JPS61131433A - Semiconductor manufacturing equipment - Google Patents
Semiconductor manufacturing equipmentInfo
- Publication number
- JPS61131433A JPS61131433A JP25346084A JP25346084A JPS61131433A JP S61131433 A JPS61131433 A JP S61131433A JP 25346084 A JP25346084 A JP 25346084A JP 25346084 A JP25346084 A JP 25346084A JP S61131433 A JPS61131433 A JP S61131433A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- linear
- light source
- lamps
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、光化学的に反応ガスを分解して薄膜を基板
上に形成させる方法(photo chemicalv
apour deposition :以下光励起CV
D法と称す)を用いて薄膜を形成す番卒導体製造装置に
関するものである・
〔従来の技術〕
CVD法は集積回路装置における薄膜形成等に
〜おいて重要な技術であるが、従来のCVD法は、
主として反応ガスを加熱して化学反応を起こさせるよう
にしており、このため反応温度が高温となり、これによ
り形成される薄膜はダメージを受は易いものである。Detailed Description of the Invention [Industrial Field of Application] This invention relates to a method of photochemically decomposing a reactive gas to form a thin film on a substrate.
Apour deposition: Hereinafter referred to as photoexcitation CV
[Conventional technology] The CVD method is used for forming thin films in integrated circuit devices.
Although it is an important technology in ~, the conventional CVD method is
The reaction gas is mainly heated to cause a chemical reaction, and therefore the reaction temperature becomes high, and the thin film formed thereby is easily damaged.
そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法−に比較しモ反
応温度を低温にでき、薄膜へのダメージも少なくするこ
とができる。Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods and plasma CVD methods, and damage to thin films can be reduced. It can be reduced.
また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度1反応ガスの組成比、圧力を一定に保った条件下
では、薄膜の形成速度は光゛の照射強度に比例して速く
なることが知られている。In general, in the photo-excited CVD method, it is known that the intensity of light has a large effect on the rate of thin film formation. It is known that the rate of formation of light increases in proportion to the irradiation intensity of light.
第4図はこのような光励起CVD法に、よ−る従来の薄
膜形成装置の基本的な構成を示し、図において、1は膜
形成時にその中が高真空状態に減圧される反応室、2は
線状ランプからなる光源、3は基板加熱用ヒータ、4は
シラン等の反応ガス、5はI膜が形成される基板、6は
光透過材からなる光入射窓、7は反応ガス供給口、8は
反応後のガス4aを排出するためのガス排出口、9は基
板5を載せる固定台である。Figure 4 shows the basic configuration of a conventional thin film forming apparatus for such a photo-excited CVD method. In the figure, 1 is a reaction chamber whose inside is reduced to a high vacuum during film formation, 3 is a light source consisting of a linear lamp, 3 is a heater for heating the substrate, 4 is a reactive gas such as silane, 5 is a substrate on which the I film is formed, 6 is a light incidence window made of a light-transmitting material, and 7 is a reactive gas supply port , 8 is a gas outlet for discharging the gas 4a after the reaction, and 9 is a fixing table on which the substrate 5 is placed.
なお、反応室1内は一般的に高真空状態に減圧され、反
応室1の壁、光透過材からなる光入射窓6も当然この圧
力に耐えうる構造、板厚により構成されている。Incidentally, the pressure inside the reaction chamber 1 is generally reduced to a high vacuum state, and the walls of the reaction chamber 1 and the light entrance window 6 made of a light-transmitting material are of course constructed with a structure and plate thickness capable of withstanding this pressure.
この装置では、反応ガス4が供給ロアから反応室1に導
入されると、該反応ガス4は入射窓6から投射された光
線により励起分解される。そしてこれにより生じた反応
生成物がヒータ3によって低温加熱された基板5上に堆
積し、該基板5上に薄膜が形成される。反応後のガス4
aは排出口8から排出される。In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 from the supply lower, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction product is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. Gas after reaction 4
a is discharged from the discharge port 8.
この従来の半導体製造装置では以上のように反応室1に
光の入射窓6を設け、反応室1外に設けられた光源2か
ら光を投射しているが、基板5上への薄膜の形成速度を
速めるためには基板5上の光の照度を強くする必要があ
り、このためにはより出力の大きな光源を用いるか、基
板5と光源2の距離を縮め、基板5上の照度を強くする
必要がある。ところが、長寿命で出力の大きい実用的な
光源を求めることは現在では困難であり、また従来の構
造のまま基板5と光源2の間の距離を縮めることもこれ
らの間に光透過材からなる光入射窓6を、高真空の圧力
に耐えられる構造で反応室1に取り付けねばならないこ
とからはなはだ困難であった。また、光源として単一の
線状ランプ2を用いているため、基板5上では該ランプ
2の両端付近はど光の照度が囚くなって光の照度分布が
不均一になるという問題があった。In this conventional semiconductor manufacturing apparatus, the light entrance window 6 is provided in the reaction chamber 1 as described above, and light is projected from the light source 2 provided outside the reaction chamber 1. In order to increase the speed, it is necessary to increase the illuminance of the light on the substrate 5, and for this purpose, either use a light source with higher output, or shorten the distance between the substrate 5 and the light source 2, and increase the illuminance on the substrate 5. There is a need to. However, it is currently difficult to find a practical light source with a long life and high output, and it is also possible to shorten the distance between the substrate 5 and the light source 2 with the conventional structure by using a light-transmitting material between them. This was extremely difficult since the light entrance window 6 had to be installed in the reaction chamber 1 with a structure that could withstand high vacuum pressure. Furthermore, since a single linear lamp 2 is used as a light source, there is a problem that the illuminance of the light is concentrated near both ends of the lamp 2 on the substrate 5, making the illuminance distribution of the light uneven. Ta.
この発明は、このような問題点を解消するためになされ
たもので、基板上の光の照度を高め、かつ基板上での光
の分布を均一にできる半導体製造装置を得ることを目的
とするものである。This invention has been made to solve these problems, and aims to provide a semiconductor manufacturing apparatus that can increase the illuminance of light on a substrate and make the distribution of light uniform on the substrate. It is something.
この発明に係る半導体製造装置は、反応室内の石英ガラ
ス管内に相互に平行な複数の線状部分を有する単数又は
複数の線状ランプを該線状ランプの複数の線状部分が全
体として見て基板からの高さが中央のものほど高くなる
よう配設して、これを光源として用いたものである。The semiconductor manufacturing apparatus according to the present invention includes a linear lamp or a plurality of linear lamps having a plurality of mutually parallel linear parts in a quartz glass tube in a reaction chamber. They are arranged so that the height from the substrate increases toward the center, and these are used as light sources.
この発明においては、石英ガラス管内に単数又は複数の
線状ランプを配設してなる光源を反応室内に設けたから
、該光源が基板に近づくことで該基板上の光の照度が高
まり、薄膜は速く形成される。また、単数又は複数の線
状ランプを、その相互に平行な複数の線状部分が全体と
して基板からの高さが中央のものほど高くなるよう配設
したから、基板上での上記石英ガラス管の軸方向の光の
照度分布が十分均一になり、該基板全体にわたり均一な
膜厚の薄膜が形成される。In this invention, a light source consisting of one or more linear lamps arranged inside a quartz glass tube is provided in the reaction chamber, so that as the light source approaches the substrate, the illuminance of the light on the substrate increases, and the thin film formed quickly. In addition, since the single or multiple linear lamps are arranged so that the height of the mutually parallel linear portions as a whole increases from the center, the above-mentioned quartz glass tube on the substrate The illuminance distribution of the light in the axial direction becomes sufficiently uniform, and a thin film having a uniform thickness is formed over the entire substrate.
以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例による半導体製造装置の断面
図、第2図はその平面図、第3図は第1図の■−■線断
面図である。各図において、1は反応室、13は該反応
室1内に設けられた円筒形石英ガラス管、12は該石英
ガラス管13内に配設された2個の線状ランプであり、
これらは各々相互に平行で高さが順次高くなっている6
個の複数の線状部分12aを有している。、そして該2
つの線状ランプ12はそれらの複数の線状部分12aが
相互に対称な位置関係となるよう配設され、その結果該
両ランプ12の複数の線状部分12aは全体として見る
と基板5からの高さが中央のものほど高くなっている。FIG. 1 is a cross-sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a cross-sectional view taken along the line ■--■ in FIG. In each figure, 1 is a reaction chamber, 13 is a cylindrical quartz glass tube provided in the reaction chamber 1, 12 is two linear lamps provided in the quartz glass tube 13,
These are parallel to each other and their heights increase in sequence6
It has a plurality of linear portions 12a. , and said 2
The two linear lamps 12 are arranged so that the plurality of linear portions 12a thereof are in a mutually symmetrical positional relationship, and as a result, the plurality of linear portions 12a of the two lamps 12 as a whole are separated from the substrate 5. The height is higher towards the center.
また、12bは上記各線状ランプ12の両端部に設けら
れた2つの連結部、12cは該両連結部12bの上端に
それぞれ設けられ、上記各線状ランブト2に電源を供給
するための1つの電極部である。そして22は上記石英
ガラス管13内に2個の線状ランプ12を配設してなる
光源である。Further, 12b is two connecting portions provided at both ends of each linear lamp 12, and 12c is one electrode provided at the upper end of both connecting portions 12b for supplying power to each linear lamp 2. Department. Reference numeral 22 denotes a light source comprising two linear lamps 12 disposed within the quartz glass tube 13.
また、3は基板加熱用ヒータ、4は反応ガス、5は基板
、7は反応ガス供給口、8は反応後のガス4aを排出す
るためのガス排出口、19は基板5を載置する台である
。Further, 3 is a heater for heating the substrate, 4 is a reaction gas, 5 is a substrate, 7 is a reaction gas supply port, 8 is a gas discharge port for discharging the gas 4a after the reaction, and 19 is a table on which the substrate 5 is placed. It is.
次に作用効果について説明する。Next, the effects will be explained.
本装置においては、反応ガス4は供給ロアから反応室1
内に供給され、一方光源22である円筒形石英ガラス管
13から光が投射されて該反応ガス4が光化学反応を生
じ、ヒータ3によって加熱されている基板5上記に薄膜
が形成される。In this device, the reaction gas 4 is supplied from the supply lower to the reaction chamber 1.
On the other hand, light is projected from a cylindrical quartz glass tube 13 serving as a light source 22 to cause a photochemical reaction in the reaction gas 4, and a thin film is formed on the substrate 5 heated by the heater 3.
そして本装置では円筒形石英ガラス管13内に2つの線
状ランプ12を配設したものを光源とし懺 で
用い、この発光長の長い光源22を反応室l内3
に設けたので、該光源22を任意の距離まで基板に
近づけることができ、該基板5上の光の照度を高めるこ
とができる。In this apparatus, two linear lamps 12 arranged inside a cylindrical quartz glass tube 13 are used as a light source, and this light source 22 with a long emission length is used as a lamp in the reaction chamber 1.
Since the light source 22 is provided in the substrate 5, the light source 22 can be brought close to the substrate to an arbitrary distance, and the illuminance of the light on the substrate 5 can be increased.
また、2つの線状ランプ12をこれらの複数の線状部分
12aの基板からの高中が全体として見て中央のものほ
ど高くなるよう配設したので、基板5上での上記石英ガ
ラス管1.3の軸方向の光の照度分布を十分均一にでき
、基板5全体にわたり均一な膜厚の薄膜を形成できる。In addition, since the two linear lamps 12 are arranged so that the height of the plurality of linear portions 12a from the substrate is higher as viewed from the center as a whole, the quartz glass tube 1. The illuminance distribution of the light in the axial direction of 3 can be made sufficiently uniform, and a thin film with a uniform thickness can be formed over the entire substrate 5.
また、本実施例では各線状ランプ12を、その6個の線
状部分12aを連続して形成しているので、それぞれの
ランプ12の電極部12cは1個で済み、例えば6本の
線状ランプを並列配置した場合に比べて電極数は1/6
で済み、電源供給部の構造を非常に簡単にできる。Further, in this embodiment, each linear lamp 12 has six linear portions 12a formed continuously, so each lamp 12 only needs one electrode portion 12c. The number of electrodes is 1/6 compared to when lamps are arranged in parallel.
This makes the structure of the power supply section very simple.
なお、上記実施例では線状ランプを2つ用いてそれらの
線状部分の基板からの高さが全体として見て中央のもの
ほど高くなるようにしたが、該各線状部分の基板からの
高さが円筒形石英ガラス管の中央で高くなっておればこ
れに限らない。In the above embodiment, two linear lamps are used, and the height of the linear portions from the substrate is set so that the center one is higher as a whole, but the height of each linear portion from the substrate is The present invention is not limited to this, as long as the height is high at the center of the cylindrical quartz glass tube.
また、上記実施例では、各線状ランプが6つの線状部分
12aを有する場合について説明したが、する基板5の
大きさ等によって適宜選択されうるちのである。Further, in the above embodiment, the case where each linear lamp has six linear parts 12a has been described, but the number can be appropriately selected depending on the size of the substrate 5, etc.
以上のように、この発明に係る半導体製造装置によれば
、相互に平行な複数の線状部分を有する単数又は複数の
線状ランプを反応室内の石英ガラス管内に上記線状ラン
プの複数の線状部分の基板からの高さが全体として見て
中央のものほど高くなるよう組み込んだものを光源とし
て用いたので、基板上の光の照度を高めることができ、
該基板上へのWI膜の形成速度を向上でき、また基板上
の光の照度分布を均一にして、均一な膜厚の薄膜を形成
できる効果がある。As described above, according to the semiconductor manufacturing apparatus according to the present invention, one or more linear lamps having a plurality of mutually parallel linear portions are placed in a quartz glass tube in a reaction chamber. Since we used a built-in light source in such a way that the height of the shaped parts from the board is higher towards the center when viewed as a whole, the illuminance of the light on the board can be increased.
The formation speed of the WI film on the substrate can be improved, and the illuminance distribution of light on the substrate can be made uniform, so that a thin film with a uniform thickness can be formed.
第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図はその平面図、第3図は第1図のm−m
線断面図、第4図は従来の半導体製造装置の断面側面図
である。
1・・・反応室、22・・・光源、13・・・石英ガラ
ス管、12・・・線状ランプ、12a・・・線状部分、
4・・・反応ガス、5・・・基板。
なお図中同一符号は同−又は相当部分を示す。FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is taken along m-m of FIG. 1.
FIG. 4 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus. DESCRIPTION OF SYMBOLS 1... Reaction chamber, 22... Light source, 13... Quartz glass tube, 12... Linear lamp, 12a... Linear part,
4... Reactive gas, 5... Substrate. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (2)
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、石英ガラス管
内に相互に平行な複数の線状部分を有する単数又は複数
の線状ランプを配設してなるものを光源として用い、上
記線状ランプの複数の線状部分は全体として見て基板か
らの高さが中央のものほど高くなっており、かつ該光源
は上記反応室内に配設されていることを特徴とする半導
体製造装置。(1) In semiconductor manufacturing equipment, in which light from a light source is projected onto a reaction gas in a reaction chamber to cause a photochemical reaction and a thin film is formed on a substrate placed in the reaction gas, parallel A light source consisting of one or more linear lamps having a plurality of linear parts is used as a light source, and the plurality of linear parts of the linear lamps have a central height from the substrate when viewed as a whole. 1. A semiconductor manufacturing apparatus characterized in that the light source is located within the reaction chamber.
複数の線状部分が相互に対称な位置関係となるよう配設
されていることを特徴とする特許請求の範囲第1項記載
の半導体製造装置。(2) The above-mentioned linear lamp is characterized in that two linear lamps are arranged such that a plurality of linear portions of each linear lamp have a mutually symmetrical positional relationship. Semiconductor manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25346084A JPS61131433A (en) | 1984-11-29 | 1984-11-29 | Semiconductor manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25346084A JPS61131433A (en) | 1984-11-29 | 1984-11-29 | Semiconductor manufacturing equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61131433A true JPS61131433A (en) | 1986-06-19 |
Family
ID=17251694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25346084A Pending JPS61131433A (en) | 1984-11-29 | 1984-11-29 | Semiconductor manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61131433A (en) |
-
1984
- 1984-11-29 JP JP25346084A patent/JPS61131433A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0703602B2 (en) | Light source device using a dielectric barrier discharge lamp | |
JPH10188894A (en) | Integrally molded flat plate small-sized fluorescent lamp and manufacture thereof | |
SE8502561L (en) | COMPACT LIGHTING AND PROCEDURE FOR ITS MANUFACTURING | |
EP0389758B1 (en) | Water-cooled, low pressure gas discharge lamp | |
US4500565A (en) | Deposition process | |
JPS61131433A (en) | Semiconductor manufacturing equipment | |
KR20050000449A (en) | Apparatus for generating plasma at atmospheric pressure and plasma process system using the same | |
JPS61131419A (en) | Semiconductor manufacturing equipment | |
US20020067130A1 (en) | Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source | |
JPS61129819A (en) | Semiconductor manufacturing apparatus | |
JPS61129816A (en) | Semiconductor manufacturing apparatus | |
JPS61129814A (en) | Manufacturing apparatus for semiconductor | |
JPS61129821A (en) | Semiconductor manufacturing apparatus | |
JPS61129815A (en) | Semiconductor manufacturing apparatus | |
JPS61129817A (en) | Semiconductor manufacturing apparatus | |
US4768464A (en) | Chemical vapor reaction apparatus | |
JPS61131427A (en) | Semiconductor manufacturing equipment | |
JPS61131430A (en) | Semiconductor manufacturing equipment | |
JPS61131425A (en) | Semiconductor manufacturing equipment | |
US8080946B2 (en) | Flat discharge lamp and production method thereof | |
JPS61131420A (en) | Semiconductor manufacturing equipment | |
JPS61131422A (en) | Semiconductor manufacturing equipment | |
JPH04199622A (en) | Light source for light excitation processing device | |
JPS61129820A (en) | Semiconductor manufacturing apparatus | |
JPS61131429A (en) | Semiconductor manufacturing equipment |