JPH02216818A - Light application thin-film manufacturing device - Google Patents

Light application thin-film manufacturing device

Info

Publication number
JPH02216818A
JPH02216818A JP3786689A JP3786689A JPH02216818A JP H02216818 A JPH02216818 A JP H02216818A JP 3786689 A JP3786689 A JP 3786689A JP 3786689 A JP3786689 A JP 3786689A JP H02216818 A JPH02216818 A JP H02216818A
Authority
JP
Japan
Prior art keywords
light
substrate
thin film
film manufacturing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3786689A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shichida
七田 弘之
Kotaro Sakoda
佐古田 光太郎
Ryosuke Yamaguchi
良祐 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3786689A priority Critical patent/JPH02216818A/en
Publication of JPH02216818A publication Critical patent/JPH02216818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable accumulation of a thin film and etching of the thin film onto a substrate to be made uniformly by placing a light-transmission window which allows light to be scattered. CONSTITUTION:After a reaction room 1 is discharged to a specified conditions by a discharging means. a reaction gas 4 is introduced into the reaction room 1. Also, a substrate 5 is heated to a specified temperature through a susceptor 9. In this state, ultraviolet ray is irradiated from a light source 2, excites and decomposes the reaction gas 4 introduced into the reaction room 1, and then a reacted product is accumulated on the substrate 5. The reacted substance and non-reacted gas (discharge gas 10) are discharged from a discharge port 8 to the outside of the reaction room 1. In this kind of film-formation operation, light radiated from the light source 2 transmits through a light-transmission window 6 and is scattered on the surface with surface roughness, and then irradiated at a uniform irradiation strength for the surface of the substrate 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光応用薄膜製造装置に係り、特に基板に対する
光照射強度を均一にして均一成膜を行うのに好適な光応
用薄膜製造装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical thin film manufacturing apparatus, and more particularly to an optical thin film manufacturing apparatus suitable for uniformizing the intensity of light irradiation onto a substrate to form a uniform film. .

〔従来の技術〕[Conventional technology]

光のエネルギーを利用して基板に薄膜を堆積させ、又は
薄膜のエツチングを行う装置において広光のエネルギー
強度(光照射強度)が膜の堆積速度や膜のエツチング速
度に大きな影響を与えることが知られている。また、基
板に対し均一に成膜を行うためには、薄膜を基板面に対
する光の照射強度分布を均一化することが必要である。
It is known that the energy intensity of broad light (light irradiation intensity) has a large effect on the film deposition rate and film etching rate in equipment that uses light energy to deposit thin films on a substrate or to etch thin films. ing. Furthermore, in order to uniformly form a film on a substrate, it is necessary to make the irradiation intensity distribution of light onto the substrate surface of the thin film uniform.

通常、線状光源を複数本配列し、基板に光を照射する場
合、光源の中心部程、光の照射強度が太き(なるため、
この状態で成膜した場合を考慮すると、基板の中心部の
膜厚が厚くなり、均一な成膜が困難となる。
Normally, when multiple linear light sources are arranged to irradiate light onto a substrate, the irradiation intensity of the light is thicker toward the center of the light source.
If a film is formed in this state, the film thickness at the center of the substrate becomes thicker, making it difficult to form a uniform film.

このような弊害を解消するために、従来、種々の光応用
薄膜製造装置が提案されている。
In order to eliminate such disadvantages, various optical thin film manufacturing apparatuses have been proposed.

第3図は特開昭61−129811号公報に係る光応用
薄膜製造装置であって、第3図中、31は反応室、32
はヒータ、33はサセプタ、34は基板、35は光透過
窓、36は光源、37はガイドプレート、38は支持プ
レート、39は連結部、40はポールネジナツト、41
はボールネジ、42はモータ、43はブラケット、44
は光源移動機構、45はガス供給口、46は排気口、4
7は反応ガス、48は排気ガスをそれぞれ示している。
FIG. 3 shows an optical thin film manufacturing apparatus according to Japanese Patent Application Laid-open No. 61-129811, in which 31 is a reaction chamber, 32
is a heater, 33 is a susceptor, 34 is a substrate, 35 is a light transmission window, 36 is a light source, 37 is a guide plate, 38 is a support plate, 39 is a connecting portion, 40 is a pole screw nut, 41
is a ball screw, 42 is a motor, 43 is a bracket, 44
4 is a light source moving mechanism; 45 is a gas supply port; 46 is an exhaust port;
7 indicates a reaction gas, and 48 indicates an exhaust gas.

この光応用薄膜製造装置において、成膜操作時、光源移
動機構44を介して、光源36を移動させ、基板34面
に対する光の照射強度を均一にすることが開示されてい
る。
In this optical thin film manufacturing apparatus, it is disclosed that during a film forming operation, the light source 36 is moved via the light source moving mechanism 44 to make the intensity of light irradiated onto the surface of the substrate 34 uniform.

第4図は特開昭−61−128517号公報に係る光応
用薄膜製造装置であって、第4図中、51は反応室、5
2はヒータ、53は移動テーブル、54は基板、55は
光透過窓、56は光源、57は連結子、58はボールネ
ジ、59はモータ、60はガス供給口、61.62は排
気口、63は反応ガス、64は排気ガスをそれぞれ示し
ている。
FIG. 4 shows an optical thin film manufacturing apparatus according to Japanese Patent Application Laid-Open No. 61-128517, in which 51 is a reaction chamber;
2 is a heater, 53 is a moving table, 54 is a substrate, 55 is a light transmission window, 56 is a light source, 57 is a connector, 58 is a ball screw, 59 is a motor, 60 is a gas supply port, 61.62 is an exhaust port, 63 64 indicates a reaction gas, and 64 indicates an exhaust gas, respectively.

この光応用薄膜製造装置においては、連結子57、ボー
ルネジ5日及びモータ59等からなる基板移動機構を介
して光源56に対する基板54の相対位置を変化させる
ことによって均一成膜を図っている。
In this optical thin film manufacturing apparatus, uniform film formation is achieved by changing the relative position of the substrate 54 with respect to the light source 56 via a substrate moving mechanism consisting of a connector 57, a ball screw, a motor 59, and the like.

第5図は特開昭61−129814号公報に係る光応用
薄膜製造装置であって、第5図中、71は反応室、72
はヒータ、73はサセプタ、74は基板、75は光透過
窓、76は光源、77はガス供給口、78は排気口、7
9は反応ガス、80は排気ガスをそれぞれ示している。
FIG. 5 shows an optical thin film manufacturing apparatus according to Japanese Patent Application Laid-Open No. 61-129814, in which 71 is a reaction chamber, 72
73 is a heater, 73 is a susceptor, 74 is a substrate, 75 is a light transmission window, 76 is a light source, 77 is a gas supply port, 78 is an exhaust port, 7
9 indicates a reaction gas, and 80 indicates an exhaust gas.

この光応用薄膜製造装置においては、複数本の線状光源
76の配列間隔を中央部程大きくし、その周辺では線状
光源76の配列間隔を小さ(して照射強度の均一化を図
っている。
In this optical thin film manufacturing apparatus, the arrangement interval of the plurality of linear light sources 76 is made larger toward the center, and the arrangement interval of the linear light sources 76 is made smaller in the periphery (to make the irradiation intensity uniform). .

また、第6図は特開昭61−129819号公報に係る
光応用薄膜製造装置であって、第6図中、91は反応室
、92はヒータ、93はサセプタ、94は基板、95は
光透過窓、96は光源、97はガス供給口、98は排気
口、99は反応ガス、100は排気ガスをそれぞれ示し
ている。
FIG. 6 shows an optical thin film manufacturing apparatus according to JP-A-61-129819, in which 91 is a reaction chamber, 92 is a heater, 93 is a susceptor, 94 is a substrate, and 95 is an optical thin film manufacturing apparatus. 96 is a light source, 97 is a gas supply port, 98 is an exhaust port, 99 is a reaction gas, and 100 is an exhaust gas.

この光応用薄膜製造装置においては、複数本の光源96
の配置状態として、中心部程、基板94との距離を大き
くし、その周辺では、基板94に対する距離を小さくし
て、照射強度の均一化を図っている。
In this optical thin film manufacturing apparatus, a plurality of light sources 96
As for the arrangement state, the distance from the substrate 94 is increased toward the center, and the distance from the substrate 94 is decreased toward the periphery, thereby making the irradiation intensity uniform.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来の光応用薄膜製造装置では、反応室内にお
ける可動部が増加し、装置が複雑化すると共にその分メ
ンテナンスが増加する。また、光源部の構造も複雑化し
、装置のコストが高くなる。
In the conventional optical thin film manufacturing apparatus described above, the number of movable parts in the reaction chamber increases, making the apparatus more complicated and requiring more maintenance. Furthermore, the structure of the light source section becomes complicated, and the cost of the device increases.

本発明の目的は、上記した従来技術の課題を解決し、装
置を複雑化させることなく、かつメンテナンスが容易で
コストの低減を図ることができる光応用薄膜製造装置を
提供することにある。
An object of the present invention is to solve the problems of the prior art described above, and to provide an optical thin film manufacturing apparatus that can be easily maintained and reduce costs without complicating the apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的は、光源として、安価な線状の光源を固定
して配列させ、光源からの光を透過させる光透過窓が光
の散乱が可能なような面粗さを有するようにすることに
よって達成される。
The above purpose is achieved by fixing and arranging inexpensive linear light sources as light sources, and making the light transmitting window that transmits the light from the light sources have a surface roughness that allows light scattering. achieved.

C作用〕 光源から光透過窓を透過する光は、光透過窓に形成され
た面粗さを有する部分で散乱され、基板に対して均一に
照射される。この結果、基板に対する薄膜が均一に堆積
する。
C Effect] Light transmitted from the light source through the light transmission window is scattered by a portion having surface roughness formed in the light transmission window, and is uniformly irradiated onto the substrate. This results in uniform deposition of the thin film on the substrate.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の光応用薄膜製造装置の一実施例を示す
縦断面図である。この光応用薄膜製造装置は、その内部
で光のエネルギーにより光化学反応を行う反応室1と、
光を放射する光源2と、基板5を載置するサセプタ9と
、サセプタ9を介して基板5を加熱するヒータ3と、反
応室1内に反応ガス4を供給するガス供給ロアと、反応
生成物及び未反応ガスよりなる排気ガスlOを排気する
排気口8と、反応室1と光源2との間に配置さ娠反応室
l内に光を入射するための光透過窓6とを備えている。
FIG. 1 is a longitudinal sectional view showing an embodiment of the optical thin film manufacturing apparatus of the present invention. This photo-applied thin film manufacturing apparatus includes a reaction chamber 1 in which a photochemical reaction is carried out using light energy;
A light source 2 that emits light, a susceptor 9 on which a substrate 5 is placed, a heater 3 that heats the substrate 5 via the susceptor 9, a gas supply lower that supplies a reaction gas 4 into the reaction chamber 1, and a reaction generation An exhaust port 8 for exhausting exhaust gas 1O consisting of substances and unreacted gases, and a light transmission window 6 disposed between the reaction chamber 1 and the light source 2 for allowing light to enter the reaction chamber 1. There is.

光透過窓6は、反応室1側に位置する面が、光を散乱さ
せるのに必要な面粗さを有している。この面粗さを有す
る面は、例えば、サンドブラスト、グラスビーズブラス
ト等の任意の粗面加工手段を採用して、所定の粗さに調
整することができる。
The surface of the light transmission window 6 located on the reaction chamber 1 side has surface roughness necessary to scatter light. The surface having this surface roughness can be adjusted to a predetermined roughness by employing any roughening means such as sandblasting or glass bead blasting.

光透過窓6において、面粗さを有する面は、反応室1側
に位置する側の面に設けることが望ましい。
In the light transmitting window 6, it is desirable that the surface having surface roughness be provided on the surface located on the reaction chamber 1 side.

光透過窓6における面粗さを有する面が、反応室1の外
側に位置する面の場合、光源2からの光が反応室l内に
入射する前に反応室1外側に散乱される割合が、反応室
1内部側で散乱される光よりも多くなる。
When the rough surface of the light transmission window 6 is located outside the reaction chamber 1, the proportion of light from the light source 2 that is scattered outside the reaction chamber 1 before entering the reaction chamber 1 is , is larger than the light scattered inside the reaction chamber 1.

次に上記した光応用薄膜製造装置の作用について説明す
る。
Next, the operation of the optical thin film manufacturing apparatus described above will be explained.

反応室1内は図示していない排気手段によって、所定の
条件まで排気された後、反応室1内に反応ガス4が導入
される。また、基板5はヒータ3によりサセプタ9を介
して所定の温度に加熱される。
After the inside of the reaction chamber 1 is evacuated to a predetermined condition by an exhaust means (not shown), a reaction gas 4 is introduced into the reaction chamber 1. Further, the substrate 5 is heated to a predetermined temperature by the heater 3 via the susceptor 9.

この状態で、光源2から紫外光が照射され、反応室1内
に導入された反応ガス4を励起・分解し、反応生成物は
基板5上に堆積する0反応物及び未反応ガス(排気ガス
10)は、排気口8から反応室1外に排出される。
In this state, ultraviolet light is irradiated from the light source 2 to excite and decompose the reaction gas 4 introduced into the reaction chamber 1, and the reaction products are deposited on the substrate 5. 10) is discharged from the reaction chamber 1 through the exhaust port 8.

このような成膜振作において、光源2から放射された光
は光透過窓6に透過して面粗さを有する面で散乱し、基
板5面に対して均一な照射強度で照射される。
In such a film-forming operation, the light emitted from the light source 2 is transmitted through the light transmission window 6, scattered by the surface having surface roughness, and is irradiated onto the surface of the substrate 5 with uniform irradiation intensity.

第2図は、第1図に示す光応用薄膜製造装置に用いたと
きの光の照射強度分布(実施例)と、透明型の光透過窓
を設置した光応用薄膜製造装置における光の照射強度分
布(従来例)を比較して示したものである。なお、実施
例においては、光透過窓6を粒径150μmのグラスビ
ーズでブラスト処理したものを用い、従来例では光透過
窓に対して光学研磨処理したものを用いた。
Figure 2 shows the light irradiation intensity distribution (example) when used in the optical thin film manufacturing apparatus shown in Figure 1, and the light irradiation intensity in the optical thin film manufacturing apparatus equipped with a transparent light transmission window. This is a comparison of distributions (conventional example). In the example, the light transmitting window 6 was blasted with glass beads having a particle size of 150 μm, and in the conventional example, the light transmitting window 6 was optically polished.

第2図から明らかなように従来例では、基板5の中心の
照射強度を100とした場合、基板5の端部では、照射
強度が50以下に低下している。
As is clear from FIG. 2, in the conventional example, when the irradiation intensity at the center of the substrate 5 is 100, the irradiation intensity at the edges of the substrate 5 drops to 50 or less.

一方、実施例では、基板5の中心の照射強度は80程度
であるが、基板5の端部においても照射強度は70程度
であり、基板面内距離に対する照射強度が均一化してい
る。また、照射強度の基板5面での積分値は、実施例及
び従来例共に同一であることが確認され、基板5に到達
する光の総エネルギー量はほとんど差異がないことが判
明した。
On the other hand, in the example, the irradiation intensity at the center of the substrate 5 is about 80, but the irradiation intensity is also about 70 at the edges of the substrate 5, and the irradiation intensity is uniform with respect to the in-plane distance of the substrate. Further, it was confirmed that the integral value of the irradiation intensity on the surface of the substrate 5 was the same in both the example and the conventional example, and it was found that there was almost no difference in the total amount of energy of the light reaching the substrate 5.

上記した実施例では、光源2を反応室1の外部に設置し
た例を説明したが、本発明は光源を反応室内に内蔵し、
この光源からの光を光透過窓を介して照射する構造の光
応用薄膜製造装置に対しても適用できることはいうまで
もない。
In the above-mentioned embodiment, an example was explained in which the light source 2 was installed outside the reaction chamber 1, but in the present invention, the light source is built inside the reaction chamber,
Needless to say, the present invention can also be applied to an optical thin film manufacturing apparatus having a structure in which light from this light source is irradiated through a light transmission window.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、光散乱が可能な光透過窓
を設置することによって、装置構造を複雑化することな
く、かつメンテナンスが容易である共に基板面に対する
光エネルギーを均一化できるので、基板への薄膜の堆積
や薄膜のエツチングを均一を行うことができる。
As described above, according to the present invention, by installing a light-transmitting window capable of light scattering, it is possible to uniformize the light energy to the substrate surface without complicating the device structure, while making maintenance easy. , it is possible to uniformly deposit a thin film on a substrate and to etch a thin film uniformly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光応用薄膜製造装置の一実施例を示す
縦断面図、第2図は本発明における光散乱型の光透過窓
を設置した光応用薄膜製造装置と、従来例の透明型の光
透過窓を設置した光応用薄膜製造装置との照射強度分布
を示すグラフ、第3a第4図、第5図及び第6図は各々
従来の光応用薄膜製造装置を示す縦断面図である。 1・・・・・・反応室、2・・・・・・光源、3・・・
・・・ヒータ、4・・・・・・反応ガス、5・・・・・
・基板、6・・・・・・光透過窓、7・・・・・・ガス
供給口、8・・・・・・排気口、9・・・・・・サセプ
タ、10・・・・・・排気ガス。 代理人 弁理士 西 元 勝 − 第 図 第2 図 ウニへ圓肉に1ぼ 第4図 第3 図 第5図
FIG. 1 is a vertical cross-sectional view showing one embodiment of the optical thin film manufacturing apparatus of the present invention, and FIG. 2 is a vertical cross-sectional view showing an optical thin film manufacturing apparatus equipped with a light-scattering type light transmission window according to the present invention, and a conventional transparent thin film manufacturing apparatus. A graph showing the irradiation intensity distribution with an optical thin film manufacturing apparatus equipped with a light transmitting window of the type, FIG. 3a, FIG. 4, FIG. 5, and FIG. be. 1...Reaction chamber, 2...Light source, 3...
...Heater, 4...Reaction gas, 5...
・Substrate, 6...Light transmission window, 7...Gas supply port, 8...Exhaust port, 9...Susceptor, 10...・Exhaust gas. Agent Masaru Nishimoto, Patent Attorney - Figure 2 Figure 2 Sea urchin to round meat Figure 4 Figure 3 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を光透過窓を
介して導入し、光化学反応を生じさせて反応室内に配置
された基板上に薄膜を堆積させ、又は薄膜のエッチング
を行う光応用薄膜製造装置において、前記光透過窓面が
光を散乱させるのに必要な面粗さを有していることを特
徴とする光応用薄膜製造装置。
(1) Light from a light source is introduced into the reaction gas in the reaction chamber through a light-transmitting window, causing a photochemical reaction to deposit or etch a thin film on a substrate placed in the reaction chamber. An applied thin film manufacturing apparatus, wherein the light transmitting window surface has a surface roughness necessary to scatter light.
(2)前記面粗さを有する面が、前記基板側に位置する
光透過窓面であることを特徴とする請求項(1)記載の
光応用薄膜製造装置。
(2) The optical thin film manufacturing apparatus according to claim 1, wherein the surface having the surface roughness is a light-transmitting window surface located on the substrate side.
JP3786689A 1989-02-17 1989-02-17 Light application thin-film manufacturing device Pending JPH02216818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3786689A JPH02216818A (en) 1989-02-17 1989-02-17 Light application thin-film manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3786689A JPH02216818A (en) 1989-02-17 1989-02-17 Light application thin-film manufacturing device

Publications (1)

Publication Number Publication Date
JPH02216818A true JPH02216818A (en) 1990-08-29

Family

ID=12509462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3786689A Pending JPH02216818A (en) 1989-02-17 1989-02-17 Light application thin-film manufacturing device

Country Status (1)

Country Link
JP (1) JPH02216818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024255A3 (en) * 1999-09-30 2001-12-20 Lam Res Corp Interferometric method for endpointing plasma etch processes
JP2006303514A (en) * 2006-05-01 2006-11-02 Fujitsu Ltd Electrostatic chuck, depositing method and etching method
JP2017092095A (en) * 2015-11-04 2017-05-25 株式会社Screenホールディングス Heat treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024255A3 (en) * 1999-09-30 2001-12-20 Lam Res Corp Interferometric method for endpointing plasma etch processes
US6400458B1 (en) 1999-09-30 2002-06-04 Lam Research Corporation Interferometric method for endpointing plasma etch processes
JP2006303514A (en) * 2006-05-01 2006-11-02 Fujitsu Ltd Electrostatic chuck, depositing method and etching method
JP2017092095A (en) * 2015-11-04 2017-05-25 株式会社Screenホールディングス Heat treatment apparatus

Similar Documents

Publication Publication Date Title
JP3148004B2 (en) Optical CVD apparatus and method for manufacturing semiconductor device using the same
JPS6173332A (en) Optical treating device
JPH02216818A (en) Light application thin-film manufacturing device
JP2555062B2 (en) Plasma processing device
JP3112520B2 (en) Optical CVD equipment
JPH01183809A (en) Photo assisted cvd system
JP3224238B2 (en) Thin film forming equipment
JP3174787B2 (en) Optical CVD equipment
JP3064407B2 (en) Light source for photo-excitation process equipment
JPH0621234Y2 (en) Semiconductor manufacturing equipment
JPH0717146Y2 (en) Wafer processing equipment
JPH04259210A (en) Semiconductor production device
JPS61131417A (en) Semiconductor manufacturing equipment
JP3010065B2 (en) Optical excitation process equipment
JPS61108123A (en) Semiconductor manufacturing equipment
JPS62284079A (en) Photochemical vapor deposition device
JPH0433329A (en) Photo-cvd apparatus
JPS63126229A (en) Processor
JP3010066B2 (en) Optical excitation process equipment
JPH01214115A (en) Semiconductor manufacturing device
JPS59209643A (en) Photochemical vapor phase deposition device
JPS63289927A (en) Photochemical vapor phase deposition device
JPH0722326A (en) Optical cvd device
JPS61131415A (en) Semiconductor manufacturing equipment
JPH0388326A (en) Optical cvd apparatus