JPH04199622A - Light source for light excitation processing device - Google Patents

Light source for light excitation processing device

Info

Publication number
JPH04199622A
JPH04199622A JP32595790A JP32595790A JPH04199622A JP H04199622 A JPH04199622 A JP H04199622A JP 32595790 A JP32595790 A JP 32595790A JP 32595790 A JP32595790 A JP 32595790A JP H04199622 A JPH04199622 A JP H04199622A
Authority
JP
Japan
Prior art keywords
lamps
light source
illumination
light
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32595790A
Other languages
Japanese (ja)
Other versions
JP3064407B2 (en
Inventor
Koichi Tamagawa
孝一 玉川
Seiichi Takahashi
誠一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2325957A priority Critical patent/JP3064407B2/en
Publication of JPH04199622A publication Critical patent/JPH04199622A/en
Application granted granted Critical
Publication of JP3064407B2 publication Critical patent/JP3064407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To make it possible to stably and uniformly emit a light high degree of illumination on a large area for a long period of time by a method wherein a light source is provided for formation of a thin film on a substrate by the photochemical reaction of reaction gas, and a plurality of relatively small lamps are arranged independently on a plane or curved surface of the light source. CONSTITUTION:Nineteen small type heavy hydrogen lamps 12 are arranged at regular intervals on the plane surface in a hollow cylindrical lamp house 11 which constitutes a passage for cooling water, and the circumference of these lamps 12 is cooled by the cooling water connected to the lamp house 11. On the other hand, control devices 15, with which the lamps 12 are independently lit or put out or they emit pulse light of optional wavelength, are connected to the lamps 12. The light-emitting efficiency of each lamp can be enhanced by using relatively small lamp in this light source, the synergistic effect between lamps works by arranging a plurality of lamps on a plane or curved surface, and a high degree of illumination can be obtained. Also, the area of illumination can be made larger by increasing the number of lamps to be arranged. As a result, the light source for large illumination area, having high degree of illumination and uniform illumination distribution, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体や液晶デイスプレィ等の製造に用いら
れる光励起プロセス装置用光源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light source for a photoexcitation process device used for manufacturing semiconductors, liquid crystal displays, and the like.

〔従来の技術〕[Conventional technology]

近年、光のエネルギーを用い、塩素ガスなどのハロIy
’ンガスを分解しシリコンウェハ等ヲエッチングする光
エツチング装置や、シラン、ジシランなどの化合物ガス
を分解し、シリコンウェハやガラス基板上に薄膜を形成
する、jf、CVD装置の開発が積極的になされている
。これら光を用いた光励起プロセス装置は、プロセスの
低温化が可能であり、荷電粒子による基板や形成膜の劣
化も発生しないことから、次世代のデバイス製造方法と
して大きく注目されている。
In recent years, light energy has been used to produce halo Iy such as chlorine gas.
Active efforts are being made to develop photo-etching equipment that decomposes carbon gas to etch silicon wafers, etc., and CVD equipment that decomposes compound gases such as silane and disilane to form thin films on silicon wafers and glass substrates. ing. These optical excitation process apparatuses using light are attracting a lot of attention as next-generation device manufacturing methods because they can lower the process temperature and do not cause deterioration of the substrate or formed film due to charged particles.

従来用いられてきた光励起プロセス装置について、第4
図を用いて簡単に説明する。図において、【は処理すべ
き基板4を収容する反応室であり、反応ガスの導入系及
び排気系がそれぞれ導入口5及び排気口6に接続されて
いる。該反応室!中には、基板4を装着するステージ2
が設置され、通常、ヒータ3等により一定温度に制御さ
れている。
Regarding the conventionally used optical excitation process equipment, the fourth
This will be briefly explained using figures. In the figure, [ is a reaction chamber that accommodates a substrate 4 to be processed, and a reaction gas introduction system and exhaust system are connected to an introduction port 5 and an exhaust port 6, respectively. The reaction chamber! Inside, there is a stage 2 on which the board 4 is mounted.
is installed, and the temperature is usually controlled to a constant temperature by a heater 3 or the like.

また該反応室1は、開口率の高い金属メツシュや小孔を
多数持った石英製の噴出板7を介して光源室8と接続さ
れている。該光源室8には、光化学反応#C好適な波長
を放出する光源lOが設置されており、基板4上に光を
照射でさるようになっていると共に、不活性ガスの導入
系も導入口9に接続されている。
The reaction chamber 1 is connected to a light source chamber 8 via a metal mesh with a high aperture ratio or a quartz ejection plate 7 having many small holes. The light source chamber 8 is equipped with a light source 1O that emits a wavelength suitable for photochemical reaction #C, and is configured to irradiate light onto the substrate 4, and also has an inert gas introduction system through an inlet port. Connected to 9.

反応ガスは、反応ガス導入口5から基板4の表面にほぼ
平行にシート状に導入きれ、好適な波長の光により分解
又は反応を起こし、該基板4上に薄膜を堆積する。この
時、不活性ガス導入口9より導入した不活性ガスを、開
口率の高い金属メツシュや小孔を多数持った石英製の噴
出板7を通して、基板40表面に対向するように反応室
!へ導入し、光源IOのランプ表面への膜付着を防止で
きるように構成されている。
The reactive gas is introduced in the form of a sheet almost parallel to the surface of the substrate 4 from the reactive gas inlet 5, is decomposed or reacted with light of a suitable wavelength, and a thin film is deposited on the substrate 4. At this time, the inert gas introduced from the inert gas inlet 9 is passed through a metal mesh with a high aperture ratio or a quartz ejection plate 7 with many small holes, and is directed to the reaction chamber so as to face the surface of the substrate 40! The light source IO is configured to be able to prevent the film from adhering to the lamp surface.

上記のように構成された光励起プロセス装置にシいて、
その心臓部ともいえる光源IOは、通常、高圧水銀灯、
低圧水銀灯、キセノンランプ、重水素ランプ、希ガス共
鳴線ランプ等が使用されているが、これらの光源におい
ては、6〜8吋の大口径シリコンウェハや液晶用大型ガ
ラス基板を用い死場合、均一な照度で、しかも高照度に
光照射することが難しく、成膜速度が小さく、堆積膜に
おいても膜厚分布が悪くなるという問題があった。
Based on the photoexcitation process device configured as above,
The light source IO, which can be said to be the heart of it, is usually a high-pressure mercury lamp,
Low-pressure mercury lamps, xenon lamps, deuterium lamps, rare gas resonance line lamps, etc. are used, but these light sources use large-diameter silicon wafers of 6 to 8 inches or large glass substrates for liquid crystals, and are uniform when dying. There were problems in that it was difficult to irradiate light at a high illumination intensity, the film formation rate was low, and the thickness distribution of the deposited film was poor.

特に、重水素ランプなどの比較的短波長の真空紫外光を
発生させる光源においては、使用できる光透過材料が非
常に限定されているため、大面積。
In particular, for light sources that generate vacuum ultraviolet light with a relatively short wavelength, such as deuterium lamps, there are very limited light-transmitting materials that can be used, so large areas are required.

高照度の元y!、は、全く開発されていないのが現状で
ある。従って、光源の大面積化は、本質的で、深刻な問
題であった。
High illumination original y! , has not been developed at all at present. Therefore, increasing the area of the light source is an essential and serious problem.

上記のような問題に対処するために、本発明者らは、先
に特開昭62−206823号公報に示すように、比較
的小さな多数の放電管ユニット(電極)を並べ、各放電
管ユニット関に穴の開いた仕切りを設けた大面積照射用
光源を装備し九光励起プロセス装置を提案した。
In order to deal with the above-mentioned problems, the present inventors arranged a large number of comparatively small discharge tube units (electrodes), and each discharge tube unit We proposed a nine-light excitation process device equipped with a large-area irradiation light source with a partition with a hole in the wall.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した先に提案した光励起プロセス装置においても、
その後の検討結果によると、照射面積を大きくするに従
い、放電管ユニットの冷却効果が悪いため温度が上昇し
、照度が低下し次り、−jt#の寿命が短くなる等の欠
点や、製作が難しくコスト高になるなどの問題点が新た
に発生した。
Even in the photoexcitation process device proposed above,
According to the results of subsequent studies, as the irradiation area increases, the cooling effect of the discharge tube unit becomes worse, the temperature rises, the illuminance decreases, and the lifespan of -jt# is shortened. New problems have arisen, such as difficulty and high cost.

このように、現状の光励起プロセス装置においては、高
照度で大面積にしかも均一な照度で、長時間安定に光照
射できる光源がない、ということが非常4C大きな問題
であり、製造ラインへの導入を遅らせている最大の原因
でもあった。
As described above, in the current optical excitation process equipment, there is no light source that can stably irradiate a large area with high illuminance and uniform illuminance for a long time, which is a major 4C problem, and it is difficult to introduce it into the production line. It was also the biggest reason for the delay.

本発明は、上記し九従来技術の問題点を解決し、高照度
で大面積に、しかも均一な照度で、長時間安定して光照
射できる光励起プロセス装置用光源を提”供することを
目的としている。
The purpose of the present invention is to solve the nine problems of the prior art described above, and to provide a light source for a photoexcitation process device that can stably irradiate a large area with high illuminance, uniform illuminance, and for a long time. There is.

〔I!!題を解決するための手段〕[I! ! Means to solve the problem]

上記の目的を達成するために、本発明は、処理すべき基
体を収容する反応室と、該反応室内に反応ガスを導入及
び排気する手段と、該反応ガスを光化学反応させ、該基
体上に薄膜を形成名せるための光源を具備した光励起プ
ロセス装置において、該光源が独立した、比較的小さな
ランプを平面又は曲面上に多数個配置してなることを特
徴とじている。
To achieve the above object, the present invention provides a reaction chamber containing a substrate to be treated, means for introducing and exhausting a reaction gas into the reaction chamber, and a method for photochemically reacting the reaction gas and disposing the reaction gas on the substrate. A light excitation process apparatus equipped with a light source for forming a thin film is characterized in that the light source is composed of a large number of independent, relatively small lamps arranged on a flat or curved surface.

ま九、上記光源を構成する独立した比l/R市ノドさな
ランプを、各々独立した点灯・消灯又は任意の長さでパ
ルス発生させる制御手段を設け、処理すべき基体上で任
意の照度分布を発生させることができるようにしたこと
を特徴としている。
(9) A control means is provided to control the independent l/R lamps constituting the above-mentioned light source to turn them on and off independently or to generate pulses of arbitrary length, so as to control the illuminance at an arbitrary intensity on the substrate to be treated. It is characterized by being able to generate a distribution.

本発明における比較的小さなランプの種類に関しては、
高圧水鎖灯、低圧水鋏灯、キセノンランプ、重水素ラン
プ、希ガス共鳴線ランプ等がよく用いられるが特に限定
しない。
Regarding the relatively small type of lamp in the present invention,
High-pressure water chain lamps, low-pressure water chain lamps, xenon lamps, deuterium lamps, rare gas resonance line lamps, and the like are often used, but are not particularly limited.

また、本発明における多数個とは、照度、均一性の観点
から3個以上が好ましい。またランプとランプの間隔に
ついては、特に限定しないが、照度、均一性の観点から
密な程好ましい。
Further, in the present invention, the term "multiple number" preferably means three or more from the viewpoint of illuminance and uniformity. Further, the spacing between the lamps is not particularly limited, but from the viewpoint of illuminance and uniformity, the closer the spacing, the better.

〔作 用〕[For production]

上記のように構成した本発明による光励起プロセス装置
用光源は、比較的小さなランプを用いることで個々のラ
ンプの発光効率を高くできると共に、平面又は曲面上に
多数個配置するととくより、ランプ間の相乗効果が作用
し、非常に高い照度を得ることができる。また配置する
ランプの本数を増すことにより照射面積をいくらでも大
きくできるという利点を待つ。
The light source for a photoexcited process device according to the present invention configured as described above can increase the luminous efficiency of each lamp by using relatively small lamps, and can also increase the luminous efficiency between the lamps by arranging a large number of them on a flat or curved surface. A synergistic effect works and extremely high illuminance can be obtained. Another advantage is that by increasing the number of lamps arranged, the irradiation area can be increased as much as desired.

また本発明の別の特徴によれば、個々のランプを独立に
制御できるため、任意の照度分布を与えることもできる
。反応室の構造上の問題から、反応ガスの流れが不均一
となり、基板上で濃度分布を生じた場合、生じた濃度分
布を補償する照度分布を与えることで膜厚分布を均一化
することができる。
According to another feature of the present invention, since each lamp can be controlled independently, any illuminance distribution can be provided. If the flow of the reaction gas becomes uneven due to structural problems in the reaction chamber, resulting in a concentration distribution on the substrate, it is possible to make the film thickness distribution uniform by providing an illumination distribution that compensates for the concentration distribution that occurs. can.

〔実施例〕〔Example〕

次に、本発明の実′施例を図面と共に説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1A図は、本発明の一実施例を示す光励起プロセス装
置用光源の断面図、第1B図は平面図、ztc図(a)
 (b) (c)は、ランプ数が7本、 19本、37
本の場合の配置図である◇ 図において、内部が冷却水用の通路をなす中空円筒状の
ランプハウスll内に、直径約20mの小型重水素ラン
プ12が19本水平面上に、ランプ間距離40mの等間
隔に配置され、これらの各ランプ12の周囲は、上記ラ
ンプハウス11の−IQ(図で右1ill)に接続され
た冷却水人口夏3より流入し、他1m(図で左#)に接
続された冷却水出口L4より流出する冷却水によって冷
却されるようになっている。一方、各ランプ12には、
各々独立して点灯・消灯又は任意の長さでパルス発光さ
せる制御装置15がそれぞれ接続される。
FIG. 1A is a sectional view of a light source for a photoexcitation process device showing one embodiment of the present invention, FIG. 1B is a plan view, and ztc diagram (a)
(b) In (c), the number of lamps is 7, 19, and 37.
This is a layout diagram for a book. ◇ In the figure, 19 small deuterium lamps 12 with a diameter of approximately 20 m are placed on a horizontal plane, with a distance between They are arranged at equal intervals of 40 m, and around each of these lamps 12, cooling water flows in from the artificial summer 3 connected to -IQ (1ill on the right in the figure) of the lamp house 11, and the other 1m (#1ill on the left in the figure) flows in. ) is cooled by the cooling water flowing out from the cooling water outlet L4 connected to the cooling water outlet L4. On the other hand, each lamp 12 has
A control device 15 is connected to each of the lights to independently turn on/off or to emit pulsed light of arbitrary length.

次に、作用について説明する。Next, the effect will be explained.

上記のようにして構成されたランプ7本、19本。Seven lamps and 19 lamps were constructed as described above.

37本をそれぞれ配置した三つの光源から、100關離
れた地点でその照度分布を測定した結果が第2図に示さ
れており、これによると、±5%以内の照度分布を与え
る範囲は、 ランプ 7本−m=直径43鴎以内 ランプ 19本−m−直径127W以内ランプ 37本
−m−直径183m以内になっている。上記のことから
、本発明によれば、ランプ本数が増えるに従い、照度分
布の均一な領域が大きくなり、いくらで本大きな照射面
積の光源の製作が可能になることが分かる。
Figure 2 shows the results of measuring the illuminance distribution at points 100 degrees away from three light sources with 37 lights each. According to this, the range that provides an illuminance distribution within ±5% is: 7 lamps - m = 43 meters in diameter 19 lamps - within 127 W in diameter 37 lamps - m - within 183 m in diameter. From the above, it can be seen that according to the present invention, as the number of lamps increases, the area with uniform illuminance distribution becomes larger, and it becomes possible to manufacture a light source with a large irradiation area at any cost.

また、各ランプ12は周囲を冷却水によって充分冷却さ
れるので、長時間点灯しても温度上昇による照度の低下
が抑えられ、ランプ寿命も長くなるO また、各ランプ12t’Cはそれぞれ制#装置It15
が接続されているので、各ランプ12が独立して点灯・
消灯又は任意の長さでパルス発光させることができ、こ
れにより任意の照度分布を与えることができる。
In addition, since the surrounding area of each lamp 12 is sufficiently cooled by cooling water, a decrease in illuminance due to temperature rise is suppressed even when the lamp is lit for a long time, and the lamp life is extended. Device It15
are connected, each lamp 12 can be lit/lit independently.
The light can be turned off or emitted in pulses with an arbitrary length, thereby providing an arbitrary illuminance distribution.

上記した実施例では各ランプ12を平面上に配置した構
造について説明したが、曲面上に配置してもよい◇ 〔比較例〕 第3図は、比較例として上記実施例に用いた小型重水素
ランプ1本の照度分布の測定結果を、縦@に照度を、横
軸に光源中心から半径方向の距離をとって示した図面で
ある。これによると、ランプを多数個配置した上記実施
例の場合と比較して、照度及び照度分布が非常に悪く、
大面積基板には全く使用できないことが分かる。
In the above embodiment, the structure in which each lamp 12 is arranged on a flat surface has been explained, but it may be arranged on a curved surface. 2 is a diagram showing the measurement results of the illuminance distribution of one lamp, with the vertical axis representing the illuminance and the horizontal axis representing the distance in the radial direction from the center of the light source. According to this, the illuminance and illuminance distribution are very poor compared to the case of the above embodiment in which a large number of lamps are arranged.
It can be seen that it cannot be used at all for large area substrates.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、比較的小さいラ
ンプを平面又は曲面上に多数個配置し次ことにより、扁
照式で、且つ均一な照度分布を待つ大面積光源の裏作が
可能となるため、生産レベルでの光励起プロセス装置の
裏作が可能となる。
As explained above, according to the present invention, by arranging a large number of relatively small lamps on a flat or curved surface, it is possible to create a large-area light source that is flat-illuminated and has a uniform illuminance distribution. Therefore, it becomes possible to make a back-up of the optical excitation process device at the production level.

また、個々のランプを独立に制御できるようVζするこ
とによシ、任意の照度分布を与えることもできる。これ
により、反応室の構造上の問題から反応ガスの流れが不
均一となり、そのため基板上で濃度分布を生じた場合、
この生じた濃度分布を補償する照度分布を与えることで
膜厚分布を均一化することも可能となる。
Further, by adjusting Vζ so that each lamp can be controlled independently, an arbitrary illuminance distribution can be provided. As a result, due to structural problems in the reaction chamber, the flow of the reaction gas becomes uneven, resulting in concentration distribution on the substrate.
By providing an illuminance distribution that compensates for this generated concentration distribution, it is also possible to make the film thickness distribution uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の一実施例を示す光励起プロセス装置
用光源の断面図、第1B図は平面図、第1C図(a) 
(b) (c)はランプ数が7本、19本、37本の場
合の配置図、第2図は本発明の実施例で測定された光源
の中心からの照度測定結果を示す図、第3図は本発明の
実施例で用いた小型重水素ランプl本のF!@度−j定
結果を示す図、@4図は従来fIIを示す光励起プロセ
ス装置の断面図である。 l・・・反応室、      2・・・基板ステージ。 3・・・ヒータ、      4・・・基板。 5・・・反応ガスの導入口、  6・・・排気口。 7・・・噴出板、      8・−・光源室。 9・−・不活性ガスの導入口、10・・・光源。 11・・・ランプハウス、   12・・・小型ランプ
。 13・・・冷却水入口、14・−冷却水出口。 15・・・小型ランプの制@l装貢。 第2図 光源中心力)ら半径方向の距離[C府コ第3図 光源中心から半径方向の距m[Cm] 手続手続補正臼発) 平成3年2月1日
FIG. 1A is a sectional view of a light source for a photoexcitation process device showing an embodiment of the present invention, FIG. 1B is a plan view, and FIG. 1C (a)
(b) (c) are layout diagrams when the number of lamps is 7, 19, and 37; Figure 2 is a diagram showing the illuminance measurement results from the center of the light source measured in the embodiment of the present invention; Figure 3 shows F! of one small deuterium lamp used in the embodiment of the present invention. The diagram showing @degree-j constant results and the diagram @4 are cross-sectional views of a conventional optical excitation process device showing fII. l...Reaction chamber, 2...Substrate stage. 3... Heater, 4... Board. 5... Reaction gas inlet, 6... Exhaust port. 7... Ejection plate, 8... Light source chamber. 9... Inert gas inlet, 10... Light source. 11... Lamp house, 12... Small lamp. 13... Cooling water inlet, 14... Cooling water outlet. 15... Small lamp system @l tribute. Figure 2. Radial distance from the center of the light source (Fig. 3) Radial distance from the center of the light source m [Cm] February 1, 1991

Claims (1)

【特許請求の範囲】 1、処理すべき基体を収容する反応室と、該反応室内に
反応ガスを導入及び排気する手段と、該反応ガスを光化
学反応させ、該基体上に薄膜を形成名せるための光源を
具備した光励起プロセス装置において、該光源が独立し
た、比較的小さなランプを平面又は曲面上に多数個配置
してなることを特徴とする光励起プロセス装置用光源。 2、光源を構成する独立した比較的小さなランプを、各
々独立に点灯・消灯又は任意の長さでパルス発光させる
制御手段を設け、処理すべき基体上で任意の照度分布を
発生させることができるようにしたことを特徴とする請
求項1記載の光励起プロセス装置用光源。
[Claims] 1. A reaction chamber containing a substrate to be treated, means for introducing and exhausting a reaction gas into the reaction chamber, and forming a thin film on the substrate by photochemically reacting the reaction gas. 1. A light source for a photo-excited process apparatus, characterized in that the light source comprises a large number of independent, relatively small lamps arranged on a flat or curved surface. 2. By providing a control means for independently turning on and off the independent relatively small lamps constituting the light source or causing them to emit pulses of arbitrary length, it is possible to generate an arbitrary illuminance distribution on the substrate to be treated. 2. The light source for a photoexcitation process apparatus according to claim 1, wherein the light source is configured as follows.
JP2325957A 1990-11-29 1990-11-29 Light source for photo-excitation process equipment Expired - Lifetime JP3064407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325957A JP3064407B2 (en) 1990-11-29 1990-11-29 Light source for photo-excitation process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325957A JP3064407B2 (en) 1990-11-29 1990-11-29 Light source for photo-excitation process equipment

Publications (2)

Publication Number Publication Date
JPH04199622A true JPH04199622A (en) 1992-07-20
JP3064407B2 JP3064407B2 (en) 2000-07-12

Family

ID=18182494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325957A Expired - Lifetime JP3064407B2 (en) 1990-11-29 1990-11-29 Light source for photo-excitation process equipment

Country Status (1)

Country Link
JP (1) JP3064407B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237764A (en) * 1996-02-28 1997-09-09 Shin Etsu Handotai Co Ltd Radiation heating apparatus and method
JP2003059853A (en) * 2001-08-08 2003-02-28 Tokyo Electron Ltd Lamp heater and heat treatment apparatus
US8810842B2 (en) 2012-04-27 2014-08-19 Brother Kogyo Kabushiki Kaisha Printing system, printer, and non-transitory computer-readable medium storing printing control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237764A (en) * 1996-02-28 1997-09-09 Shin Etsu Handotai Co Ltd Radiation heating apparatus and method
JP2003059853A (en) * 2001-08-08 2003-02-28 Tokyo Electron Ltd Lamp heater and heat treatment apparatus
US8810842B2 (en) 2012-04-27 2014-08-19 Brother Kogyo Kabushiki Kaisha Printing system, printer, and non-transitory computer-readable medium storing printing control program

Also Published As

Publication number Publication date
JP3064407B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
US4525382A (en) Photochemical vapor deposition apparatus
US20100096569A1 (en) Ultraviolet-transmitting microwave reflector comprising a micromesh screen
JPH04199622A (en) Light source for light excitation processing device
JP2001185089A (en) Excimer irradiation device
US4500565A (en) Deposition process
JP3010066B2 (en) Optical excitation process equipment
JPS61131419A (en) Semiconductor manufacturing equipment
JPS61129816A (en) Semiconductor manufacturing apparatus
JPH04206627A (en) Optical exciting process apparatus
Sosnin Excimer lamps and based on them a new family of ultraviolet radiation sources
JPS62206823A (en) Optical-pumping processing equipment
JP2608456B2 (en) Thin film forming equipment
JPS60202928A (en) Optical pumping reaction device
JPH0334538A (en) Optical pumping reaction apparatus
JPS61129821A (en) Semiconductor manufacturing apparatus
JPH0598447A (en) Photo assisted cvd device
JPS61131420A (en) Semiconductor manufacturing equipment
JPS61129820A (en) Semiconductor manufacturing apparatus
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPH0513373B2 (en)
JPS61131433A (en) Semiconductor manufacturing equipment
JPS61131430A (en) Semiconductor manufacturing equipment
JPH0372712B2 (en)
JP2002176046A (en) Vacuum ultraviolet light cvd system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11