JPS61108129A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS61108129A
JPS61108129A JP23075084A JP23075084A JPS61108129A JP S61108129 A JPS61108129 A JP S61108129A JP 23075084 A JP23075084 A JP 23075084A JP 23075084 A JP23075084 A JP 23075084A JP S61108129 A JPS61108129 A JP S61108129A
Authority
JP
Japan
Prior art keywords
substrate
reaction gas
reaction
gas
semiconductor manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23075084A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Yoshimi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23075084A priority Critical patent/JPS61108129A/en
Publication of JPS61108129A publication Critical patent/JPS61108129A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

PURPOSE:To form thin films with even thickness in the specified direction by a method wherein a substrate is shaken in the specified direction by means of a table moving system. CONSTITUTION:Reaction gas 4 is introduced from an inlet 7 to a reaction chamber 1 for photochemical reaction by light entering from entrance window 6 to form thin films on a substrate 5 heated by a heater 3. At this time, a movable table 19 in parallel with the flowing direction of gas 4 is shaken in the same direction to expose overall surface of substrate 5 in the same direction to the gas 4 for the same time. Through these procedures, thin films with even thickness may be formed regardless of uneven concentration distribution of the reaction gas 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、反応ガスに光を投射して光化学反応を牛じ
さゼ、反応ガス中に置かれた基板に薄IIIを形成さ“
0る方法(photo chcmical vapou
rdaposition :以下光励起CVr)法と称
す)を用いてWi欣を形成する1く導体製造装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention projects light onto a reaction gas to stimulate a photochemical reaction, thereby forming a thin film on a substrate placed in the reaction gas.
0ru method (photo chcmical vapou
The present invention relates to a conductor manufacturing apparatus for forming a Wi-shaped conductor using the rdaposition (hereinafter referred to as photoexcitation CVr) method.

〔従来の技術〕[Conventional technology]

第3[i1’/lは従来の光励起cvD法による薄膜形
成両図において、1は反応室、2は線状ランプからなる
光源、3は基板加熱用ヒータ、4は反応ガス、5は基板
、6は光透過材からなる光入射窓、7は反応ガス供給「
1.8は反応ガス排出口、9は基板5を載セる台である
3rd [i1'/l is thin film formation by conventional photoexcitation CVD method In both figures, 1 is a reaction chamber, 2 is a light source consisting of a linear lamp, 3 is a heater for heating the substrate, 4 is a reaction gas, 5 is a substrate, 6 is a light entrance window made of a light-transmitting material, and 7 is a reactant gas supply.
1.8 is a reaction gas outlet, and 9 is a table on which the substrate 5 is placed.

この装置では、反応ガス4はfJj給ロフロア反応室l
じ導入され、入射窓6がら投射された光線により反応室
1内で光化学反応を生じ、ヒータ3によって低温加熱さ
れた基板5上に薄膜を形成する。
In this apparatus, the reaction gas 4 is fed into the fJj feed floor reaction chamber l.
A photochemical reaction is caused in the reaction chamber 1 by the light rays introduced through the entrance window 6, and a thin film is formed on the substrate 5, which is heated at a low temperature by the heater 3.

反応後のガスは排出口8から排出される。The gas after the reaction is discharged from the discharge port 8.

また、一般的に光励起CVD法では、反応ガスの濃度及
び光の照度が薄膜の形成速度に大きな影響を与えること
が知られている。
Furthermore, it is generally known that in the photo-excited CVD method, the concentration of the reactant gas and the illuminance of the light have a large effect on the thin film formation rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、従来の薄膜形成装置のように反応室の一端に
反応ガス供給口を設け、他端に反応ガス排出口を設け、
反応ガスを反応室内に流す機構では、反応ガスを供給口
から排出口まで一様な濃度に保って流すということは非
常に困難であり、このような装置においては、反応ガス
が反応室内で拡散したり、該反応ガスの流れが反応室壁
近くで乱れることなどから、反応ガスの流れに沿った基
板上の反応ガス濃度は一定ではなく、通常は反応ガス供
給口の近傍で反応ガス濃度が高く反応ガス排出口に近づ
くに従い反応ガス濃度は低くなる。
However, unlike conventional thin film forming apparatuses, a reaction gas supply port is provided at one end of the reaction chamber and a reaction gas discharge port is provided at the other end.
In a mechanism that allows the reaction gas to flow into the reaction chamber, it is extremely difficult to maintain a uniform concentration of the reaction gas from the supply port to the discharge port. The concentration of the reaction gas on the substrate along the flow of the reaction gas is not constant because the flow of the reaction gas is disturbed near the reaction chamber wall, and the concentration of the reaction gas on the substrate is usually not constant near the reaction gas supply port. The concentration of the reactant gas decreases as it approaches the reactant gas outlet.

このため、従来の光励起CVD法による薄膜形成装置に
おいては、光化学反応を生しさせる光線の強度、載板温
度等を一定に保っても反応ガスの濃度が基板上で異なり
、最適の反応ガス濃度を基板−に全面で保つことが非常
に困難であり、従って均一な膜厚の高性能な半導体を効
率よく生産することが困難であった。
For this reason, in thin film forming apparatuses using conventional photo-excited CVD methods, even if the intensity of the light that causes the photochemical reaction, the mounting temperature, etc. are kept constant, the concentration of the reaction gas varies on the substrate, and the optimal reaction gas concentration It is extremely difficult to maintain the film over the entire surface of the substrate, and therefore it is difficult to efficiently produce high-performance semiconductors with uniform film thickness.

またfffi来の装置では光源2に線状ランプを用いて
いたので、該線状ランプによる基板上の照度分布がラン
プの軸方向、軸と直角な方向ともに均一ではなく、これ
によっても基板上に均一な膜厚の薄膜を形成するのが困
難であった。
In addition, since the device from FFFI used a linear lamp as the light source 2, the illuminance distribution on the substrate due to the linear lamp was not uniform both in the axial direction of the lamp and in the direction perpendicular to the axis. It was difficult to form a thin film with uniform thickness.

この発明は、このような問題点を解消するためになされ
たもので、基板上の反応ガス濃度の不均一、照度の不均
一にかかわらず、基板上に所定方向に均一な膜厚の薄膜
を形成することのできる半導体製造装置を得ることを目
的とするものである。
This invention was made to solve these problems, and it is possible to form a thin film with a uniform thickness in a predetermined direction on a substrate, regardless of the non-uniformity of the reaction gas concentration or the non-uniformity of the illuminance on the substrate. The object of the present invention is to obtain a semiconductor manufacturing device that can form a semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

該方向に該基板を移動させるテーブル移動機構を設けた
ものである。
A table moving mechanism for moving the substrate in the direction is provided.

〔作用〕[Effect]

この発明においては、基板を反応室内でテーブル移動機
構にて所定の方向に揺動運動させるから、基板上の各部
の膜形成に寄与する反応ガス量、光エネルギー量は該基
板の移動範囲にわたる反応ガス濃度分布、照度分布の積
分値に相当する量となり、従って該各分布が不均一であ
っても基板上に形成される薄膜の膜厚は該方向に均一と
なる。
In this invention, since the substrate is oscillated in a predetermined direction within the reaction chamber by a table moving mechanism, the amount of reaction gas and the amount of light energy that contribute to film formation on each part of the substrate are limited to the amount of reaction gas and light energy that contribute to film formation on each part of the substrate. The amount corresponds to the integral value of the gas concentration distribution and the illuminance distribution, so even if the distributions are non-uniform, the thickness of the thin film formed on the substrate will be uniform in the direction.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置の断面
図、第2図は第1図のn−n線断面図である。両図にお
いて、1は反応室、4は反応ガス、12は複数の線状ラ
ンプを適当な間隔をおいて上記反応ガス4の流れ方向に
向けて並列配置した光源、3は基板加熱用ヒータ、5は
基板、6は光透過材からなる光入射窓、7は反応ガス供
給口、8は反応ガス排出口、19は基板積載用の移動テ
ーブル、20は該移動テーブル19を反応ガス供給ロア
から排出口8への反応ガスの流れる方向に沿って揺動運
動さセるテーブル移動機構であり、これは上記テーブル
19に固着された連結子19aに鍍金したボールネジ2
3とこれを回転駆動するモータ24とから構成されてい
る。
FIG. 1 is a sectional view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line nn in FIG. In both figures, 1 is a reaction chamber, 4 is a reaction gas, 12 is a light source in which a plurality of linear lamps are arranged in parallel at appropriate intervals in the flow direction of the reaction gas 4, 3 is a heater for heating the substrate, 5 is a substrate, 6 is a light incident window made of a light-transmitting material, 7 is a reaction gas supply port, 8 is a reaction gas discharge port, 19 is a moving table for loading the substrate, and 20 is the moving table 19 from the reaction gas supply lower. This is a table moving mechanism that performs rocking motion along the flow direction of the reaction gas toward the discharge port 8. This is a ball screw 2 plated on a connector 19a fixed to the table 19.
3 and a motor 24 that rotationally drives this.

次に動作について説明する。Next, the operation will be explained.

この装置では、反応ガス4は反応ガス供給ロアから反応
室lに導入され、入射窓6から投射された光線により反
応室1内で光化学反応を生じ、ヒータ3によって低温加
熱された基板5上に薄膜を形成するが、反応ガスの流れ
る方向に沿って平行に移動できる移動テーブル19を同
方向に揺動運動させると、該方向に沿った基板5の表面
各部はすべて上記方向に沿った各位置の各濃度の反応ガ
スに同一時間ずつさらされることとなり、そのため上記
表面各部がさらされる反応ガスの量は積分の結果すべて
同一ということになる。
In this device, a reaction gas 4 is introduced into a reaction chamber 1 from a reaction gas supply lower, a photochemical reaction is caused in the reaction chamber 1 by a light beam projected from an entrance window 6, and the reaction gas 4 is deposited on a substrate 5 heated at a low temperature by a heater 3. When a thin film is formed, when the movable table 19, which can be moved parallel to the flow direction of the reaction gas, is oscillated in the same direction, all parts of the surface of the substrate 5 along the direction are moved to different positions along the direction. Therefore, the amount of the reaction gas to which each part of the surface is exposed is the same as a result of integration.

このため、反応ガスの拡散や流れの乱れによる反応ガス
の濃度の変化により反応ガスの流れの方向に沿う濃度分
布が不均一であっても、均一な膜厚のi膜が形成される
こととなる。
Therefore, even if the concentration distribution along the flow direction of the reactant gas is uneven due to changes in the concentration of the reactant gas due to diffusion of the reactant gas or disturbances in the flow, an i-film with a uniform thickness can be formed. Become.

また本実施例では光源12に線状ランプを上記反応ガス
の流れ方向に向けて複数並列配置したものを用いている
ので、上記反応ガス4の流れる方向き直角方向、即ちラ
ンプの軸と直角方向に沿う基板−Lでの照度分布は均一
になるものの、L記ガスの流れ方向であるランプの軸方
向に沿っ′ζ基板−Lで照度分布の不均一が生じること
となるが、これも上記のように基板5を該軸方向に揺動
運動させることによって該方向の基板表面各部は同一強
度の光線の下に同一時間さらされることとなり、膜厚の
分布は均一となる。
Furthermore, in this embodiment, since a plurality of linear lamps arranged in parallel facing the flow direction of the reaction gas 4 is used as the light source 12, the direction is perpendicular to the flow direction of the reaction gas 4, that is, the direction perpendicular to the lamp axis. Although the illuminance distribution along the substrate L becomes uniform, the illuminance distribution becomes uneven at the substrate L along the axial direction of the lamp, which is the flow direction of the L gas. By swinging the substrate 5 in the axial direction, each part of the substrate surface in the direction is exposed to the same intensity of light for the same time, and the film thickness distribution becomes uniform.

また本実施例では、上述のように光源12を、線状ラン
プを複数並列配置したものとし、上記軸方向と平行に反
応ガスが流れるよう反応ガス供給ロアと反応ガス排出口
8を設けたので、上述のとおり、基板5表面上で上記ラ
ンプの軸に直角な方向に対し、光線の強度は均一な分布
となり、又反応ガス濃度も該直角な方向に沿っては反応
室1壁近傍を除けば均一な分布となり、このため、上記
直角な方向に沿っては基板5上に比較的容易に均一な厚
さのWIi膜を形成させることができる。
Furthermore, in this embodiment, as described above, the light source 12 is a plurality of linear lamps arranged in parallel, and the reactive gas supply lower and the reactive gas outlet 8 are provided so that the reactive gas flows parallel to the above-mentioned axial direction. As mentioned above, the intensity of the light beam is uniformly distributed on the surface of the substrate 5 in the direction perpendicular to the axis of the lamp, and the concentration of the reactant gas is also distributed along the perpendicular direction except for the vicinity of the wall of the reaction chamber 1. Therefore, a WIi film having a uniform thickness can be formed relatively easily on the substrate 5 along the perpendicular direction.

このように本装置では、基板5−1−への薄膜の形成速
度が光線の強度変化及び反応ガスの濃度の不均一による
影響を受けず、基板5全面にわたり均一な膜厚の薄膜を
効率よく形成することができ、高い性能の半導体を効率
よく安価に製造できる。
In this way, with this device, the speed of forming a thin film on the substrate 5-1- is not affected by changes in the intensity of the light beam or uneven concentration of the reactant gas, and the thin film can be efficiently formed with a uniform thickness over the entire surface of the substrate 5. high performance semiconductors can be manufactured efficiently and at low cost.

なお」二記実施例では、基板の移動方向を線状ランプの
軸方向としたが、この基板はさらにランプの軸に直角な
方向に移動させるようにしてもよい。
In the second embodiment, the substrate is moved in the axial direction of the linear lamp, but the substrate may also be moved in a direction perpendicular to the lamp axis.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置ににれば
、基板をある方向に移動するようにしたので、基板トに
該基板の移動方向に沿って該基板に均一な膜厚の薄膜を
効率よく形成でき、高い性能の半導体を効率よく安価に
製造できる効果がある。
As described above, in the semiconductor manufacturing apparatus according to the present invention, since the substrate is moved in a certain direction, a thin film having a uniform thickness is coated on the substrate along the direction of movement of the substrate. It can be formed efficiently and has the effect of producing high-performance semiconductors efficiently and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は第1図のn−n線断面図、第3図は従
来の半導体製造装置の薄膜形成装置の断面側面図、第4
図は第3図のIV−■線断面図である。 1は反応室、12は線状ランプからなる光源、4は反応
ガス、5は基板、20は接テーブル移動機構である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line nn of FIG. 1, and FIG. 3 is a cross-sectional side view of a thin film forming apparatus of a conventional semiconductor manufacturing apparatus. Figure, 4th
The figure is a sectional view taken along the line IV-■ in FIG. 3. 1 is a reaction chamber, 12 is a light source consisting of a linear lamp, 4 is a reaction gas, 5 is a substrate, and 20 is a contact table moving mechanism. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記基板を上
記薄膜の膜質が所定方向に均一になるよう該方向に移動
させるテーブル移動機構を備えたことを特徴とする半導
体製造装置。
(1) In a semiconductor manufacturing apparatus that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the substrate is A semiconductor manufacturing apparatus comprising a table moving mechanism that moves a table uniformly in a predetermined direction.
(2)上記光源が、1つの線状ランプからなるものであ
り、上記所定方向が上記線状ランプの軸と直角方向であ
ることを特徴とする特許請求の範囲第1項記載の半導体
製造装置。
(2) The semiconductor manufacturing apparatus according to claim 1, wherein the light source is composed of one linear lamp, and the predetermined direction is perpendicular to the axis of the linear lamp. .
(3)上記光源が、並列配置された複数の線状ランプか
らなるものであり、上記所定方向が上記線状ランプの軸
の方向であることを特徴とする特許請求の範囲第1項記
載の半導体製造装置。
(3) The light source according to claim 1, wherein the light source is composed of a plurality of linear lamps arranged in parallel, and the predetermined direction is the direction of the axis of the linear lamps. Semiconductor manufacturing equipment.
(4)上記所定方向が、上記反応ガスの流れる方向であ
ることを特徴とする特許請求の範囲第1項記載の半導体
製造装置。
(4) The semiconductor manufacturing apparatus according to claim 1, wherein the predetermined direction is a direction in which the reaction gas flows.
JP23075084A 1984-11-01 1984-11-01 Semiconductor manufacturing equipment Pending JPS61108129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23075084A JPS61108129A (en) 1984-11-01 1984-11-01 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23075084A JPS61108129A (en) 1984-11-01 1984-11-01 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS61108129A true JPS61108129A (en) 1986-05-26

Family

ID=16912694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23075084A Pending JPS61108129A (en) 1984-11-01 1984-11-01 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS61108129A (en)

Similar Documents

Publication Publication Date Title
US5252132A (en) Apparatus for producing semiconductor film
US4615294A (en) Barrel reactor and method for photochemical vapor deposition
US6024799A (en) Chemical vapor deposition manifold
US4509456A (en) Apparatus for guiding gas for LP CVD processes in a tube reactor
KR100216740B1 (en) Surface processing apparatus
US6720531B1 (en) Light scattering process chamber walls
US4789771A (en) Method and apparatus for substrate heating in an axially symmetric epitaxial deposition apparatus
US7018479B2 (en) Rotating semiconductor processing apparatus
CN1265245C (en) Method for uniformly coating substrate
JP2004235660A (en) Single body injector and evaporation chamber
US6007633A (en) Single-substrate-processing apparatus in semiconductor processing system
CN1503929A (en) Method of uniformly coating substrate
KR20230125281A (en) Systems and methods for a preheat ring in a semiconductor wafer reactor
JPS61108129A (en) Semiconductor manufacturing equipment
US5681394A (en) Photo-excited processing apparatus and method for manufacturing a semiconductor device by using the same
JP2007012846A (en) Photoirradiation type heating device and method therefor
EP1005076A1 (en) Floating apparatus of substrate
JPS61108123A (en) Semiconductor manufacturing equipment
JPS61128518A (en) Production equipment for semiconductor
JPS61128517A (en) Production unit for semiconductor
JPS61129811A (en) Manufacturing apparatus for semiconductor
JPS61108125A (en) Semiconductor manufacturing equipment
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61131415A (en) Semiconductor manufacturing equipment
JPS61129821A (en) Semiconductor manufacturing apparatus