality of linear lamps 2 are arranged along the flow direction of the reaction gas 4, so the illuminance distribution of the light on the substrate 5 in this direction is more uniform than in the conventional device. This also increases the irradiation intensity, which greatly improves the film formation rate.

ここで、光源として複数個の線状ランプを並列配置した
場合、反応室中央部での照度分布は均一になるが、光の
重ね合せにより該反応室中央部での照度がその両端部に
比べて強くなってしまい、広い範囲にわたって均一な照
度分布を得ることができない、しかるに本実施例装置で
は、上記線状ランプ2を、中央部のものほど基板5から
の高さが高くなるように配置しており、これにより反応
室1の広い範囲にわたって照度差は著しく小さくなる。
If multiple linear lamps are arranged in parallel as light sources, the illuminance distribution at the center of the reaction chamber will be uniform, but due to the superposition of lights, the illuminance at the center of the reaction chamber will be lower than that at both ends. However, in the device of this embodiment, the linear lamps 2 are arranged such that the height from the substrate 5 is higher as the linear lamps 2 are located in the center. As a result, the difference in illumination over a wide range of the reaction chamber 1 is significantly reduced.

従って、広い面積の基板5上において均一な厚さの薄膜
を形成することができ、容易に高精度の半導体を効率よ
く製造できる。
Therefore, a thin film with a uniform thickness can be formed on the substrate 5 over a wide area, and a high-precision semiconductor can be manufactured easily and efficiently.

具体的な数値で示すと、各線状ランプ2を第1図中に示
した角度θが約10°程度になるよう配置するのが最も
望ましく、この時膜形成の行なわれる基板5上での照度
の変動を±5%に抑えることが可能である。
In terms of specific numerical values, it is most desirable to arrange each linear lamp 2 so that the angle θ shown in FIG. It is possible to suppress the fluctuation to ±5%.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る半導体製造装置によれば、
光源として複数個の線状ランプを用いるとともに、この
線状ランプを、中央のものほど基板からの高さが高くな
るよう配置したの−で、広い面積の基板全面にわたって
均一な厚さの薄膜を速い速度で形成でき、高精度な半導
体を効率よく製造できる効果がある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention,
By using multiple linear lamps as light sources and arranging the linear lamps so that the center one is higher from the substrate, it is possible to form a thin film with a uniform thickness over a wide area of the substrate. It can be formed at high speed and has the effect of efficiently manufacturing high-precision semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
構成図、第2図は従来の半導体製造装置の断面構成図で
ある。 1・・・反応室、2・・・線状ランプ(光源)、4・・
・反応ガス、5・・・基板、6・・・光入射窓、7・・
・反応ガス供給口、8・・・反応ガス排出口。 なお図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional configuration diagram of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional configuration diagram of a conventional semiconductor manufacturing apparatus. 1... Reaction chamber, 2... Linear lamp (light source), 4...
・Reactive gas, 5...Substrate, 6...Light entrance window, 7...
- Reaction gas supply port, 8... Reaction gas discharge port. In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)光源と、光投射用窓と反応ガス供給口及びガス排
出口とを有する反応室とを備え、反応ガスに光を投射し
て光化学反応を生じさせ該反応ガス中に置かれた基板上
に薄膜を形成させる半導体製造装置において、上記光源
は複数の線状ランプが相互に平行に配設されてなるもの
であり、該線状ランプの基板からの高さは中央のものほ
ど高くなっていることを特徴とする半導体製造装置。
(1) A substrate that is equipped with a light source, a reaction chamber having a light projection window, a reaction gas supply port, and a gas discharge port, projects light onto a reaction gas to cause a photochemical reaction, and is placed in the reaction gas. In semiconductor manufacturing equipment that forms a thin film on a semiconductor manufacturing device, the light source is made up of a plurality of linear lamps arranged in parallel to each other, and the height of the linear lamps from the substrate increases as the center one increases. A semiconductor manufacturing device characterized by:
JP25345684A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Pending JPS61131429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25345684A JPS61131429A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25345684A JPS61131429A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS61131429A true JPS61131429A (en) 1986-06-19

Family

ID=17251641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25345684A Pending JPS61131429A (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS61131429A (en)

Similar Documents

Publication Publication Date Title
US5645646A (en) Susceptor for deposition apparatus
US4597986A (en) Method for photochemical vapor deposition
JPS6260467B2 (en)
JP3167976B2 (en) Susceptor for deposition equipment
JPS61131429A (en) Semiconductor manufacturing equipment
US5681394A (en) Photo-excited processing apparatus and method for manufacturing a semiconductor device by using the same
JPS61131430A (en) Semiconductor manufacturing equipment
JPH04288820A (en) Lamp heating apparatus
JPS61131417A (en) Semiconductor manufacturing equipment
JPS61131416A (en) Semiconductor manufacturing equipment
JPS61129819A (en) Semiconductor manufacturing apparatus
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPS61129821A (en) Semiconductor manufacturing apparatus
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS61129815A (en) Semiconductor manufacturing apparatus
JPS61131419A (en) Semiconductor manufacturing equipment
JPS61129816A (en) Semiconductor manufacturing apparatus
JPS61129811A (en) Manufacturing apparatus for semiconductor
JPS61129820A (en) Semiconductor manufacturing apparatus
JPS61131420A (en) Semiconductor manufacturing equipment
KR100567664B1 (en) Photo resistor strip apparatus having far infrared ray heating module which was arranged at multiple
JPS61128517A (en) Production unit for semiconductor
JPS61131433A (en) Semiconductor manufacturing equipment
JPS61108123A (en) Semiconductor manufacturing equipment