JPS609659B2 - 炭化珪素基板の製造方法 - Google Patents

炭化珪素基板の製造方法

Info

Publication number
JPS609659B2
JPS609659B2 JP53075005A JP7500578A JPS609659B2 JP S609659 B2 JPS609659 B2 JP S609659B2 JP 53075005 A JP53075005 A JP 53075005A JP 7500578 A JP7500578 A JP 7500578A JP S609659 B2 JPS609659 B2 JP S609659B2
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
substrate
temperature
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075005A
Other languages
English (en)
Other versions
JPS553632A (en
Inventor
年紀 猪奥
武 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP53075005A priority Critical patent/JPS609659B2/ja
Publication of JPS553632A publication Critical patent/JPS553632A/ja
Publication of JPS609659B2 publication Critical patent/JPS609659B2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は炭化珪素(SIC)基板を製造する方法に関す
るものである。
炭化珪素には多くの結晶構造(pol×ype・多形と
称される)が存在し、結晶構造により2.4乃至3.3
エレクトロンボルト(eV)の広い禁制帯幅を有する。
また炭化珪素は、熱的、化学的、機械的に極めて安定で
、放射線損傷にも強く、またワイドギャップ半導体とし
てはめずらし〈、p型、n型共安定に存在する材料であ
る。従って高温動作素子、大電力用素子、高信頼性半導
体素子、耐放射線素子等の半導体材料として有望である
。又従来の半導体材料を用いた素子では困難な環境下で
も使用可能となり、半導体デバイスの応用範囲を著しく
拡大し得る材料である。その他、そのエネルギーギャッ
プの値から考察するに可視短波長と近紫外光間の光電変
換素子材料としても興味ある半導体材料である。さらに
他のワイドギャップ半導体が一般に重金属をその主成分
に含有し、このために公害と資源の問題を伴なうのに対
して、炭化珪素はこれらの両問題から解放されている点
からも電子材料として有望視されるものである。このよ
うに多くの利点、可能性を有する材料であるにもかかわ
らず実用化が阻まれているのは、生産性を考慮した工業
的規模での量産に必要となる高品質の大面積基板を得る
ための再現性ある結晶長技術が確立されていないところ
にその原因がある。従来、研究室規模でSIC基板を得
る方法としては、黒鉛柑渦中でSIC粉末を22000
0〜2600qoで昇華させ、さらに再結晶させてSI
C基板を得るいわゆる昇華再結晶法(レーリー法と称さ
れる)、珪素又は珪素に鉄、コバルト、白金等の不純物
を混入した混合物を黒鉛柑禍で溶融してSIC基板を得
るいわゆる溶液法、研磨材料を工業的に得るために一般
に用いられているアチェソン法により偶発的に得られる
SIC基板を用いる方法等がある。
しかしながら上記昇華再結晶法、溶液法では多数の再結
晶を得ることはできるが、多くの結晶後が結晶成長初期
に発生する為に大型のSIC基板を得ることが困難であ
り、又幾種類かの結晶構造(pol×ype)のSIC
が混在し、単一結晶構造で大型のSIC単結晶をより再
現性よく得る方法としては不完全なものである。
又、アチヱソン法により偶発的に得られるSIC基板は
半導体材料として使用するには純度及び結晶性の点で問
題があり、又比較的大型のものが得られても偶発的に得
られるものであり、SIC基板を工業的に得る方法とし
ては適当でない。一方、近年の半導体技術の向上に伴な
い、比較的良質で大型の単結晶基板として入手できるS
iを用いた珪素異質基板上に、ヘナロェピタキシヤル技
術により*形SIC(立方晶形に層する結晶構造を有す
るもので、そのエネルギーギャップは〜2.傘V)単結
晶薄膜が得られるようになった。
珪素基板上へのへテロヱピタキシャル成長法としては【
1ー珪素原料としてSiH4、SIC14、(Cは)3
SICL(CH3)ぶiC12、また炭素原料としてC
C14、炭化水素ガス(C2比、C2日6、CH4、C
3&等)、キャリアガスとして水素、アルゴン等を用い
て、Si基板温度を120000〜1400つ0に設定
し、気相成長技術(CVD技術)により、$形SIC単
結晶薄膜を得る方法、{2}Si基板表面にグラフアィ
ト、炭化水素の熱分解により生ずるカーボンを1200
qo〜1400qo程度の温度で拡散させ、Si基板表
面をSICに変換させて*形SIC単結晶薄膜を得る方
法、‘3}Si蒸気を直流又は交流グ。‐放電により活
性化されたアルゴン、炭化水素ガス中を通過させてSi
基板上にSIC単結晶薄膜を蒸着させる方法(蒸着法)
等がある。しかしながら上記{1}、‘2}、{3’等
のSi異質基板上へのへテロェピタキシャル技術により
得られた*形SIC薄膜単結晶の厚さは1〜loAm程
度の薄いものであり、又一般にはその結晶の完全性に於
いても良好なものとはいい難い。この理由は、Si基板
とぶ形SIC結晶の格子定数の差が大きい為に特にSI
C基板とェピタキシャル紅形SIC界面近傍に多くのミ
スフィツト転位が発生し、その影響がェピタキシャル層
内部にまで及んでいること、及びSj基板とSIC結晶
の熱膨張係数の差により成長温度(例えば1100乃至
1200q0)から室温に冷却する過程でSICェピタ
キシャル層中に歪が蓄積されるためと考えられる。又仮
にこのような方法で大面積かつ良質の松形S亘C(エネ
ルギーギャップEgは〜2.唯V)が得られたとしても
更にエネルギーギャップの大きい結晶構造のSIC、例
えば細(Egは〜3.0彼V)山日(Egは3.26V
)、留日(Egは〜2。鉄V)等のQ形SICをェピタ
キシャル成長法で得ようとすると、その成長温度は一般
には1600℃以上の高温となり、Si基板及び前述し
たSi基板上へSIC薄膜を成長させた基板(父形SI
C/Si構造)等はSiの融点が1410℃であるので
Q形SICへナロェピタキシヤル成長用基板として採用
することはできなくなる。珪素と炭化珪素の熱膨張率差
は大きく異なる値を有するため、成長温度から室温まで
降温すると、基板に歪が蓄積される以外に基板に反りが
生じ、はなはだしい場合にはSIC結晶層に割れが発生
するような事態も起こり得る。
上記に於いて、目的とする対象物は炭化珪素だけであっ
て、珪素基板は必要に応じて後工程で研磨され、又は化
学的にエッチングされて最終的には除去されてしまうも
のであり、また、除去されない場合でも電子材料の機械
部分としては利用されず単なる支持部村として使用され
るにとどまるものである。従って珪素基板は炭化珪素成
長時には良質な単結晶である必要があるが、一旦炭化珪
素が成長した後は、単結晶を保つ必要はない。発明者ら
はこの点に着目し、炭化珪素成長後一旦珪素の融点を越
える温度範囲まで昇温してから降溢する方法を創案した
。この方法によれば珪素は一旦熔融されるので、再び融
点以下の温度に降温されたとき、多結晶の珪素として小
さな粒径に分離され、結晶化していく。従って室温まで
降溢された時熱膨張率の差による歪は珪素多結晶粒界に
於いて吸収され、炭化珪素に与える応力は単結晶時と比
較して大幅に軽減される。なお、炭化珪素成長工程に於
いて、珪素基板の側面が雰囲気に十分接触するように設
定しておけば珪素基板の側面にも炭化珪素が析出する。
側面の炭化珪素は珪素熔融時に珪素融液が流出しないよ
うにすることを目的とするものであり、単結晶である必
要はない。従って基板上面に良質の単結晶炭化珪素が成
長するように原料ガス量、温度等のパラメ−夕−を設定
すれば足りる。このとき側面の炭化珪素は多結晶化する
だけでなく膜厚が上面の半分又はそれ以下の値となり、
従って膜厚が薄い場合は珪素の融点より余り高く昇温す
ると側面から破れ出すので融点より高くなり過ぎないよ
うに温度制御する必要がある。また珪素基板は一且熔融
した後再び固化するので、基板が試料台と固着してしま
う倶れがある。本発明では試料台として黒鉛材を用いた
り、表面に炭化珪素を被覆したりするなどの方法により
表面材質が炭素を含む物質で形成されるように配慮して
おく。このようにすれば炭化珪素気相成長工程中に於い
て、高温のために珪素基板の裏面の数100A乃至数〃
のが炭化され炭化珪素となる。これにより珪素熔融時の
珪素融液を保持するので、基板が試料台に固着すること
はない。本発明は以上の技術的手段を基調とする新規有
用な炭化珪素基板の製造方法を提供することを目的とす
るものである。
以下本発明を実施例に従って図面を参照しながら更に詳
細に説明する。
第1図に反応装置の一例を示す。
水袷式縦形二重石英反応管2内に黒鉛製支持棒4により
支持された炭化珪素被覆黒鉛製試料台6を置き反応管2
の外胴部に巻回されたワークコイル8に高周波電流を流
して、この試料台6を誘導加熱する。反応管2の下端は
ステンレス鋼製のフランジ10と○ーリングでシールさ
れている。フランジ10上にはガスの出口となる継手1
2及び支柱台14が設けられている。支柱台14に石英
製の支柱16が保持され、支柱16に上記支持棒4が継
ぎ足される。出口側の継手12には排気用管が接続され
、、廃ガス処理装置に連結されている。反応管2の上端
側にはガス流入口となる枝管18が設けられ、搬送ガス
が反応管2内へ供給される。試料台6上には下地基板と
なる珪素基板28が戦層されている。珪素基板は片面ラ
ップ、片面ポリッシュしたものをポリッシュ面を上面に
して戦層する。次に本実施例の炭化珪素成長方法につい
て第2図A,B,C,Dを参照しながら説明する。
‘a} 反応管2を排気して水素で置換し、公知の塩化
水素・水素混合ガスで試料台6上に載遣された珪素基板
28の上表面をエッチング除去する(第2図A参照)‘
b} 珪素基板28の温度を珪素の融点以下の温度好ま
しくは1100乃至120び0に設定し、一般的な気相
成長法で炭化珪素を珪素基板28上に成長させる。
搬送ガスにはアルゴン(Ar)ヘリウム(He)などの
稀ガス又は水素ガス(日2)が用いられる。珪素原料と
しては、四塩化珪素(SIC14)、二塩化シラン(S
jQC12)、シラン(Si比)などが、また炭素原料
とては四塩化炭素(CC14)やプロパン(C3&)、
メタン(CH4)をはじめとする炭化水素が用いられる
本実施例では流量1〆/分の水素ガスを搬送ガスとし、
四塩化珪素(SIC14)及びプロパン(C3は)を各
々の原料とした。濃度は原子比で四塩化珪素が1×10
‐4乃至5×10‐4、プロパンが1.5×10‐4乃
至8×10‐4である。搬送ガスは枝管18より反応管
2内へ供給される。30分間の成長で珪素基板28上面
に約2〜3仏肌の父形炭化珪素成長層30を得た。
また珪素基板28の側面上には約lAw厚の炭化珪素多
結晶層31が析出する。(第2図B参照)この工程に於
いて、珪素基板28の裏面には約1000A厚の炭化珪
素多結晶層29が形成されている。
試料台6の炭化珪素被覆層は結晶粒座数仏の乃至数10
仏仇の多結晶層であり、珪素基板28の裏面もラップに
より粗面化されているからこの間には多くのすきまが存
在し、この工程により裏面の炭化珪素多結晶層29と試
料台の被覆層が固着してしまうことは実際上皆無である
。‘cー ワークコィル8に流す高周波出力を増して試
料台6の温度を1410乃至1440ooに昇温し、珪
素基板28を熔融する。
珪素融液28′は裏面、上面及び側面を炭化珪素層29
,30,31で覆われているので、外部に流出すること
はない。持続時間は特に必要なく短かくしてよいが温度
を安定化するため、1乃至2分間保持した。(第2図C
参照)‘d} 温度を降溢して珪素を固化し多結晶層2
9として再結晶させる。
このとき融液近くを徐冷するより、1350qo以下ま
で速やかに降溢した方が結晶粒の核発生頻度が高く、従
って珪素28″の結晶粒径がより4・さく総粒界面積が
より大きくなり炭化珪素との間に発生する歪を逃がす上
で有利である。(第2図D参照)室温まで降溢した後反
応管2から取り出し、得られた珪素多結晶を内部に包含
する炭化珪素結晶体をェピタキシャル成長用基板として
炭化珪素を成長させると良質の炭化珪素ェピタキシャル
成長層が得られる。以上詳説した如く、本発明によれば
「炭化珪素のホモェピタキシャル成長用基板が簡単な操
作で得られ、またこの基板は支持部材としての珪素を内
部に包含するため、材質的に強固であり、異質材料によ
る接合間での歪等が問題視されないため実用上非常に有
効である。
【図面の簡単な説明】
第1図は本発明の実施に供する反応装置の要部構成断面
である。 第2図A,B,C,Dは本発明の1実施例を説明する製
造工程図である。28……珪素基板、28′……珪素融
液「 29,31・・・・・・多結晶炭化珪素層L 3
0…・・・炭化珪素成長層。 策′図 第2図

Claims (1)

    【特許請求の範囲】
  1. 1 少なくとも載置面が炭素を含む物質より成る試料台
    の前記載置面上に珪素基板を配し、該珪素基板の上面及
    び側面に炭化珪素成長層を気相成長させる工程と、 珪
    素の融点以上であって、前記炭化珪素成長層が破壊され
    ない範囲の温度に昇温し、前記珪素基板を熔融した後降
    温操作を介して前記珪素基板を凝固せしめる工程と、を
    具備して成り、前記炭化珪素成長層内に珪素の多結晶体
    を内包せしめることを特徴とする炭化珪素基板の製造方
    法。
JP53075005A 1978-06-20 1978-06-20 炭化珪素基板の製造方法 Expired JPS609659B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53075005A JPS609659B2 (ja) 1978-06-20 1978-06-20 炭化珪素基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53075005A JPS609659B2 (ja) 1978-06-20 1978-06-20 炭化珪素基板の製造方法

Publications (2)

Publication Number Publication Date
JPS553632A JPS553632A (en) 1980-01-11
JPS609659B2 true JPS609659B2 (ja) 1985-03-12

Family

ID=13563642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53075005A Expired JPS609659B2 (ja) 1978-06-20 1978-06-20 炭化珪素基板の製造方法

Country Status (1)

Country Link
JP (1) JPS609659B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051875B2 (ja) * 2006-12-25 2012-10-17 東京エレクトロン株式会社 成膜装置および成膜方法

Also Published As

Publication number Publication date
JPS553632A (en) 1980-01-11

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JP2008509872A (ja) 大型炭化珪素単結晶の高品質成長のための種結晶および種結晶ホルダー
US4865659A (en) Heteroepitaxial growth of SiC on Si
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JPS5838399B2 (ja) 炭化珪素結晶層の製造方法
JP4253974B2 (ja) SiC単結晶およびその成長方法
JP4654030B2 (ja) SiCウェハおよびその製造方法
JP3087065B1 (ja) 単結晶SiCの液相育成方法
JPS6120514B2 (ja)
JPS609659B2 (ja) 炭化珪素基板の製造方法
JPS6152119B2 (ja)
JPS5838400B2 (ja) 炭化珪素結晶層の製造方法
JPS6045159B2 (ja) 炭化珪素結晶層の製造方法
JPH0416597A (ja) 炭化珪素単結晶の製造方法
JPS609658B2 (ja) 炭化珪素基板の製造方法
JPH09263498A (ja) 炭化珪素単結晶の製造方法
JPH0364480B2 (ja)
JPH1179896A (ja) 炭化珪素単結晶の製造方法
JPS6230699A (ja) 炭化珪素単結晶基板の製造方法
JPS6120515B2 (ja)
JPH0327515B2 (ja)
JPH1160391A (ja) 炭化珪素単結晶の製造方法
JPS5812238B2 (ja) 炭化珪素結晶層の製造方法
JPS5830280B2 (ja) 炭化珪素結晶層の製造方法
JP2000026199A (ja) 炭化珪素単結晶の製造方法および炭化珪素単結晶