JP2006303514A - Electrostatic chuck, depositing method and etching method - Google Patents

Electrostatic chuck, depositing method and etching method Download PDF

Info

Publication number
JP2006303514A
JP2006303514A JP2006127848A JP2006127848A JP2006303514A JP 2006303514 A JP2006303514 A JP 2006303514A JP 2006127848 A JP2006127848 A JP 2006127848A JP 2006127848 A JP2006127848 A JP 2006127848A JP 2006303514 A JP2006303514 A JP 2006303514A
Authority
JP
Japan
Prior art keywords
substrate
substrate mounting
discharge port
gas discharge
mounting table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006127848A
Other languages
Japanese (ja)
Inventor
Makoto Fujii
誠 藤井
Masayuki Hasegawa
昌幸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006127848A priority Critical patent/JP2006303514A/en
Publication of JP2006303514A publication Critical patent/JP2006303514A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck that equally heats a substrate with excellent reproducibility. <P>SOLUTION: The electrostatic chuck is one having a substrate loading surface, and has a salient 32a formed on the substrate loading surface, a gas discharge outlet 33 that penetrates inside the electrostatic chuck and is provided at the center of the substrate loading surface, and a plurality of grooves 41a that are connected to the outlet 33 on the substrate loading surface and are radially extended from the outlet 33. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、静電チャック、成膜方法及びエッチング方法に関する。   The present invention relates to an electrostatic chuck, a film forming method, and an etching method.

スパッタ装置等を用いてウエハ上に成膜する場合、堆積した薄膜の特性やエッチングレートは成膜時やエッチング処理時の基板温度に著しく依存することが知られている。従って、堆積する薄膜を基板内で均質にするため、又は被エッチング物を基板内で均等にエッチングするため、基板を均等に加熱することが要求される。また、基板間で再現性良く成膜等するためには、再現性良く設定温度に昇温できることが必要である。   In the case of forming a film on a wafer using a sputtering apparatus or the like, it is known that the characteristics and etching rate of the deposited thin film greatly depend on the substrate temperature during film formation and etching. Accordingly, it is required to heat the substrate evenly in order to make the deposited thin film uniform in the substrate or to etch the object to be etched uniformly in the substrate. Further, in order to form a film with good reproducibility between substrates, it is necessary to be able to raise the temperature to a set temperature with good reproducibility.

スパッタ装置に用いられる、被処理ウエハを載置して設定温度に加熱する従来のヒータ付き基板載置台の構成を図4(a),(b)に示す。図4(a)は全体の構成図を示す断面図であり、図4(b)は部分構成を示す断面図である。   4 (a) and 4 (b) show the configuration of a conventional substrate mounting table with a heater that is used in a sputtering apparatus and that heats a wafer to be processed to a set temperature. 4A is a cross-sectional view showing the overall configuration, and FIG. 4B is a cross-sectional view showing a partial configuration.

図4(a)に示すように、ヒータ付き基板載置台1は真空処理室内に設置され、基板載置台1内に熱源であるヒータ4と、基板11の温度をモニタする温度検出素子(熱電対)6が埋め込まれている。また、基板載置台1には加熱用ガス(アルゴン等)を基板載置面に導く通流路9が形成されており、通流路9は基板載置面に開口されたガス放出口13と基板載置台1の下の部分に開口されたガス導入口14とを結んでいる。そして、図4(b)に示すように、ガス放出口13から基板載置面に放出された加熱用ガスは基板11と基板載置面の間の隙間12を流れて、ヒータ4からの熱を効率よく基板11へ伝える。   As shown in FIG. 4A, the substrate mounting table 1 with a heater is installed in a vacuum processing chamber, and a heater 4 as a heat source in the substrate mounting table 1 and a temperature detection element (thermocouple) for monitoring the temperature of the substrate 11. ) 6 is embedded. Further, the substrate mounting table 1 is formed with a flow path 9 for introducing a heating gas (such as argon) to the substrate mounting surface, and the flow path 9 includes a gas discharge port 13 opened in the substrate mounting surface. The gas inlet 14 opened in the lower part of the substrate mounting table 1 is connected. Then, as shown in FIG. 4B, the heating gas released from the gas discharge port 13 to the substrate placement surface flows through the gap 12 between the substrate 11 and the substrate placement surface, and heat from the heater 4 Is efficiently transmitted to the substrate 11.

更に、温度検出素子6及びヒータと接続されたヒータ加熱制御手段8を有し、温度検出素子6により検出された基板11の温度をヒータ加熱制御手段8に取り込んで基板11が所定の温度になるようにヒータ4に加える電力を適当に調整する。これにより、基板11内での均等な加熱が行われる。   Furthermore, it has a heater heating control means 8 connected to the temperature detection element 6 and the heater, and the temperature of the substrate 11 detected by the temperature detection element 6 is taken into the heater heating control means 8 so that the substrate 11 becomes a predetermined temperature. Thus, the electric power applied to the heater 4 is adjusted appropriately. Thereby, uniform heating in the substrate 11 is performed.

更に、基板載置台1上の基板11はクランプ2で固定される。加熱用ガスの導入により基板11が定位置から外れないようにするためである。   Further, the substrate 11 on the substrate mounting table 1 is fixed by the clamp 2. This is to prevent the substrate 11 from coming off the fixed position by introducing the heating gas.

しかし、上記のヒータ付き基板載置台1では、基板11の裏面と基板載置面間に加熱用ガスを流し込むことにより、基板加熱を効率よく行おうとしているが、その間のガス移動が基板11全体に均等に行われず、その結果基板加熱が均等でなくなってしまう。   However, in the substrate mounting table 1 with the heater, the heating gas is poured between the back surface of the substrate 11 and the substrate mounting surface to efficiently heat the substrate. Are not performed evenly, resulting in uneven substrate heating.

ところで、基板11裏面と基板載置面の間の隙間12を移動する加熱用ガスの流量はクランプ2の加重や基板11の押圧位置等により左右される。従って、基板11全体に均一にガス移動させること、及び基板11の装着毎に再現性良くガス移動させることが難しい。   By the way, the flow rate of the heating gas that moves through the gap 12 between the back surface of the substrate 11 and the substrate mounting surface depends on the weight of the clamp 2 and the pressing position of the substrate 11. Therefore, it is difficult to move the gas uniformly over the entire substrate 11 and to move the gas with good reproducibility each time the substrate 11 is mounted.

また、このガス移動をより均一にするため、基板載置面に放射状或いはらせん状の溝を設ける等の試みがなされているが、やはり溝部と溝部以外の部分において基板11への熱交換効率の相違が生じ、基板11の各位置において温度分布にムラができてしまう。   In addition, in order to make this gas movement more uniform, attempts have been made to provide radial or spiral grooves on the substrate mounting surface. However, the heat exchange efficiency to the substrate 11 is also improved in the groove portions and portions other than the groove portions. Differences occur, and uneven temperature distribution occurs at each position on the substrate 11.

本発明は、上記の従来例の問題点に鑑みて創作されたものであり、均等で、かつ再現性のよい基板加熱を行うことができる静電チャック、成膜方法及びエッチング方法を提供するものである。   The present invention was created in view of the above-described problems of the conventional example, and provides an electrostatic chuck, a film forming method, and an etching method that can perform uniform and reproducible substrate heating. It is.

上記課題は、第1の発明である、基板載置面を有する静電チャックであって、前記基板載置面上に形成された凸部と、前記静電チャックの内部を通り、前記基板載置面の中央に設けられたガス放出口と、前記基板載置面において、前記ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝とを有することを特徴とする静電チャックによって解決され、
第2の発明である、前記静電チャック内において、前記ガス放出口の他に、さらに他のガス放出口を有することを特徴とする第1の発明の静電チャックによって解決され、
第3の発明である、前記凸部は、グラスビーズブラスト法により形成された凸部であることを特徴とする第1又は第2の発明の静電チャックによって解決され、
第4の発明である、基板載置台上に基板を固定し、該基板上に膜を形成する成膜方法であって、前記基板載置台は、該基板載置台の前記基板載置面上に、グラスビーズブラスト法により形成された凸部と、前記基板載置台の内部を通り、前記基板載置面の中央に設けられたガス放出口と、前記基板載置面において、前記ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝を有し、
前記ガス放出口を通して、前記基板と基板載置台との間にガスを導入し、該ガスを用いて該基板の温度を保持する工程を含むことを特徴とする成膜方法によって解決され、
第5の発明である、静電チャックを用いて、前記基板載置台上に前記基板を固定することを特徴とする第4の発明の成膜方法によって解決され、
第6の発明である、基板載置台上に基板を固定し、該基板上の被エッチング物をエッチングするエッチング方法であって、前記基板載置台は、該基板載置台の前記基板載置面上に、グラスビーズブラスト法により形成された凸部と、前記基板載置台の内部を通り、前記基板載置面の中央に設けられたガス放出口と、前記基板載置面において、前記ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝を有し、前記ガス放出口を通して、前記基板と基板載置台との間にガスを導入し、該ガスを用いて該基板の温度を保持する工程を含むことを特徴とするエッチング方法によって解決され、
第7の発明である、静電チャックを用いて、前記基板載置台上に前記基板を固定することを特徴とする第6の発明のエッチング方法によって解決される。
An object of the present invention is to provide an electrostatic chuck having a substrate mounting surface according to the first aspect of the invention, wherein the substrate mounting surface passes through a convex portion formed on the substrate mounting surface and the inside of the electrostatic chuck. An electrostatic discharge comprising a gas discharge port provided in the center of the mounting surface, and a plurality of grooves connected to the gas discharge port and extending radially from the gas discharge port in the substrate mounting surface. Solved by the chuck,
In the electrostatic chuck according to the second aspect of the present invention, the electrostatic chuck according to the first aspect of the present invention has another gas discharge port in addition to the gas discharge port.
According to a third aspect of the invention, the convex portion is a convex portion formed by a glass bead blasting method, and is solved by the electrostatic chuck of the first or second aspect of the invention,
According to a fourth aspect of the present invention, there is provided a film forming method for fixing a substrate on a substrate mounting table and forming a film on the substrate, wherein the substrate mounting table is formed on the substrate mounting surface of the substrate mounting table. A convex portion formed by the glass bead blast method, a gas discharge port provided in the center of the substrate mounting surface through the inside of the substrate mounting table, and the gas discharge port on the substrate mounting surface. A plurality of grooves extending radially from the gas outlet,
Solved by a film forming method comprising introducing a gas between the substrate and the substrate mounting table through the gas discharge port, and maintaining the temperature of the substrate using the gas,
A fifth invention, which is solved by the film forming method of the fourth invention, wherein the substrate is fixed on the substrate mounting table using an electrostatic chuck,
An etching method for fixing a substrate on a substrate mounting table and etching an object to be etched on the substrate according to a sixth aspect of the invention, wherein the substrate mounting table is formed on the substrate mounting surface of the substrate mounting table. A convex portion formed by a glass bead blasting method, a gas discharge port provided in the center of the substrate mounting surface through the inside of the substrate mounting table, and the gas discharge port in the substrate mounting surface. And a plurality of grooves extending radially from the gas discharge port, through which the gas is introduced between the substrate and the substrate mounting table, and the temperature of the substrate is measured using the gas. It is solved by the etching method characterized by including the process of hold | maintaining,
The seventh aspect of the invention is solved by the etching method of the sixth aspect of the invention, wherein the substrate is fixed on the substrate mounting table using an electrostatic chuck.

本発明に係る静電チャックにおいては、基板載置面上に形成された凸部と、静電チャックの内部を通り、基板載置面の中央に設けられたガス放出口と、基板載置面において、ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝とを有する。従って、基板を基板載置面に載置したとき、基板載置面のガス放出口から放出されたガスは凸部の間の凹部内を自由に流れる。凹部はGBB法等により均一な密度で形成されるので、基板全体にわたり加熱用ガスは均等に行き渡る。これにより、均等な基板加熱を行うことができる。   In the electrostatic chuck according to the present invention, a convex portion formed on the substrate mounting surface, a gas discharge port provided in the center of the substrate mounting surface through the inside of the electrostatic chuck, and the substrate mounting surface And a plurality of grooves connected to the gas discharge port and extending radially from the gas discharge port. Therefore, when the substrate is placed on the substrate placement surface, the gas released from the gas discharge port of the substrate placement surface freely flows in the recesses between the projections. Since the recesses are formed with a uniform density by the GBB method or the like, the heating gas spreads uniformly over the entire substrate. Thereby, uniform substrate heating can be performed.

また、基板は凸部により支えられるので、凸部間の凹部は基板の装着毎に変化せず、基板毎の基板加熱の再現性がよい。   Further, since the substrate is supported by the convex portion, the concave portion between the convex portions does not change every time the substrate is mounted, and the reproducibility of substrate heating for each substrate is good.

また、ガス放出口と繋がる放射状の溝や同心円状の溝又は格子状の溝を設けることにより、それらの溝を介して加熱用ガスを素早く基板載置面の周辺部まで行き渡らせることができる。その溝からさらに凹部を通して基板裏面全面に加熱用ガスを流すことができる。従って、加熱の均等性が一層増すことになる。   Further, by providing radial grooves, concentric circular grooves, or lattice-shaped grooves connected to the gas discharge ports, the heating gas can be quickly distributed to the peripheral portion of the substrate placement surface via these grooves. A heating gas can flow from the groove to the entire back surface of the substrate through the recess. Accordingly, the heating uniformity is further increased.

更に、2つ以上のガス放出口を設けることにより、複数のガス放出口から直接基板載置面に加熱用ガスを放出することができるので、加熱用ガスをなお一層均等に基板全面に行き渡らせることができる。   Further, by providing two or more gas discharge ports, the heating gas can be discharged directly from the plurality of gas discharge ports onto the substrate mounting surface, so that the heating gas is evenly distributed over the entire surface of the substrate. be able to.

また、基板載置台の基板載置面上に、グラスビーズブラスト法により形成された凸部と、基板載置台の内部を通り、基板載置面の中央に設けられたガス放出口と、基板載置面において、ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝を有する基板載置台を、ガス放出口を通して、基板と基板載置台との間にガスを導入し、ガスを用いて基板の温度を保持する工程を含む成膜方法やエッチング方法に適用している。これにより、基板上に成膜し、基板上の膜をエッチングする際、基板を均一な温度に保持することができるので、均質な膜を成膜し、或いは均等なエッチングを行うことができる。   Further, a convex portion formed by a glass bead blast method on the substrate placement surface of the substrate placement table, a gas discharge port provided in the center of the substrate placement surface through the inside of the substrate placement table, and a substrate placement A gas is introduced between the substrate and the substrate mounting table through the gas discharge port, the substrate mounting table having a plurality of grooves connected to the gas discharge port and extending radially from the gas discharge port on the mounting surface. The method is applied to a film forming method or an etching method including a step of maintaining the temperature of the substrate by using the method. Thus, when the film is formed on the substrate and the film on the substrate is etched, the substrate can be kept at a uniform temperature, so that a uniform film can be formed or uniform etching can be performed.

以上のように、本発明に係る静電チャックにおいては、基板載置台の基板載置面の全面に微小な凸部及びそれらの凸部の間の凹部が形成されている。従って、基板を基板載置面に載置したとき、基板載置面のガス放出口から放出された加熱用ガスを凹部を通して基板全体にわたり均等に行き渡せることができるので、均等な基板加熱を行うことができる。   As described above, in the electrostatic chuck according to the present invention, the minute convex portions and the concave portions between the convex portions are formed on the entire surface of the substrate mounting surface of the substrate mounting table. Accordingly, when the substrate is placed on the substrate placement surface, the heating gas released from the gas discharge port of the substrate placement surface can be evenly distributed throughout the substrate through the recess, so that uniform substrate heating is performed. be able to.

また、基板は凸部により支えられるので、凸部間の凹部は基板の装着毎に変化せず、基板毎の基板加熱の再現性がよい。   Further, since the substrate is supported by the convex portion, the concave portion between the convex portions does not change every time the substrate is mounted, and the reproducibility of substrate heating for each substrate is good.

更に、ガス放出口とつながる溝を設けることにより、それらの溝を介して加熱用ガスを素早く基板載置面の周辺部まで行き渡らせ、さらに凹部を通して基板裏面全体にガスを流すことができるので、加熱の均等性が一層増すことになる。   Furthermore, by providing a groove connected to the gas discharge port, the gas for heating can be quickly spread to the peripheral part of the substrate mounting surface through these grooves, and further, the gas can flow through the recess to the entire back surface of the substrate. The uniformity of heating is further increased.

また、基板載置台の基板載置面上に、グラスビーズブラスト法により形成された凸部と、基板載置台の内部を通り、基板載置面の中央に設けられたガス放出口と、基板載置面において、ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝を有する基板載置台を、ガス放出口を通して、基板と基板載置台との間にガスを導入し、ガスを用いて基板の温度を保持する工程を含む成膜方法やエッチング方法に適用している。これにより、基板上に成膜し、基板上の膜をエッチングする際、基板を均一な温度に保持することができるので、均質な膜を成膜し、或いは均等なエッチングを行うことができる。   Further, a convex portion formed by a glass bead blast method on the substrate placement surface of the substrate placement table, a gas discharge port provided in the center of the substrate placement surface through the inside of the substrate placement table, and a substrate placement A gas is introduced between the substrate and the substrate mounting table through the gas discharge port, the substrate mounting table having a plurality of grooves connected to the gas discharge port and extending radially from the gas discharge port on the mounting surface. The method is applied to a film forming method or an etching method including a step of maintaining the temperature of the substrate by using the method. Thus, when the film is formed on the substrate and the film on the substrate is etched, the substrate can be kept at a uniform temperature, so that a uniform film can be formed or uniform etching can be performed.

以下に、本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1(a)〜(c)は、本発明の第1の実施の形態に係るヒータ付き基板載置台について示す断面図である。
(First embodiment)
FIGS. 1A to 1C are cross-sectional views showing a substrate mounting table with a heater according to the first embodiment of the present invention.

図1(a)に示すように、ヒータ付き基板載置台101は真空処理室内に設置されている。同図にはチャンバの仕切り壁23の一部が描かれている。基板載置台21はアルミニウムで作成されており、基板載置台21内には熱源であるヒータ24と、基板50の温度をモニタする温度検出素子(熱電対)26が埋め込まれている。   As shown in FIG. 1A, the substrate mounting table 101 with a heater is installed in a vacuum processing chamber. In the drawing, a part of the partition wall 23 of the chamber is drawn. The substrate mounting table 21 is made of aluminum, and a heater 24 that is a heat source and a temperature detection element (thermocouple) 26 that monitors the temperature of the substrate 50 are embedded in the substrate mounting table 21.

また、基板載置台21の中央部には加熱用ガス(アルゴン等不活性ガス)を基板載置面に導く通流路29が形成されており、通流路29は基板載置面に開口されたガス放出口33と基板載置台21の下の部分に開口されたガス導入口34とを結んでいる。そして、図1(b)に示すように、ガス放出口33から基板載置面に放出された加熱用ガスは基板50と基板載置面の間の隙間32を流れて、ヒータ24からの熱を効率よく基板50へ伝える。   In addition, a through-flow path 29 is formed in the central portion of the substrate mounting table 21 to guide a heating gas (inert gas such as argon) to the substrate mounting surface. The through-flow path 29 is opened to the substrate mounting surface. The gas discharge port 33 is connected to the gas introduction port 34 opened in the lower portion of the substrate mounting table 21. As shown in FIG. 1B, the heating gas released from the gas discharge port 33 to the substrate placement surface flows through the gap 32 between the substrate 50 and the substrate placement surface, and heat from the heater 24 is obtained. Is efficiently transmitted to the substrate 50.

更に、温度検出素子26及びヒータ24と接続されたヒータ加熱制御手段28を有し、温度検出素子26から基板50の温度をヒータ加熱制御手段28に取り込んで基板50が所定の温度になるようにヒータ24に加える電力を適当に調整する。これにより、基板50内での均等な加熱が行われる。   Furthermore, it has a heater heating control means 28 connected to the temperature detection element 26 and the heater 24, and takes the temperature of the substrate 50 from the temperature detection element 26 into the heater heating control means 28 so that the substrate 50 becomes a predetermined temperature. The electric power applied to the heater 24 is adjusted appropriately. Thereby, uniform heating in the substrate 50 is performed.

また、基板載置台21上の基板50はクランプ22で固定される。加熱用ガスの導入により基板50が定位置から外れないようにするためである。   The substrate 50 on the substrate mounting table 21 is fixed by the clamp 22. This is to prevent the substrate 50 from coming off the fixed position by introducing the heating gas.

更に、基板載置面の全面には微小な凸部32a及び凸部32aの間の凹部32bが形成されている。基板50を基板載置面に載置したとき、通流路29から放出された加熱用ガスは凸部32aの間の凹部32b内を四方八方に自由に流れる。凹部32bはGBB法(グラスビーズブラスト法)等により均一な密度で形成されるので、基板50全体にわたり加熱用ガスは均等に行き渡る。また、基板50は凸部32aにより支えられるので、凸部32a間の凹部32bは基板50の装着毎に変化せず、基板50毎の基板加熱の再現性がよい。   Furthermore, minute convex portions 32a and concave portions 32b between the convex portions 32a are formed on the entire surface of the substrate mounting surface. When the substrate 50 is placed on the substrate placement surface, the heating gas released from the flow passage 29 freely flows in all directions in the concave portions 32b between the convex portions 32a. Since the recesses 32b are formed with a uniform density by the GBB method (glass bead blasting method) or the like, the heating gas spreads uniformly over the entire substrate 50. Further, since the substrate 50 is supported by the convex portions 32a, the concave portions 32b between the convex portions 32a do not change every time the substrate 50 is mounted, and the reproducibility of substrate heating for each substrate 50 is good.

次に、基板載置面の凸部32a及び凹部32bの形成方法について説明する。GBB法(グラスビーズブラスト法)を用いた場合について説明する。   Next, the formation method of the convex part 32a and the recessed part 32b of a substrate mounting surface is demonstrated. The case where the GBB method (glass bead blasting method) is used will be described.

まず、粒径約80μmのガラスビーズを用意する。次いで、薬液にガラスビーズを混合させた研磨液を研磨装置の研磨面に塗布し、その上に基板載置面を研磨面に対向させて基板載置台を載せる。そして、研磨面及び基板載置台を同じ方向に回転させると、基板載置面と研磨面の間に挟まれたガラスビーズにより基板載置面が研磨される。基板載置面には直径約80μmの凸部32aが島状に分散して形成されるとともに、凸部32a間に凹部32bが形成される。   First, glass beads having a particle size of about 80 μm are prepared. Next, a polishing liquid in which glass beads are mixed with a chemical solution is applied to the polishing surface of the polishing apparatus, and a substrate mounting table is placed thereon with the substrate mounting surface facing the polishing surface. When the polishing surface and the substrate mounting table are rotated in the same direction, the substrate mounting surface is polished by the glass beads sandwiched between the substrate mounting surface and the polishing surface. Convex portions 32a having a diameter of about 80 μm are formed in an island shape on the substrate mounting surface, and concave portions 32b are formed between the convex portions 32a.

以上のように、第1の実施の形態においては、基板載置台21の基板載置面の全面に微小な凹部32b及び凸部32aが形成されている。   As described above, in the first embodiment, minute concave portions 32b and convex portions 32a are formed on the entire surface of the substrate placement surface of the substrate placement table 21.

従って、基板50を基板載置面に載置したとき、基板載置面のガス放出口33から放出された加熱用ガスは凸部32aの間の凹部32b内を自由に流れる。凹部32bはGBB法等により均一な密度で形成されるので、基板50全体にわたり加熱用ガスは均等に行き渡る。これにより、均等な基板加熱を行うことができる。   Therefore, when the substrate 50 is placed on the substrate placement surface, the heating gas released from the gas discharge port 33 on the substrate placement surface freely flows in the recesses 32b between the projections 32a. Since the recesses 32b are formed with a uniform density by the GBB method or the like, the heating gas spreads uniformly throughout the substrate 50. Thereby, uniform substrate heating can be performed.

また、基板50は凸部32aにより支えられるので、凸部32a間の凹部32bは基板50の装着毎に変化せず、基板毎の基板加熱の再現性がよい。   Further, since the substrate 50 is supported by the convex portions 32a, the concave portions 32b between the convex portions 32a do not change every time the substrate 50 is mounted, and the reproducibility of substrate heating for each substrate is good.

(第2の実施の形態)
図2(a)は第2の実施の形態に係るヒータ付き基板載置台101aについて示す上面図である。
(Second Embodiment)
FIG. 2A is a top view showing a substrate mounting table 101a with a heater according to the second embodiment.

第2の実施の形態に係るヒータ付き基板載置台101aは、図1(b)の基板載置台21aの基板載置面にさらに加熱用ガスのガス放出口33を中心とする放射状の溝41aを設けたことである。放射状の溝41aはガス放出口33とつながっており、ガス放出口33から放出された加熱用ガスは放射状の溝41aに沿って流れるとともに、凸部32aの間の凹部32b内を自由に流れる。   In the substrate mounting table 101a with a heater according to the second embodiment, a radial groove 41a centered on the gas discharge port 33 for the heating gas is further formed on the substrate mounting surface of the substrate mounting table 21a in FIG. It is provided. The radial groove 41a is connected to the gas discharge port 33, and the heating gas discharged from the gas discharge port 33 flows along the radial groove 41a and freely flows in the concave portions 32b between the convex portions 32a.

尚、図中、図1(a)〜(c)と同じ符号で示すものは図1(a)〜(c)と同じものを示す。   In addition, what is shown with the same code | symbol as Fig.1 (a)-(c) in a figure shows the same thing as Fig.1 (a)-(c).

(第3の実施の形態)
図2(b)は第3の実施の形態に係るヒータ付き基板載置台101bについて示す上面図である。
(Third embodiment)
FIG. 2B is a top view showing a substrate mounting table 101b with a heater according to the third embodiment.

図2(a)の放射状の溝41aにさらに加熱用ガスのガス放出口33を中心とする同心円状の複数の溝41bを設けたことである。同心円状の溝41bは放射状の溝41aと交わるところで放射状の溝41aとつながっており、ガス放出口33から放出された加熱用ガスは放射状の溝41a及び同心円状の溝41bに沿って流れるとともに、凸部32aの間の凹部32b内を自由に流れる。   This is because a plurality of concentric grooves 41b around the gas discharge port 33 for the heating gas are further provided in the radial grooves 41a of FIG. The concentric grooves 41b are connected to the radial grooves 41a at the intersections with the radial grooves 41a, and the heating gas discharged from the gas discharge port 33 flows along the radial grooves 41a and the concentric grooves 41b. It flows freely in the concave portions 32b between the convex portions 32a.

尚、図中、図2(a)と同じ符号で示すものは図2(a)と同じものを示す。   In addition, what is shown with the same code | symbol as Fig.2 (a) in the figure shows the same thing as Fig.2 (a).

(第4の実施の形態)
図2(c)は第4の実施の形態に係るヒータ付き基板載置台101cについて示す上面図である。
(Fourth embodiment)
FIG. 2C is a top view showing a substrate mounting table 101c with a heater according to the fourth embodiment.

図2(a)や図2(b)と異なるところは、放射状の溝や同心円状の溝の代わりに、格子状の溝41cを設けたことである。格子状の溝41cは交差するところで相互につながっている。また、格子状の溝41cは加熱用ガスのガス放出口33ともつながっており、ガス放出口33から放出された加熱用ガスは格子状の溝41cに沿って縦横に流れるとともに、凸部32aの間の凹部32b内を自由に流れる。   The difference from FIG. 2A and FIG. 2B is that a lattice-like groove 41c is provided instead of the radial groove and the concentric groove. The lattice-like grooves 41c are connected to each other at the intersections. The lattice-shaped groove 41c is also connected to the gas discharge port 33 for the heating gas, and the heating gas discharged from the gas discharge port 33 flows vertically and horizontally along the lattice-shaped groove 41c, and the convex portion 32a It flows freely in the recess 32b.

尚、図中、図2(a)と同じ符号で示すものは図2(a)と同じものを示す。   In addition, what is shown with the same code | symbol as Fig.2 (a) in the figure shows the same thing as Fig.2 (a).

以上のように、上記の第2〜第4の実施の形態においては、ガス放出口33を中心とする放射状の溝41aや同心円状の溝41b又はガス放出口33と繋がる格子状の溝41cを設けることにより、それらの溝41a,41b,41cを介して加熱用ガスを素早く基板載置面の周辺部まで行き渡らせ、さらに凹部を通して基板裏面全面に加熱用ガスを均等に流すことができる。従って、基板加熱の均等性が一層増すことになる。   As described above, in the second to fourth embodiments, the radial grooves 41 a centered on the gas discharge ports 33, the concentric grooves 41 b, or the lattice-shaped grooves 41 c connected to the gas discharge ports 33 are provided. By providing the heating gas, the heating gas can be quickly spread to the peripheral portion of the substrate mounting surface through the grooves 41a, 41b, and 41c, and the heating gas can be made to flow evenly over the entire back surface of the substrate through the recess. Therefore, the uniformity of substrate heating is further increased.

更に、第1〜第4の実施の形態のヒータ付き基板載置台101,101a〜101cは、スパッタ装置或いはCVD装置等の成膜装置やドライエッチング装置等、常圧又は減圧状態で成膜やエッチングを行う装置に備えつけることが可能である。これにより、基板上に成膜し、基板上の膜をエッチングする際、基板を均一な温度に保持することができるので、均質な膜を成膜し、或いは均等なエッチングを行うことができる。   Furthermore, the substrate mounting tables 101, 101a to 101c with heaters of the first to fourth embodiments are used for film formation and etching under normal pressure or reduced pressure conditions such as a sputtering apparatus or a film forming apparatus such as a CVD apparatus or a dry etching apparatus. It is possible to equip with the apparatus which performs. Accordingly, when the film is formed on the substrate and the film on the substrate is etched, the substrate can be kept at a uniform temperature, so that a uniform film can be formed or uniform etching can be performed.

なお、上記の基板載置台101,101a〜101cではガス放出口33が一つであるが、図3に示すように、基板載置台101,101a〜101cの内部を通るガスの通流路29を分岐させて分岐通路29a〜29cを設け、分岐通路29a〜29cと繋がる2つ以上のガス放出口33a〜33cが形成されてもよい。これにより、複数のガス放出口33a〜33cから直接基板載置面に加熱用ガスを放出することができるので、加熱用ガスをなお一層均等にウエハ全面に行き渡らせることができる。   The substrate mounting tables 101, 101a to 101c have one gas discharge port 33. However, as shown in FIG. 3, a gas flow path 29 passing through the substrate mounting tables 101, 101a to 101c is provided. The branch passages 29a to 29c may be provided by branching, and two or more gas discharge ports 33a to 33c connected to the branch passages 29a to 29c may be formed. As a result, the heating gas can be discharged directly from the plurality of gas discharge ports 33a to 33c onto the substrate mounting surface, so that the heating gas can be evenly distributed over the entire wafer surface.

また、上記では特に加熱用ガスを加熱していないが、加熱用ガスの加熱手段を設けて基板載置台に流す前に予め加熱用ガスを基板加熱の温度に加熱しておいてもよい。   Further, although the heating gas is not particularly heated in the above, the heating gas may be heated to the substrate heating temperature in advance before the heating gas heating means is provided to flow to the substrate mounting table.

更に、基板50はクランプ22により固定されているが、静電チャックや真空チャック等により固定することも可能である。   Furthermore, although the substrate 50 is fixed by the clamp 22, it can also be fixed by an electrostatic chuck, a vacuum chuck, or the like.

また、加熱用ガスとしてアルゴンの他、他の不活性ガスを用いてもよい。   In addition to argon, other inert gases may be used as the heating gas.

図1(a)は、本発明の第1の実施の形態に係るヒータ付き基板載置台について示す断面図であり、図1(b)は図1(a)のヒータ付き基板載置台の基板載置面近傍の詳細について示す断面図であり、図1(c)は基板載置面に形成された凸部について示す上面図である。FIG. 1A is a cross-sectional view showing a substrate mounting table with a heater according to the first embodiment of the present invention, and FIG. 1B is a substrate mounting of the substrate mounting table with a heater in FIG. FIG. 1C is a cross-sectional view showing details of the vicinity of the placement surface, and FIG. 1C is a top view showing a convex portion formed on the substrate placement surface. 図2(a)は、本発明の第2の実施の形態に係るヒータ付き基板載置台の基板載置面について示す上面図及び斜視図であり、図2(b)は、本発明の第3の実施の形態に係るヒータ付き基板載置台の基板載置面について示す上面図であり、図2(c)は、本発明の第4の実施の形態に係るヒータ付き基板載置台の基板載置面について示す上面図である。2A is a top view and a perspective view showing a substrate mounting surface of a substrate mounting table with a heater according to a second embodiment of the present invention, and FIG. 2B is a third view of the present invention. It is a top view shown about the substrate mounting surface of the substrate mounting table with a heater which concerns on this embodiment, FIG.2 (c) is a substrate mounting of the substrate mounting table with a heater which concerns on the 4th Embodiment of this invention. It is a top view shown about a surface. 図3は本発明の他の実施の形態に係るヒータ付き基板載置台について示す断面図である。FIG. 3 is a sectional view showing a substrate mounting table with a heater according to another embodiment of the present invention. 図4(a)は、従来例に係るヒータ付き基板載置台について示す断面図であり、図4(b)は図4(a)のヒータ付き基板載置台の基板載置面近傍の詳細について示す断面図である。4A is a cross-sectional view showing a conventional substrate mounting table with a heater according to a conventional example, and FIG. 4B shows details of the vicinity of the substrate mounting surface of the substrate mounting table with a heater in FIG. It is sectional drawing.

符号の説明Explanation of symbols

21,21a 基板載置台、
22 クランプ、
23 チャンバの仕切り壁、
24 ヒータ、
25,27 配線、
26 熱電対(温度検出手段)、
28 ヒータ加熱制御手段、
29 通流路、
30 ガス配管、
31 流量制御手段、
32 隙間、
32a 凸部、
32b 凹部、
33 ガス放出口、
34 ガス導入口、
41a,41b,41c 溝、
101,101a,101b,101c ヒータ付き基板載置台。
21, 21a substrate mounting table,
22 clamps,
23 chamber partition walls,
24 heater,
25, 27 wiring,
26 thermocouple (temperature detection means),
28 heater heating control means,
29 channels,
30 Gas piping,
31 Flow rate control means,
32 gap,
32a convex part,
32b recess,
33 Gas outlet
34 Gas inlet,
41a, 41b, 41c groove,
101, 101a, 101b, 101c A substrate mounting table with a heater.

Claims (7)

基板載置面を有する静電チャックであって、
前記基板載置面上に形成された凸部と、
前記静電チャックの内部を通り、前記基板載置面の中央に設けられたガス放出口と、
前記基板載置面において、前記ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝と
を有することを特徴とする静電チャック。
An electrostatic chuck having a substrate mounting surface,
A convex portion formed on the substrate mounting surface;
A gas discharge port provided in the center of the substrate mounting surface through the electrostatic chuck;
An electrostatic chuck comprising: a plurality of grooves connected to the gas discharge port and extending radially from the gas discharge port on the substrate mounting surface.
前記静電チャック内において、前記ガス放出口の他に、さらに他のガス放出口を有することを特徴とする請求項1記載の静電チャック。   The electrostatic chuck according to claim 1, further comprising another gas discharge port in addition to the gas discharge port in the electrostatic chuck. 前記凸部は、グラスビーズブラスト法により形成された凸部であることを特徴とする請求項1又は請求項2に記載の静電チャック。   The electrostatic chuck according to claim 1, wherein the convex portion is a convex portion formed by a glass bead blast method. 基板載置台上に基板を固定し、該基板上に膜を形成する成膜方法であって、
前記基板載置台は、該基板載置台の前記基板載置面上に、グラスビーズブラスト法により形成された凸部と、
前記基板載置台の内部を通り、前記基板載置面の中央に設けられたガス放出口と、
前記基板載置面において、前記ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝を有し、
前記ガス放出口を通して、前記基板と基板載置台との間にガスを導入し、該ガスを用いて該基板の温度を保持する工程を含むことを特徴とする成膜方法。
A film forming method for fixing a substrate on a substrate mounting table and forming a film on the substrate,
The substrate mounting table has a convex portion formed by a glass bead blast method on the substrate mounting surface of the substrate mounting table,
A gas discharge port provided in the center of the substrate mounting surface through the inside of the substrate mounting table;
The substrate mounting surface has a plurality of grooves connected to the gas discharge port and extending radially from the gas discharge port,
A film forming method comprising: introducing a gas between the substrate and the substrate mounting table through the gas discharge port, and maintaining the temperature of the substrate using the gas.
静電チャックを用いて、前記基板載置台上に前記基板を固定することを特徴とする請求項4記載の成膜方法。   The film forming method according to claim 4, wherein the substrate is fixed on the substrate mounting table by using an electrostatic chuck. 基板載置台上に基板を固定し、該基板上の被エッチング物をエッチングするエッチング方法であって、
前記基板載置台は、該基板載置台の前記基板載置面上に、グラスビーズブラスト法により形成された凸部と、
前記基板載置台の内部を通り、前記基板載置面の中央に設けられたガス放出口と、
前記基板載置面において、前記ガス放出口につながり、かつ該ガス放出口から放射状に延びた複数の溝を有し、
前記ガス放出口を通して、前記基板と基板載置台との間にガスを導入し、該ガスを用いて該基板の温度を保持する工程を含むことを特徴とするエッチング方法。
An etching method for fixing a substrate on a substrate mounting table and etching an object to be etched on the substrate,
The substrate mounting table has a convex portion formed by a glass bead blast method on the substrate mounting surface of the substrate mounting table,
A gas discharge port provided in the center of the substrate mounting surface through the inside of the substrate mounting table;
The substrate mounting surface has a plurality of grooves connected to the gas discharge port and extending radially from the gas discharge port,
An etching method comprising: introducing a gas between the substrate and the substrate mounting table through the gas discharge port, and maintaining the temperature of the substrate using the gas.
静電チャックを用いて、前記基板載置台上に前記基板を固定することを特徴とする請求項6記載のエッチング方法。   The etching method according to claim 6, wherein the substrate is fixed on the substrate mounting table using an electrostatic chuck.
JP2006127848A 2006-05-01 2006-05-01 Electrostatic chuck, depositing method and etching method Withdrawn JP2006303514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127848A JP2006303514A (en) 2006-05-01 2006-05-01 Electrostatic chuck, depositing method and etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127848A JP2006303514A (en) 2006-05-01 2006-05-01 Electrostatic chuck, depositing method and etching method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21173096A Division JPH1056054A (en) 1996-08-09 1996-08-09 Substrate mounting stage with heater, film forming device and etching device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2010093527A Division JP2010177701A (en) 2010-04-14 2010-04-14 Electrostatic chuck
JP2010093526A Division JP2010177700A (en) 2010-04-14 2010-04-14 Manufacturing apparatus for semiconductor device
JP2010093525A Division JP2010157776A (en) 2010-04-14 2010-04-14 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2006303514A true JP2006303514A (en) 2006-11-02

Family

ID=37471352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127848A Withdrawn JP2006303514A (en) 2006-05-01 2006-05-01 Electrostatic chuck, depositing method and etching method

Country Status (1)

Country Link
JP (1) JP2006303514A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088573A (en) * 2013-10-30 2015-05-07 株式会社日立ハイテクノロジーズ Plasma processing apparatus
CN104835764A (en) * 2015-04-27 2015-08-12 沈阳拓荆科技有限公司 Temperature-controllable heating disc with spider-web-shaped surface structure
JP2016178316A (en) * 2009-12-15 2016-10-06 ラム リサーチ コーポレーションLam Research Corporation Plasma etching system
CN112802794A (en) * 2021-04-07 2021-05-14 宁波润华全芯微电子设备有限公司 Electrostatic chuck device and degumming machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199550A (en) * 1983-04-23 1984-11-12 Koa Glass Kk Glass bottle having matte surface
JPS61101235A (en) * 1984-10-24 1986-05-20 Hitachi Ltd Low discharge gasification of vacuum container
JPH02216818A (en) * 1989-02-17 1990-08-29 Babcock Hitachi Kk Light application thin-film manufacturing device
JPH02120832U (en) * 1989-03-15 1990-09-28
JPH06349938A (en) * 1993-06-11 1994-12-22 Tokyo Electron Ltd Vacuum processing device
JPH07130828A (en) * 1993-10-28 1995-05-19 Sony Corp Semiconductor manufacturing apparatus
JPH07153825A (en) * 1993-11-29 1995-06-16 Toto Ltd Electrostatic chuck and treatment method of body to be attracted which uses said chuck
JPH07169824A (en) * 1993-12-13 1995-07-04 Anelva Corp Substrate heating and cooling mechanism
JPH07321184A (en) * 1994-05-25 1995-12-08 Tokyo Electron Ltd Processing device
JPH08111449A (en) * 1994-08-19 1996-04-30 Tokyo Electron Ltd Processing system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199550A (en) * 1983-04-23 1984-11-12 Koa Glass Kk Glass bottle having matte surface
JPS61101235A (en) * 1984-10-24 1986-05-20 Hitachi Ltd Low discharge gasification of vacuum container
JPH02216818A (en) * 1989-02-17 1990-08-29 Babcock Hitachi Kk Light application thin-film manufacturing device
JPH02120832U (en) * 1989-03-15 1990-09-28
JPH06349938A (en) * 1993-06-11 1994-12-22 Tokyo Electron Ltd Vacuum processing device
JPH07130828A (en) * 1993-10-28 1995-05-19 Sony Corp Semiconductor manufacturing apparatus
JPH07153825A (en) * 1993-11-29 1995-06-16 Toto Ltd Electrostatic chuck and treatment method of body to be attracted which uses said chuck
JPH07169824A (en) * 1993-12-13 1995-07-04 Anelva Corp Substrate heating and cooling mechanism
JPH07321184A (en) * 1994-05-25 1995-12-08 Tokyo Electron Ltd Processing device
JPH08111449A (en) * 1994-08-19 1996-04-30 Tokyo Electron Ltd Processing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178316A (en) * 2009-12-15 2016-10-06 ラム リサーチ コーポレーションLam Research Corporation Plasma etching system
JP2015088573A (en) * 2013-10-30 2015-05-07 株式会社日立ハイテクノロジーズ Plasma processing apparatus
CN104835764A (en) * 2015-04-27 2015-08-12 沈阳拓荆科技有限公司 Temperature-controllable heating disc with spider-web-shaped surface structure
CN112802794A (en) * 2021-04-07 2021-05-14 宁波润华全芯微电子设备有限公司 Electrostatic chuck device and degumming machine
CN112802794B (en) * 2021-04-07 2021-06-29 宁波润华全芯微电子设备有限公司 Electrostatic chuck device and degumming machine

Similar Documents

Publication Publication Date Title
JP7393501B2 (en) Semiconductor processing chamber to improve precursor flow
TWI795404B (en) Semiconductor processing chamber and system for multiple precursor flow
JP5523326B2 (en) Electrostatic chuck assembly
JP3437883B2 (en) Electrostatic chuck, electrostatic chuck system, and method for processing semiconductor wafer
KR101109299B1 (en) Apparatus to improve wafer temperature uniformity for face-up wet processing
KR100794507B1 (en) Heater for processing chamber
JP4745961B2 (en) Substrate support having temperature-controlled substrate support surface, control method thereof, semiconductor processing apparatus and method
US20090159566A1 (en) Method and apparatus for controlling temperature of a substrate
JP2014160819A (en) Method of making gas distribution member for plasma processing chamber
JP3817414B2 (en) Sample stage unit and plasma processing apparatus
JP2023528000A (en) Heating equipment and semiconductor processing equipment
KR20090037899A (en) Multizone heater for furnace
JP2006303514A (en) Electrostatic chuck, depositing method and etching method
CN108962722B (en) Apparatus and method for improving ALD uniformity
CN113373430A (en) Atomic layer deposition apparatus
TWI697364B (en) One-piece injector assembly, lower liner, and apparatus for substrate processing including the same
TWI757671B (en) Heated pedestal design for improved heat transfer and temperature uniformity
JPH1056054A (en) Substrate mounting stage with heater, film forming device and etching device
US5958139A (en) Plasma etch system
JP2010157776A (en) Electrostatic chuck
JP2011091096A (en) Sample table and microwave plasma processing apparatus
JP2010177701A (en) Electrostatic chuck
JP2010177700A (en) Manufacturing apparatus for semiconductor device
KR100639712B1 (en) Furnace apparatus and heat treatment method using the apparatus
JPH07169824A (en) Substrate heating and cooling mechanism

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101203