JPS61128517A - Production unit for semiconductor - Google Patents

Production unit for semiconductor

Info

Publication number
JPS61128517A
JPS61128517A JP25106484A JP25106484A JPS61128517A JP S61128517 A JPS61128517 A JP S61128517A JP 25106484 A JP25106484 A JP 25106484A JP 25106484 A JP25106484 A JP 25106484A JP S61128517 A JPS61128517 A JP S61128517A
Authority
JP
Japan
Prior art keywords
reaction
substrate
gas
reaction gases
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25106484A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25106484A priority Critical patent/JPS61128517A/en
Publication of JPS61128517A publication Critical patent/JPS61128517A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

PURPOSE:To improve the uniformity of film thickness, and to prevent the deterioration in film quality by dust by mounting a table moving mechanism moving a substrate and an air outlet for discharging a reaction product, etc. CONSTITUTION:A moving table 19 is rocked and shifted in the direction that reaction gases flow, and all of each section of the surface of a substrate 5 are exposed to the reaction gases having several concentration at reapective position in said direction at every same time in said direction, thus equalizing the whole quantities of the reaction gases, to which each section of the surface is exposed, as the result of integration. Consequently, even when concentration distribution along the direction of the flow of the reaction gases is made unequal by the change of the concentration of the reaction gases due to the diffusion and the distubance of flow of the reaction gases, a thin-film having uniform film thickness is formed. A reaction product is discharged outside a device through exhaust paths 25, 26, and does not collect on the table 19.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、反応ガスに光を投射して光化学反応を生じ
させ、反応ガス中に置かれた基板に薄膜を形成させる方
法(photo chemical vapourde
position :以下光励起CVD法と称す)を用
いて薄膜を形成する半導体製造装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] This invention is a method of projecting light onto a reaction gas to cause a photochemical reaction and forming a thin film on a substrate placed in the reaction gas.
The present invention relates to a semiconductor manufacturing apparatus that forms a thin film using a photo-excited CVD method (hereinafter referred to as photo-excited CVD method).

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置における薄膜形成等において重
要な技術であるが、従来のCVD法は主として反応ガス
を加熱して化学反応を起こさせるようにしており、この
ため反応温度が高温となり、これにより形成される薄膜
はダメージを受け一つすいものである。
The CVD method is an important technology for forming thin films in integrated circuit devices, but the conventional CVD method mainly heats the reaction gas to cause a chemical reaction, which results in a high reaction temperature. The thin film formed is less susceptible to damage.

そこで最近、低温CVD技術として光励起CVD法が注
目されている。この光励起CVD法は、CVDのエネル
ギー源として光を用いるものであり、これによれば、従
来の熱励起CVD法、プラズマCVD法等に比較して反
応温度を低温にてき、薄膜へのダメージも少なくするこ
とができる。
Therefore, recently, a photo-excited CVD method has been attracting attention as a low-temperature CVD technique. This photo-excited CVD method uses light as an energy source for CVD. According to this method, the reaction temperature can be lowered compared to conventional thermally-excited CVD methods, plasma CVD methods, etc., and damage to thin films can be reduced. It can be reduced.

また、一般的に光励起CVD法は、反応ガスの濃度及び
光の照度が薄膜の形成速度に大きな影習を与えることが
知られている。
Further, it is generally known that in the photo-excited CVD method, the concentration of the reactant gas and the illuminance of the light have a large influence on the thin film formation rate.

第2図はこのような従来の光励起CVD法による薄膜形
成装置の基本的な構成を示し、第千図は第2図のm−m
線断面図を示す。
Figure 2 shows the basic configuration of a thin film forming apparatus using such a conventional photo-excited CVD method, and Figure 2 shows the m-m of Figure 2.
A line cross-sectional view is shown.

両図において、1は膜形成時にその中が高真空状態に減
圧される反応室、2は線状ランプからなる光源、3は基
板加熱用ヒータ、4は反応ガス、5は基板、6は光透過
材からなる光入射窓、7は反応ガス供給口、8は反応後
のガス4aを排出するためのガス排出口、9は基板5を
載せる台である。
In both figures, 1 is a reaction chamber in which the pressure is reduced to a high vacuum during film formation, 2 is a light source consisting of a linear lamp, 3 is a heater for heating the substrate, 4 is a reaction gas, 5 is a substrate, and 6 is a light source. A light entrance window made of a transparent material, 7 a reaction gas supply port, 8 a gas discharge port for discharging the gas 4a after the reaction, and 9 a table on which the substrate 5 is placed.

この従来装置では、反応ガス4が供給ロアから反応室1
に導入されると、該反応ガス4は入射窓6から投射され
た光線により励起分解される。そしてこれにより生じた
反応生成物がヒータ3によって低温加熱された基板5上
に堆積し、該基板5上に薄膜が形成される。反応後のガ
ス4aは排出口8から排出される。
In this conventional device, the reaction gas 4 is supplied from the supply lower to the reaction chamber 1.
When introduced into the reactor gas 4, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction product is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. The gas 4a after the reaction is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来の薄膜形成装置では、反応室1の一端に
反応ガス供給ロアを設け、他端にガス排出口8を設け、
反応ガス4を反応室1内に流すようにしているが、反応
ガス4を供給ロアから排出口8まで一様な濃度に保って
流すということは非常に困難である。即ち、反応ガス4
が反応室1内で拡散したり、該反応ガス4の流れが反応
室壁近くで乱れることなどから、反応ガス4の流れに沿
った基板5上の反応ガス濃度は一定ではなく、通常は反
応ガス供給ロアの近傍で反応ガス濃度が高く反応ガス排
出口8に近づくに従い反応ガス濃度は低くなる。このた
め、上記従来装置においては、光化学反応を生じさせる
光線の強度、基板温度等を一定に保っても反応ガス4の
濃度が基板5上で異なることから、均一な膜厚の高性能
な半導体を効率よく生産することが困難であった。
In such a conventional thin film forming apparatus, a reaction gas supply lower is provided at one end of the reaction chamber 1, a gas exhaust port 8 is provided at the other end,
Although the reaction gas 4 is made to flow into the reaction chamber 1, it is very difficult to keep the reaction gas 4 flowing from the supply lower to the discharge port 8 at a uniform concentration. That is, reaction gas 4
The reaction gas concentration on the substrate 5 along the flow of the reaction gas 4 is not constant because the reaction gas 4 is diffused in the reaction chamber 1 and the flow of the reaction gas 4 is disturbed near the reaction chamber wall. The reactant gas concentration is high near the gas supply lower, and becomes lower as it approaches the reactant gas outlet 8. For this reason, in the conventional device described above, even if the intensity of the light beam that causes the photochemical reaction, the substrate temperature, etc. are kept constant, the concentration of the reaction gas 4 differs on the substrate 5, so that a high-performance semiconductor with a uniform film thickness can be produced. was difficult to produce efficiently.

また上記従来装置では光源2に線状ランプを用いていた
ので、該線状ランプ2による基板5上の照度分布がラン
プの軸方向、軸直角方向ともに均一ではなく、これによ
っても基板5上に均一な膜厚の薄膜を形成するのが困難
であった。
In addition, since the above conventional device uses a linear lamp as the light source 2, the illuminance distribution on the substrate 5 due to the linear lamp 2 is not uniform both in the axial direction of the lamp and in the direction perpendicular to the axis. It was difficult to form a thin film with uniform thickness.

さらにまた、上記従来装置では、反応室1周辺部に反応
生成物等がたまり易(、これがゴミとなって基板5に付
着して薄膜の品質を低下させるという問題があった。
Furthermore, in the conventional apparatus described above, there is a problem in that reaction products and the like tend to accumulate around the reaction chamber 1 (this becomes dust and adheres to the substrate 5, degrading the quality of the thin film).

この発明は、このような従来の問題点を解消するだめに
なされたもので、基板上の反応ガス濃度又は照度が不均
一になっても、基板上に均一な膜厚の薄膜を形成するこ
とができ、かつゴミによる膜質の低下を防止できる半導
体製造装置を提供することを目的としている。
This invention was made to solve these conventional problems, and it is possible to form a thin film with a uniform thickness on a substrate even if the concentration or illuminance of the reactant gas on the substrate becomes non-uniform. It is an object of the present invention to provide a semiconductor manufacturing apparatus that can prevent deterioration of film quality due to dust.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、基板を移動させるテ
ーブル移動機構と、反応生成物等を排気するための排気
口とを設けたものである。
A semiconductor manufacturing apparatus according to the present invention is provided with a table moving mechanism for moving a substrate and an exhaust port for exhausting reaction products and the like.

〔作用〕[Effect]

この発明においては、基板を反応室内でテーブル移動機
構にて揺動運動させるから、基板の各部の膜形成に寄与
する反応ガス量、光エネルギー量は該基板の移動範囲に
わたる反応ガス濃度分布。
In this invention, since the substrate is oscillated in the reaction chamber by a table moving mechanism, the amount of reactive gas and the amount of light energy that contribute to film formation on each part of the substrate are determined by the concentration distribution of the reactive gas over the movement range of the substrate.

照度分布の積分値に相当する量となり、従って該各分布
が不均一であっても基板上に形成される薄膜の膜厚は上
記揺動方向に均一となり、また反応生成物等は外方に排
出されるから、反応室内にゴミがたまることはなく、従
ってゴミが基板に付着することもない。
The amount corresponds to the integral value of the illuminance distribution, so even if the respective distributions are uneven, the thickness of the thin film formed on the substrate will be uniform in the above-mentioned swing direction, and reaction products etc. will be directed outward. Since the gas is discharged, no dust will accumulate in the reaction chamber, and therefore no dust will adhere to the substrate.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置を示し
、褥図において、1は反応室、4は反応ガス、12は複
数の線状ランプを適当な間隔をあけて反応ガスの流れ方
向と直角方向に並列配置した光源、3は基板加熱用ヒー
タ、5は基板、6は光透過材からなる光入射窓である。
FIG. 1 shows a semiconductor manufacturing apparatus according to an embodiment of the present invention, in which 1 is a reaction chamber, 4 is a reaction gas, and 12 is a plurality of linear lamps arranged at appropriate intervals in the flow direction of the reaction gas. 3 is a heater for heating the substrate, 5 is a substrate, and 6 is a light entrance window made of a light transmitting material.

また7は反応ガス供給ノズル、′8は反応後のガス4a
を排出するためのガス排出ノズルであり、この両ノズル
7゜8の反応室側端部は基板積載用の移動テーブル19
上に延びている。
Further, 7 is a reaction gas supply nozzle, and '8 is a gas 4a after reaction.
The ends of both nozzles 7°8 on the reaction chamber side are connected to a moving table 19 for loading substrates.
extends upward.

20は上記移動テーブル19を反応ガスの流れる方向に
沿って揺動運動させるテーブル移動機構であり、これは
上記テーブル19に固着された連結子19aに螺合した
ボールネジ23と、これを回転駆動するモータ24とか
ら構成されている。
Reference numeral 20 denotes a table moving mechanism that swings the moving table 19 along the flow direction of the reaction gas, and this mechanism includes a ball screw 23 screwed into a connector 19a fixed to the table 19, and a ball screw 23 that rotates the moving table 19. It is composed of a motor 24.

25.26は排気通路であり、各通路25.26はそれ
ぞれ上記供給ノズル7、排出ノズル8のそれぞれと移動
テーブル19との間に配設され、その反応室側端部は上
記テーブル19の端部上方にて開口し、またその後端部
は図示しない排気装置に接続されている。
Reference numerals 25 and 26 denote exhaust passages, each passage 25 and 26 is disposed between each of the supply nozzle 7 and the discharge nozzle 8 and the moving table 19, and the end thereof on the reaction chamber side is connected to the end of the table 19. It opens at the top, and its rear end is connected to an exhaust device (not shown).

次に動作について説明する。Next, the operation will be explained.

本実施例装置では、従来装置と同様に、反応室1に導入
された反応ガス4は入射窓6から投射された光線により
光化学反応を生じ、ヒータ3によフて低温加熱された基
板5上に薄膜を形成する。
In the apparatus of this embodiment, similarly to the conventional apparatus, the reaction gas 4 introduced into the reaction chamber 1 causes a photochemical reaction by the light beam projected from the entrance window 6, and the substrate 5 is heated at a low temperature by the heater 3. Form a thin film on the surface.

そしてこの際、移動テーブル19は反応ガスの流れる方
向に沿って揺動運動され、該方向に沿った基板5の表面
各部はすべて上記方向に沿った各位置の各濃度の反応ガ
スに同一時間ずつさらされることとなり、そのため上記
表面各部がさらされる反応ガスの量は積分の結果すべて
同一ということになる。このため、反応ガスの拡散や流
れの乱れによる反応ガスの濃度の変化により、反応ガス
の流れの方向に沿う濃度分布が不均一であっても、均一
な膜厚の薄膜が形成されることとなる。
At this time, the moving table 19 is oscillated along the flow direction of the reaction gas, and all parts of the surface of the substrate 5 along the direction are exposed to the reaction gas at each concentration at each position along the direction for the same amount of time. Therefore, the amount of reaction gas to which each part of the surface is exposed is the same as a result of integration. Therefore, even if the concentration distribution along the flow direction of the reactant gas is uneven due to changes in the concentration of the reactant gas due to diffusion of the reactant gas or disturbances in the flow, a thin film with a uniform thickness can be formed. Become.

また本実施例では光源12に線状ランプをガスの流れ方
向と直角方向に複数並列配置したものを用いており、上
記反応ガス4の流°れる方向と直角方向、即ちランプの
軸と直角方向に沿う基板5上での照度分布は均一になる
ものの、上記ガスの流れ方向であるランプの軸方向に沿
って基板5上で照度分布の不均一が生じることとなるが
、これも上記のように基板5を上記軸方向に揺動運動さ
せることによって該方向の基板表面各部は同一強度の光
線の下に同一時間さらされることとなり、膜厚の分布は
均一となる。
Furthermore, in this embodiment, a plurality of linear lamps arranged in parallel in a direction perpendicular to the flow direction of the gas is used as the light source 12. Although the illuminance distribution on the substrate 5 along the direction becomes uniform, the illuminance distribution becomes uneven on the substrate 5 along the axial direction of the lamp, which is the flow direction of the gas, as described above. By swinging the substrate 5 in the axial direction, each part of the substrate surface in that direction is exposed to the same intensity of light for the same amount of time, and the film thickness distribution becomes uniform.

また、従来装置では基板積載用テーブルの周縁部には、
反応生成物がたまり易いという問題があったが、本実施
例では上記反応生成物は排気通路25.26を通って装
置外方に排出され、テーブル19上にたまるということ
はない。また反応室1内において反応ガス4がテーブル
19の下方に侵入しようとすると、上記排気通路25.
26によって吸引され、テーブル19下方に侵入するガ
ス量は低減される。
In addition, in conventional equipment, the periphery of the substrate loading table has
Although there was a problem that reaction products tend to accumulate, in this embodiment, the reaction products are discharged to the outside of the apparatus through the exhaust passages 25 and 26, and do not accumulate on the table 19. Furthermore, when the reaction gas 4 tries to enter the lower part of the table 19 in the reaction chamber 1, the exhaust passage 25.
26 and the amount of gas entering below the table 19 is reduced.

このように本装置では、基板5上への薄膜の形成速度が
光線の強度変化及び反応ガスの濃度の不均一による影響
を受けず、基板5全面にわたり均一な膜厚の薄膜を効率
よく形成することができ、また、テーブル19周縁部近
傍に生じた反応生成物は排出されるので、これがゴミと
なって基板5の膜質を低下させるのを防止でき、高性能
の半導体を効率よく安価に製造でき、さらにまた反応ガ
ス4のテーブル19下方への侵入量が低減され、そのた
めテーブル移動機構20の耐食性を向上できる。
In this way, in this apparatus, the speed of forming a thin film on the substrate 5 is not affected by changes in the intensity of the light beam or uneven concentration of the reactant gas, and a thin film with a uniform thickness can be efficiently formed over the entire surface of the substrate 5. In addition, since the reaction products generated near the peripheral edge of the table 19 are discharged, this can be prevented from becoming dust and deteriorating the film quality of the substrate 5, and high-performance semiconductors can be manufactured efficiently and at low cost. Furthermore, the amount of reaction gas 4 entering below the table 19 is reduced, and therefore the corrosion resistance of the table moving mechanism 20 can be improved.

なお上記実施例では、基板の移動方向を線状ランプの軸
方向としたが、この基板はさらにランプの軸に直角な方
向に移動させるようにしてもよい。
In the above embodiment, the substrate is moved in the axial direction of the linear lamp, but the substrate may also be moved in a direction perpendicular to the lamp axis.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置によれば
、基板を移動させるテーブル移動機構を設けたので、膜
厚の均一性を向上でき、また反応生成物等を排気するた
めの排気口を設けたので、ゴミによる膜質の低下を防止
でき、高性能の半導体を効率よく安価に製造できる効果
がある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention, since the table moving mechanism for moving the substrate is provided, the uniformity of the film thickness can be improved, and the exhaust port for exhausting reaction products etc. is provided. The provision of such a film prevents deterioration of film quality due to dust, and has the effect of making it possible to manufacture high-performance semiconductors efficiently and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は従来の半導体製造装置の断面側面図、
第3図は第2図のm−m線断面図である。 1・・・反応室、12・・・光源、4・・・反応ガス、
5・・・基板、19・・・テーブル、20・・・テーブ
ル移動機構、25.26・・・排気通路。 なお図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus,
FIG. 3 is a sectional view taken along line mm in FIG. 2. 1... Reaction chamber, 12... Light source, 4... Reaction gas,
5... Board, 19... Table, 20... Table moving mechanism, 25.26... Exhaust passage. In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記基板を載
置するテーブルを移動させるテーブル移動機構と、該テ
ーブルの周縁部に開口し、該周縁部近傍の反応生成物等
を排気するための排気通路とを備えたことを特徴とする
半導体製造装置。
(1) In a semiconductor manufacturing apparatus that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, a table on which the substrate is placed is used. 1. A semiconductor manufacturing apparatus comprising: a table moving mechanism for moving the table; and an exhaust passage that opens at the peripheral edge of the table and exhausts reaction products and the like near the peripheral edge.
JP25106484A 1984-11-28 1984-11-28 Production unit for semiconductor Pending JPS61128517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25106484A JPS61128517A (en) 1984-11-28 1984-11-28 Production unit for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25106484A JPS61128517A (en) 1984-11-28 1984-11-28 Production unit for semiconductor

Publications (1)

Publication Number Publication Date
JPS61128517A true JPS61128517A (en) 1986-06-16

Family

ID=17217087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25106484A Pending JPS61128517A (en) 1984-11-28 1984-11-28 Production unit for semiconductor

Country Status (1)

Country Link
JP (1) JPS61128517A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811240B2 (en) * 1982-04-20 1983-03-02 松下電器産業株式会社 Automatic washing machine control device
JPS59124124A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811240B2 (en) * 1982-04-20 1983-03-02 松下電器産業株式会社 Automatic washing machine control device
JPS59124124A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US5252132A (en) Apparatus for producing semiconductor film
US4615294A (en) Barrel reactor and method for photochemical vapor deposition
US4597986A (en) Method for photochemical vapor deposition
JPH01107519A (en) Vapor growth apparatus
JPS61128517A (en) Production unit for semiconductor
US6254687B1 (en) Chemical vapor deposition system with reduced material deposition on chamber wall surfaces
JPS61128518A (en) Production equipment for semiconductor
JPH05198512A (en) Optical cvd device
JP2943407B2 (en) Continuous transportation treatment device of high-temperature melt and its method
JPS63111621A (en) Etching apparatus
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JP3174787B2 (en) Optical CVD equipment
JPS61131419A (en) Semiconductor manufacturing equipment
KR200327634Y1 (en) Apparatus for atomic layer deposition
JP3079436B2 (en) Photochemical reactor
JPS62120481A (en) Continuous cvd thin film forming device
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61108129A (en) Semiconductor manufacturing equipment
JPS63257232A (en) Treatment apparatus
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61131423A (en) Semiconductor manufacturing equipment
JPS61129816A (en) Semiconductor manufacturing apparatus
JPH0433329A (en) Photo-cvd apparatus
JP2551753B2 (en) Photo CVD equipment
JPS61129814A (en) Manufacturing apparatus for semiconductor