JPS6064472A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS6064472A JPS6064472A JP17256383A JP17256383A JPS6064472A JP S6064472 A JPS6064472 A JP S6064472A JP 17256383 A JP17256383 A JP 17256383A JP 17256383 A JP17256383 A JP 17256383A JP S6064472 A JPS6064472 A JP S6064472A
- Authority
- JP
- Japan
- Prior art keywords
- impurity layer
- impurity
- substrate
- region
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 85
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000009792 diffusion process Methods 0.000 claims description 11
- 238000002955 isolation Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 19
- 230000006872 improvement Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 57
- 238000005468 ion implantation Methods 0.000 description 13
- 239000012528 membrane Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- -1 arsenic ions Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 208000032544 Cicatrix Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000270708 Testudinidae Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 102220238268 rs1343544501 Human genes 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66492—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置に関し、tFfにソース。[Detailed description of the invention] [Technical field of invention] The present invention relates to a semiconductor device, and relates to a source for tFf.
ビレ1ン領域を改良したMOa型トランジスタに係わる
。This invention relates to an MOa type transistor with an improved fin region.
周知の如<1MIa型集積回路の高集積化は。 As is well known, the increase in the degree of integration of <1 MIa type integrated circuits.
近年、メモリ容量の増大に伴なって増々重要となってお
り、それに伴なってゲート長の短縮化。In recent years, with the increase in memory capacity, it has become increasingly important to shorten the gate length.
ゲート絶縁膜の薄膜化が一段と加速されている。The thinning of gate insulating films is accelerating.
そして、前記ゲート長の短縮化に伴ない、 MIS型ト
フンジスタの特性に柿々の問題が生ずる。As the gate length is shortened, various problems arise in the characteristics of the MIS type transistor.
例えば、ショートチャンネル効果と呼ばれるしきい値電
圧(VTll )の低)現以、飽和鎮域で動作させた時
にドレイン近傍の霜、昇強曳の増大rc伴なってドレづ
ンtOLにより発生するt子−正孔対による基板−流の
賜大、この基板札、流の増大に伴ないソース近傍の基&
電位の上昇に起因する例えばn(ソース)−p−(基板
)−n(ドレイン)バイポーラトランジスタの活性化に
よるドレづン電流の急激な増大現象(ブレークダウン電
圧)、ゲート−ドレイン間電界の大きいバイアス条件に
おけるHot carrier のゲート絶縁膜への注
入によるVT)[変動、gm低下などの問題が発生する
。このような問題の回避策としては、ドレイン近傍の電
界強度を出来る限り緩和することが重要であり、この問
題を解決する一つの方法として、 I E” Tran
s 。For example, due to the phenomenon of a low threshold voltage (VTll) called the short channel effect, frost near the drain occurs when operating in the saturated region, and tOL occurs due to the increase in rc and the drain tOL. As the substrate current increases due to the electron-hole pairs, the substrate near the source increases as the current increases.
A sudden increase in drain current (breakdown voltage) due to activation of an n (source)-p-(substrate)-n (drain) bipolar transistor due to a rise in potential, and a large electric field between the gate and drain. Problems such as VT fluctuation and gm reduction occur due to hot carrier injection into the gate insulating film under bias conditions. To avoid such problems, it is important to reduce the electric field strength near the drain as much as possible, and one way to solve this problem is to
s.
Electron Devicea Vol、 ED−
27、NO,8。Electron Devicea Vol, ED-
27, NO, 8.
Aug 、1980 、l)、 1359[Desig
n &Chatacteristics of the
LightlyDoped Drain−FJoac
e(LDD)InsulatedGate ll’1e
ld−Effect Transistor Jに開示
されているLightly Doped Drain
(LDD〕構造のMO8型トランジスタが知られている
。Aug, 1980, l), 1359 [Desig
n &Chatacteristics of the
LightlyDoped Drain-FJoac
e(LDD)InsulatedGate ll'1e
Lightly Doped Drain disclosed in ld-Effect Transistor J
An MO8 type transistor having a (LDD) structure is known.
以)、第1図を〆照して説明する。図中の1は、表面に
素子分離領域2が設けられたP型の半導体基板である。(hereinafter) will be explained with reference to FIG. 1 in the figure is a P-type semiconductor substrate with an element isolation region 2 provided on its surface.
この素子分離領域2で分離された複数の島領域3上には
、厚さ約200にのゲート絶縁膜4を介してゲート電極
6が設けられ、該ゲート電極5の側壁には絶縁物6か設
けられている。IJ記島鎮領域のゲートW極5近傍には
1表(2)の不純物濃度が比較的低く(例えばlO′?
〜1OI8眞−2)かつ拡散深さが比較的浅い(例えば
0.2μm)第1の不純物層2I 。A gate electrode 6 is provided on the plurality of island regions 3 separated by the element isolation region 2 with a gate insulating film 4 having a thickness of approximately 200 mm interposed therebetween, and an insulating material 6 is provided on the sidewalls of the gate electrode 5. It is provided. The impurity concentration in Table 1 (2) near the gate W pole 5 in the IJ island region is relatively low (for example, lO'?
~1OI8shin-2) and has a relatively shallow diffusion depth (for example, 0.2 μm).
81が設けられ、これら不純物層7I 、8Iと隣接し
て島領域3のゲー)%極5より遠ざかる所には1表面の
不純物層が為<l!Iえは約1×10”a、−”) か
つ拡散深さか深い(IuJえ1i0.45μm)第2の
不純物1ビ)7□ 、8!が大々設けられている。そし
て、−力の第1.ta2の不純物1m71+7t より
ソース領域9が構成され、他方の第1.第2の不純物層
8@、+8t よシトレイン領域JOが構成されている
。また。81 is provided, and adjacent to these impurity layers 7I and 8I and further away from the gate electrode 5 of the island region 3, there is a surface impurity layer <l! I is approximately 1×10"a, -") and the diffusion depth is deep (IuJ is 0.45 μm) and the second impurity is 7□, 8! are provided extensively. And - the first of forces. The source region 9 is constituted by the impurities 1m71+7t of ta2, and the other first. The second impurity layer 8@, +8t constitutes the strain region JO. Also.
前記ゲートを極5等を含む基板J上にFi、層間絶縁P
IAJIが設けられ、該順間絶縁膜ノ1にはゲート電極
5.ソース、ビレ1ン領域9.10の天々の一部に対応
する部分會妨にコンタクトホールJ2・・・が開孔され
、これらコンタクトホールJ2・・・には大々Al配線
13・・・が設けられている。The gate is placed on the substrate J including the pole 5, etc., with Fi and interlayer insulation P.
IAJI is provided, and a gate electrode 5. Contact holes J2... are opened in partial holes corresponding to parts of the tops of the source and fin regions 9.10, and these contact holes J2... have large Al interconnections 13... is provided.
重連した第1図のトランジスタによれば、島領域3のゲ
ート電極7近傍に、ドレづン領域10の一部を構成する
不純物濃度の比較的低い第1の不純物層81が設けられ
ているため、ビレ1ン亀圧(%に基板に対して)によシ
空乏層がこの不純物層81内に広がり、ドレイン領域J
O近傍の電界強度を著しく緩和させる効果がある。従っ
て、’a子−正孔対の発生に基づく基板電流の低減に有
効でプレクダウン電圧の改善を期待することができる。According to the multiple transistors shown in FIG. 1, a first impurity layer 81 having a relatively low impurity concentration and forming a part of the drain region 10 is provided in the vicinity of the gate electrode 7 of the island region 3. Therefore, a depletion layer spreads within this impurity layer 81 due to the tortoise pressure (% relative to the substrate), and the drain region J
This has the effect of significantly relaxing the electric field strength near O. Therefore, it is effective in reducing the substrate current based on the generation of 'a-son-hole pairs, and it can be expected to improve the pre-down voltage.
しかしなから、同トランジスタは7ヨートチヤネル効果
に対してはあまり有効でない。このようなことから、島
領域3のチャネル領域にp型の不純物をイオン注入する
ことにより、ショートチャネル効果によるVTHの低)
を抑制する方法が提案されている。However, this transistor is not very effective against the 7-yoto channel effect. For this reason, by ion-implanting p-type impurities into the channel region of the island region 3, VTH can be reduced due to the short channel effect.
A method to suppress this has been proposed.
しかるに、このテヤオ・ル領域へのイオン注入はチャネ
ル領域の表面ボテン7ヤルを上げ、 VTRをつり上げ
る効果があるが、逆に第2図に示すように基板バイアス
効果の増大をもたらす弊害を生み出す。この基板バイア
ス効果とは1例えばnナヤネルトランジスタの」結合、
ソース市1位に対して基板に負のバイアスを印加した場
合にV T I+が冒くなることであり、印加1L圧に
対して臂■の増加を少なくすることが1路設計上恵委と
なる。なお、第2図中の0)は81,1図のトランジス
タによる特性曲線を示す。However, although ion implantation into this layer region has the effect of raising the surface bottom of the channel region and lifting up the VTR, it also has the disadvantage of increasing the substrate bias effect, as shown in FIG. This substrate bias effect refers to the coupling of n-nayanel transistors, for example.
If a negative bias is applied to the substrate with respect to the source city No. 1, V T I + will be affected, and it is a good idea to minimize the increase in the armpit for the applied 1L pressure. Become. Note that 0) in FIG. 2 indicates the characteristic curve of the transistor shown in FIG.
また、従来、ンヨートテヤネル効果を抑制し、基板バイ
アス効果を少なくできるM08型トランジスタとして、
IEDM’82 1)igca! of+echni
cal papers p、 718[A、 Half
Microu MOSFET using Doubl
eImplanted LDD j に開示されている
p−ポケット付のLL)D構造のもの力知られている。In addition, conventionally, as an M08 type transistor that can suppress the Njot-Yanel effect and reduce the substrate bias effect,
IEDM'82 1)igca! of+echni
cal papers p, 718 [A, Half
Micro MOSFET using Double
The LL)D structure with p-pocket disclosed in eIplanted LDD j is also known.
これ倉、第3図’!!−1=照しで説り」すZ〕。なお
、ε151図のトランジスタと同81つ祠のものは同相
゛号を付して説明を省略する。第3図のトランジスタの
%徴は、不純物濃度が低い第1の不純物層71y81
壬に比較的高濃度のP型の第3の不純物層14.15を
設けた点にある。かかるトランジスタによれば、第3の
不純物層14゜15が設けられているだめ、ドレイン領
域1゜からの空乏層のチャネル部への広がシを抑制でき
、7ヨートテヤイ・ル効果を改善できるとともに、チャ
ネル部の基板濃度を上げることがないために第2図の(
イノに示す如く基板バイアス効果によるVT)Iの上昇
率も小さくおさえることが可能になる。従って、素子の
微細化に有効である。This storehouse, Figure 3'! ! -1=Explain in the light Z] Note that transistors having the same number of gates as the transistor shown in FIG. The percentage characteristics of the transistor in FIG. 3 are the first impurity layer 71y81 with a low impurity concentration.
The point is that relatively high concentration P-type third impurity layers 14 and 15 are provided at the bottom. According to this transistor, since the third impurity layer 14°15 is provided, it is possible to suppress the spread of the depletion layer from the drain region 1° to the channel region, and it is possible to improve the 7. , in order to avoid increasing the substrate concentration in the channel part, (
As shown in Fig. 2, it is possible to suppress the rate of increase in VT)I due to the substrate bias effect to a small value. Therefore, it is effective for miniaturizing elements.
しかしながら、p−ボクット付のLDD構造のトランジ
スタによれば、第3の不純物層14゜15をゲート′1
1′、極5近傍のソース、ドレイン領域9.10干にの
み選択的に濃く形成しなければならないため、既述した
チャンネル領域への1オン注入の場合と比べて必然的に
不純物濃度を高くする必要が生ずる。また、不純物層J
4.15を1通常ゲート14極5影成直後のソース。However, according to a transistor having an LDD structure with a p-type dot, the third impurity layer 14.15 is connected to the gate '1'.
1', the source and drain regions near the pole 5 must be selectively formed densely only in the source and drain regions 9.10, so the impurity concentration is inevitably higher than in the case of 1-on implantation into the channel region as described above. The need arises. In addition, the impurity layer J
4.15 is the source immediately after 1 normal gate 14 pole 5 shadow formation.
ドレイン領域9,1oの概lの不純物M7.。Approximately 1 impurity M7. in drain regions 9, 1o. .
8、とし1時に形成することがら、不純物のイオン注入
後比較的長時間の熱処理工程が加えられることになり、
不純物は拡散していく。従って。8. Since it is formed at one time, a relatively long heat treatment process is added after impurity ion implantation.
Impurities will diffuse. Therefore.
ソース、ドレイン領域y、toの一部をなす第2の不純
物層7ffi+81な・越えて深く拡散することになり
、ソース、トレインffj緑9 、10 (2)接合台
h1が目すと高くなる。これG゛」2、第2の不純物層
7*+81の拡散の深さが−(−’s3の不純物層14
.15の拡散の深さrc幻して)洩い振合に%I/ζ容
N垢加の問題となる。1配IEDM’82Digest
of ’I’echnical papers p、
718にり、第2の不純物層2t+81の深さが、第3
の不純物層14.15の深さを越えるように開示されて
いるために、第3の不純物1ψ14゜15の形成による
接合容量の増加は顕著ではない。しかし、第2の不純物
層7..8.の拡販の深さを増すことは、分離叫域と服
する側面容h)の増加を著しくするもので、同様に好ま
しくない。The second impurity layer 7ffi+81, which forms part of the source and drain regions y and to, is diffused deeply, and the source and drain regions ffj (green 9, 10) (2) The junction table h1 becomes visually higher. This is G'''2, and the diffusion depth of the second impurity layer 7*+81 is -(-'s3 of the impurity layer 14
.. Considering the diffusion depth rc of 15), it becomes a problem of adding %I/ζ to the leakage distribution. 1st distribution IEDM'82 Digest
of 'I'technical papers p.
718, the depth of the second impurity layer 2t+81 is the third
Since the depth of the third impurity layer 14,15 is exceeded, the increase in junction capacitance due to the formation of the third impurity 1ψ14°15 is not significant. However, the second impurity layer 7. .. 8. Increasing the depth of sales is also undesirable, as it significantly increases the separation shouting area and the lateral dimensions h).
これらの接合容気の増加tユ、論理回路のスイッチング
スピードの低V−、メモリーにおいては動作マージンの
低下につながり、特性劣化をもたらす。These increases in junction capacitance lead to low V- switching speeds in logic circuits, lower operating margins in memories, and deterioration of characteristics.
本発明Vよ、−ト記事情に鑑みてなされたもので。 This invention V has been made in view of the above circumstances.
接合容量を低減できるとともに、/ヨードチャネル効果
を抑制できる等柿々の効果を持つ半導体装置を提供する
ことを目的とするものである。It is an object of the present invention to provide a semiconductor device having various effects such as being able to reduce junction capacitance and suppressing the /iodine channel effect.
本発明は1表面に菓子′0#領域で分離された複数の島
領域を有するg+、λの半導体^4:板と、前brj島
領域上にゲート絶縁膜を介して設けられたゲート電極と
、同島田域表面のゲート1a極近傍に設けられたソース
、ドレイン領域の一部を構成する低濃度の第1の不純物
層と1間島領域表’d’lr K @記ゲート電極から
遠ざかるとともに、1rII記不純物層にV17A接し
て設けられた該不純物層と夫々ソース、ドレイン領域を
構成する高濃度の第2の不純物層と、前記第1の不純物
層直下と第2の不純物層のゲート奄極側の一部分に形成
された前記基板より高釧度の第1専電型の第3の不純物
層とな・異幅し、これにより11iJ述した目的を達成
することを骨子とする。The present invention comprises a g+, λ semiconductor ^4: plate having a plurality of island regions separated by candy'0# regions on one surface, and a gate electrode provided on the front brj island region via a gate insulating film. , between the low concentration first impurity layer forming a part of the source and drain regions provided very close to the gate 1a on the surface of the Shimada region, and the island region surface 'd'lr K@' as it moves away from the gate electrode, The impurity layer provided in V17A contact with the impurity layer 1rII, a high concentration second impurity layer constituting source and drain regions, respectively, and gate electrodes directly under the first impurity layer and the second impurity layer. A third impurity layer of the first exclusive type having a higher density than the substrate is formed on a portion of the side and has a different width, thereby achieving the object described in 11iJ.
以下1本所間の一実施例に係るMO8型トランジスタを
製造工程順に第4図(a)〜(f)を参照して説1明す
る。An MO8 type transistor according to an embodiment of the present invention will be described below in the order of manufacturing steps with reference to FIGS. 4(a) to 4(f).
〔JJ ます、17!lえばP型のSi基板21表面に
選択叡化法等によシ素子分1iiIE頭域22全形成し
た後、この素子分離領域22で分(研された島領域23
表面に厚さ200Δの13.、化jI!、+241r形
成した。つついて、全面に厚さ4000 Aの多結晶7
リコンl’a’i 2s ′f影形成た(紀、4図(a
月ヌ1示)。[JJ Masu, 17! For example, after the entire element portion 1iiIE head region 22 is formed on the surface of the P-type Si substrate 21 by selective oxidation, etc., the portion (polished island region 23) is formed in this element isolation region 22.
13. with a thickness of 200Δ on the surface. , conversion! , +241r was formed. Polycrystalline 7 with a thickness of 4000 A is applied to the entire surface.
Recon l'a'i 2s 'f shadow formation (ki, 4th figure (a
Moon Nu 1).
次いで、写真蝕刻法により、til、Iit已多結晶7
リコン層25上のゲート知極形成予定部にレジストパタ
ーン(図示せず)を形成した。この後、レジストパター
ンをマスクとして商Bヒ多結晶シリコン層2りを選択的
にエツナング除去し、ゲート1a極26を形成した。史
に、 tjiJ記レジストパターンを剥順鏝、ゲート1
11極26をマスクとして的口己敵化膜24を選択的に
除去し、ケート絶縁膜27を形成した。ひきつづき、前
記ゲートi!極26をマスクにして蕗出する基板21表
面にn型不純物例えばリンを加速電圧25 KeV。Next, by photolithography, til, Iit polycrystalline 7
A resist pattern (not shown) was formed on the silicon layer 25 in the area where the gate electrode was to be formed. Thereafter, using the resist pattern as a mask, the commercially available polycrystalline silicon layer 2 was selectively etched away to form the gate 1a pole 26. In history, peel off the resist pattern, gate 1
Using the 11-pole 26 as a mask, the target self-containing film 24 was selectively removed to form a gate insulating film 27. Continuing with the aforementioned Gate i! Using the pole 26 as a mask, an n-type impurity such as phosphorus is applied to the surface of the substrate 21 at an accelerating voltage of 25 KeV.
ドーズff18 X 10”a−”の条件でイオン注入
し。Ion implantation was performed at a dose of ff18 x 10"a-".
低濃度の第1のづオン注入層;!8.29を形成した(
第4図(b)図示)。なお、リンの代シに砒素をイオン
注入してもよい。しかる後、写真蝕刻(PEP)法によ
シ、あ1のイオン注入層28.29の夫々の一部を覆う
ようにレジストパターン30を形成した後、このレジス
トパターン30をマスクとして基板1に例えばボロンを
加速電圧120KeV、ドーx量2 x 10”m、−
”の条件でイオン注入し、第3のイオン注入層31.3
2を形成した(第4図(c)図示)。Low concentration first ion implantation layer;! 8.29 was formed (
(Illustrated in FIG. 4(b)). Note that arsenic ions may be implanted in place of phosphorus. Thereafter, a resist pattern 30 is formed by photo-etching (PEP) method so as to cover a portion of each of the ion-implanted layers 28 and 29 of A1. Boron was accelerated at a voltage of 120 KeV, with a doping amount of 2 x 10”m, -
The third ion implantation layer 31.3 was implanted under the following conditions.
2 (as shown in FIG. 4(c)).
00 次に、900’Qの酸化雰囲気中で60分間熱処
理を施し、露出する基板2ノ表面に酸化膜33、を、か
つ露出するゲート電極26の周囲に酸化膜33.を形成
した。同時に、前記第1のイオン注入J@28.29中
のリンイオンを夫々活性化して低濃度の第1の不純物層
341 。00 Next, heat treatment is performed for 60 minutes in an oxidizing atmosphere of 900'Q to form an oxide film 33 on the exposed surface of the substrate 2 and an oxide film 33. was formed. At the same time, the phosphorus ions in the first ion implantation J@28 and 29 are activated to form a low concentration first impurity layer 341.
351を形成するとともに、第3のイオン注入1fds
i、sz中のボロンづオンを大々活性化して第3の不純
物層36 、 :47を形成した。つづいて、全面に厚
さ100OA〜5000AのCVD−8i0.膜38を
形成した71.900℃。351 and the third ion implantation 1fds
A third impurity layer 36, :47 was formed by activating the boron atoms in i and sz to a large extent. Next, CVD-8i0. 71.900° C. at which film 38 was formed.
で30分間CVD−8i0.膜38を暁固めた(第4図
(d)図示)。次いで1反応性1オンエツチングRIE
Kよ、!’ * n ge CvD 8 + 01膜3
8を基板21及びゲートtb、極26が露出するまでエ
ツチング除去した。その結果、ゲート電極26の側壁に
のみ酸化膜33.を介してCVI)−8i0.膜38′
が残存した。なお、この残存CV D−8i 0. f
Ql g’の形状は、前記CVD−8i0.膜3 s
’ ノBp3.vc x ツテ決定される。この後、ゲ
ー) N、 a+ 26及び残存c V D−8i 0
. llO!3 B’ kマスクド1.”’C’iif
、出する基板21表面に砒素を加速電圧50 KeV
。CVD-8i0. for 30 minutes. The membrane 38 was hardened (as shown in FIG. 4(d)). Then 1-reactive 1-on etching RIE
K! ' * n ge CvD 8 + 01 membrane 3
8 was removed by etching until the substrate 21, gate tb, and electrode 26 were exposed. As a result, the oxide film 33. is formed only on the side walls of the gate electrode 26. CVI)-8i0. membrane 38'
remained. In addition, this residual CV D-8i 0. f
The shape of Ql g' is the same as that of CVD-8i0. membrane 3s
'ノBp3. vc x test is determined. After this, game) N, a+ 26 and remaining c V D-8i 0
.. llO! 3 B' k masked 1. ”'C'iif
, arsenic is applied to the surface of the substrate 21 at an accelerating voltage of 50 KeV.
.
ドーズ” 3×lO”眞、10条件士でイオン注入し、
高残度の第2のイオン注入11i J s 、 4o
f形成した(第4図(−)図示)。Ion implantation was performed at a dose of 3×1O” under 10 conditions.
High residual second ion implantation 11i J s , 4o
f was formed (as shown in FIG. 4 (-)).
011)次に、全血VCCVD−8i 0. gl 、
B P 8 G膜等を順次堆積した積層膜4Jを形成
したらと。011) Next, whole blood VCCVD-8i 0. GL,
Suppose a laminated film 4J is formed by sequentially depositing B P 8 G films and the like.
リンゲッター、ガラスフロー等の熱処理を900℃、、
約90分間行なった。この結果、前記第2のイオン注入
層39.40中の砒素イオンが活性されて高汲度の第2
の不純物層34□、35!が形成されるとともに、第1
の不純物層34..35. も深さ方向にやや広が9.
第1、第2の不純物層341 、:44.からなるソー
ス領域42.第1.第2の不純物層351 。Heat treatment such as ring getter, glass flow, etc. at 900℃.
It lasted about 90 minutes. As a result, the arsenic ions in the second ion-implanted layer 39, 40 are activated and the second ion-implanted layer 39, 40 is activated.
impurity layers 34□, 35! is formed, and the first
Impurity layer 34. .. 35. 9. Also spreads slightly in the depth direction.
First and second impurity layers 341, :44. A source region 42 . 1st. Second impurity layer 351.
35、からなるドレイン領域43が夫々形成された。こ
こで、低@度の第1の不純物層34゜、 3s@ 、
のh面@aは大体I X I Q”e、−”かつ拡散深
さは0.22μmであり、高Q度の第2の不純物層34
..35.の表面濃度は約IQ”a−”かつ拡散深さは
0.21μmであった。Drain regions 43 consisting of 35 and 35 were respectively formed. Here, the first impurity layer of low @ degree 34°, 3s@,
The h-plane @a is approximately I
.. .. 35. The surface concentration was about IQ"a-" and the diffusion depth was 0.21 μm.
なお、第1の不純物層34.、:451の拡散深さに対
する第2の不純物Id34.,35.の深さに対する制
御性は、現在の技術で±15%以内におさえられる。つ
づいて、前記ソース、ドレイン領域42.43の第2の
不純物層34.。Note that the first impurity layer 34. , :451 for the second impurity Id34. , 35. The controllability over the depth can be kept within ±15% with current technology. Next, the second impurity layer 34 of the source and drain regions 42 and 43 is formed. .
35、及びゲート電極26の夫々の一部に対応する積層
膜4ノを開孔し、コンタクトホール44、・・・を形成
した。次いで、前記第2の不純物層34Re35N及び
ゲートを極26にコンタクトホール44・・・を介して
接続するAI配線45・・・を形成し1M08型トラン
ジスタを製造した(第4図(f)図示)。35 and a portion of the gate electrode 26, contact holes 44, . . . Next, an AI wiring 45 connecting the second impurity layer 34Re35N and the gate to the pole 26 via the contact hole 44 was formed to manufacture a 1M08 type transistor (as shown in FIG. 4(f)). .
本発明に係るMOB型トランジスタは、第4′図(f)
に示す如く、一方の第1.第2の不純物層34、.34
.及び他方の第1.第2の361.35.から夫々ソー
ス、ドレイン領域42゜43を設け、これらソース、ド
レイン領@42.43の夫々の一部の直重に基板21の
不純物濃度よシ高い第3の不純物層36.37が設けら
れた構造になっている。The MOB type transistor according to the present invention is shown in FIG. 4'(f).
As shown in FIG. Second impurity layer 34, . 34
.. and the other 1st. Second 361.35. Source and drain regions 42 and 43 were provided respectively from the source and drain regions 42 and 43, and a third impurity layer 36 and 37 having a higher impurity concentration than that of the substrate 21 was provided directly over a portion of each of these source and drain regions 42 and 43. It has a structure.
しかして1本発明によれば、ソース、ドレイン領域42
,43の天々の一部の直重に基板21の不純物濃度よシ
高い81I!3の不純物層36.37が設けられ、チャ
ネル領域の基板不純物製団が高くないため、基板バイア
スによるVTHの上昇は著しく軽減され、かつ7ヨート
テヤネル効果の改善、基板電流の低減、ブレークダウン
電圧の改善か達成されるとともVC1接合容量が著しく
改善できる。ここで、接合容量について既述した第3図
のトランジスタの場合と比較して考察する。第3図のト
ランジスタにおいては、第2の不純物層の拡散の深さが
深いためにソース、ビレ1ン饋域の接合容量は側面の容
量が大きいうえに、第3の不純物層がソース、ドレイン
領域の直下全面に形成されると考えられるために更に底
面の容気が加味される。従って。According to one aspect of the invention, the source and drain regions 42
, 43, the impurity concentration of the substrate 21 is higher than the impurity concentration of 81I! Since the impurity layer 36,37 of 3 is provided and the substrate impurity concentration in the channel region is not high, the rise in VTH due to substrate bias is significantly reduced, and the improvement of the 7 Yot-Jannel effect, reduction of substrate current, and breakdown voltage are achieved. Once the improvement is achieved, the VC1 junction capacitance can be significantly improved. Here, the junction capacitance will be considered in comparison with the case of the transistor shown in FIG. 3, which has already been described. In the transistor shown in Fig. 3, since the second impurity layer is diffused deep, the junction capacitance in the source and drain regions is large on the sides, and the third impurity layer is in the source and drain regions. Since it is thought to be formed on the entire surface immediately below the area, the volume of the bottom surface is also taken into consideration. Therefore.
第2の不純物層の拡散の深さは、側面の容気を減らずた
めにも浅くする必要がある。そこで。The depth of diffusion of the second impurity layer needs to be shallow in order not to reduce the side surface volume. Therefore.
第2の不純物層の拡散の深さを第1の不純物層の深さと
同程度に、上記実施例のように形成したと仮定して第3
の不純物1−と第2の不純物層が接する底面の面積比を
めてみる。この場合、コンタクトホール輻を1μm 、
m 1の不純物層の幅を0.3μmと仮定して1合せ
精度を8*してめてみると、上記実施例の与)合の第3
の不純物層と接する底面積をlとした場合、第3図のト
ランジスタでは2〜2.5倍の面積となる。Assuming that the second impurity layer is formed to the same diffusion depth as the first impurity layer as in the above embodiment, the third impurity layer is
Let's look at the area ratio of the bottom surface where the impurity 1- and the second impurity layer are in contact. In this case, the contact hole radius is 1 μm,
Assuming that the width of the impurity layer of m1 is 0.3 μm, and assuming that the 1 alignment accuracy is 8*, the third
When the area of the bottom in contact with the impurity layer is 1, the area of the transistor shown in FIG. 3 is 2 to 2.5 times larger.
通常、接合の側面と底面の容気化tよ、約0.3fF/
μ” 、t ’ IyJ、O−07f F/ μm2a
t1’ −C6ル。マタ。Normally, the evaporation of the side and bottom surfaces of the junction is approximately 0.3 fF/
μ'', t' IyJ, O-07f F/μm2a
t1'-C6le. Mata.
第3の不純物層を形成した場合の底面容Rは約0.4f
F/μm2である。これらの数値より、全体としてチャ
ネル長:L=1μm、チャネル幅=w=5μmのトラン
ジスタを考えた時、約30%の接合容量の改善に当たる
。以上よシ1本発明によるMO8型トランジスタが従来
のそれと比べ優れていることが確認できる。The bottom capacitance R when forming the third impurity layer is approximately 0.4f
F/μm2. From these values, when considering a transistor with a channel length of L=1 μm and a channel width of W=5 μm as a whole, the junction capacitance is improved by about 30%. From the above, it can be confirmed that the MO8 type transistor according to the present invention is superior to the conventional one.
なお、上記実施例では、第1の不純物Ml形成のだめの
イオン注入の際、島領域全露出して行なったが、r$i
化暎を除去ゼすにイオン注入してもよい。こうした場合
1次のフォトリソグラフィ一工程で島領域が露出するこ
とによる汚染防止に有効である。また、チャオル部への
イオン注入についてはふれていないが V’TH制砒の
/こめの浅いテヤネルドーフ−は従来技術同様に実施す
ることが可能である。In the above embodiment, the entire island region was exposed during the ion implantation for forming the first impurity Ml, but r$i
Ions may be implanted to remove the scars. In such a case, it is effective to prevent contamination caused by exposure of the island region in one step of the first photolithography. Also, although ion implantation into the chawl portion is not mentioned, V'TH arsenic/shallow Tejnerdorf can be carried out in the same manner as in the prior art.
本発明に係るMO8型トランジスタとしては。As an MO8 type transistor according to the present invention.
前述した第4図(り図示のものに限らず1例えば。For example, not limited to what is shown in FIG. 4 mentioned above.
第5囚に示す如くソース、ドレイン領域51゜52の夫
々の第2の不純物j% s 、v 、 s 4のコンタ
クトホール44,44に対応する部分が一層深く形成さ
れた柘造のものでもよい。なお、上記ソース、ドレづン
領域5t、sxは、第4図(f)のMO8型トランジス
タC′・如き第2の不純物1iにコンタクトボール44
,44を介して例えばリン会拡散したり、あるいはリン
をイオン注入した後熱処理することによ多形成できる。As shown in the fifth image, the second impurity j% s, v, s 4 of the source and drain regions 51 and 52, respectively, may be of Tsuge's type, in which the portions corresponding to the contact holes 44, 44 are formed deeper. . The source and drain regions 5t and sx are connected to a contact ball 44 to a second impurity 1i such as the MO8 type transistor C' in FIG. 4(f).
, 44, for example, by phosphorus diffusion, or by heat treatment after ion implantation of phosphorus.
かかるMO8型トランジスタによれは、ソース。This MO8 type transistor has a source.
ドレインeRhA67 、5zのコンタクトホール44
.44に対応する部分の拡散深さが一層深いため、Al
配線4bを形成する際にA4のつきぬけか生じるのを阻
止できる。Drain eRhA67, 5z contact hole 44
.. Since the diffusion depth of the part corresponding to 44 is deeper, Al
It is possible to prevent A4 from passing through when forming the wiring 4b.
以上詳述した如く1本発明によれは、接合容量を低減で
きるとともに、ショートチャネル効果を抑制できる等種
々の効果を有する信頼性の高い半導体製麹を提供できる
ものである。As detailed above, according to the present invention, it is possible to provide a highly reliable semiconductor koji which has various effects such as reducing junction capacitance and suppressing short channel effects.
第1図は従来のLDD構造のM OS型トランジスタの
断1用図、第2図はナヤ?ルドープによる基板バイアス
効果を説明するための特性図。
第3図は従来の他のL l) D横進のMO8型トラン
ジスタの断面図1.叱4図(a)〜(Qは本発明の一実
施例に係るMO8型トランジスタを製造工程順に示す断
面図、第5図は本発明の他の実b[11例に係るり、t
o s型トランジスタの断面図である。
2)・・・P型のSi基板(半婢体基板)、22・・・
集子分1i11f餉域、23・・・島領域、24,33
゜、33.・・・酸化膜、25・・・多結晶シリコンリ
。
26・・・ゲート電極、27・・・ゲート絶縁膜、28
.29,31,32,39.40・・・イオン注入層、
341 、:44z 、351 、:4.5z 、:4
6゜37 ・・・不純物N、t18 、38 ”・−C
VD−8in。
膜、47・・・楢層膜、42.51・・・ソース頭載。
43.52・・・ドレづン叫域、4i・・・コンタクト
ホール、45・・・Al配線。
出動人代理人 弁理士 鈴 江 虱 彦第1図
212
第2図
第3じ Vsub
第4WJFigure 1 is a cross-sectional view of a conventional LDD structure MOS transistor, and Figure 2 is a cross-sectional view of a conventional LDD structure MOS transistor. FIG. 3 is a characteristic diagram for explaining the substrate bias effect due to doping. FIG. 3 is a cross-sectional view of another conventional L1) D-transverse MO8 type transistor. Figures 4 (a) to (Q) are cross-sectional views showing an MO8 type transistor according to one embodiment of the present invention in the order of manufacturing steps;
FIG. 2 is a cross-sectional view of an os-type transistor. 2) P-type Si substrate (semi-solid substrate), 22...
Group member 1i11f 餉 area, 23...Island area, 24, 33
゜, 33. ...Oxide film, 25...Polycrystalline silicon. 26... Gate electrode, 27... Gate insulating film, 28
.. 29, 31, 32, 39.40... ion implantation layer,
341 , :44z , 351 , :4.5z , :4
6゜37...Impurity N, t18, 38''・-C
VD-8in. Membrane, 47...Naralayer membrane, 42.51...Source heading. 43.52...Draining area, 4i...Contact hole, 45...Al wiring. Dispatch agent Patent attorney Suzue Akihiko Figure 1 212 Figure 2 3rd Vsub 4th WJ
Claims (1)
する第1導電型の半導体基板と、前記島領域上にゲート
絶縁膜を介して設けられたゲート電極と、同島領域表面
のゲート電極近傍に設けられたソース、ドレイン領域の
一部を夫々構成する低濃度の第1の不純物層と。 同島領域表面に前記ゲート電極と遠ざかるとともに、前
記不純物層に隣接して設けられた該不純物層と夫々ソー
ス、ドレイン領域を構成する高濃度の第2の不純物層と
、前記第1の不純物層直下と第2の不純物層のゲート電
極側の一部分の直下に形成された前記基板よυ高meの
第1導電型の第3の不純物層とを具備することを特徴と
する半導体装置。 (2) 第2の不純物層の少なくともゲート電極寄りの
領域の拡散深さが、第1の不純物層の拡散深さと略同等
かあるいは浅いことを特徴とする特許請求の範囲第1項
記戦の半導体装置。[Scope of Claims] 0) a semiconductor substrate of a first conductivity type having a plurality of island regions separated by element isolation regions on the surface thereof, and a gate electrode provided on the island regions with a gate insulating film interposed therebetween; a first impurity layer with a low concentration forming part of the source and drain regions, respectively, provided near the gate electrode on the surface of the island region; On the surface of the island region, a highly concentrated second impurity layer is provided which is located away from the gate electrode and adjacent to the impurity layer and constitutes source and drain regions, respectively, and directly below the first impurity layer. and a third impurity layer of a first conductivity type having a height me than the substrate and formed directly under a portion of the second impurity layer on the gate electrode side. (2) The diffusion depth of the second impurity layer at least in the region closer to the gate electrode is approximately equal to or shallower than the diffusion depth of the first impurity layer. Semiconductor equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17256383A JPS6064472A (en) | 1983-09-19 | 1983-09-19 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17256383A JPS6064472A (en) | 1983-09-19 | 1983-09-19 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6064472A true JPS6064472A (en) | 1985-04-13 |
Family
ID=15944163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17256383A Pending JPS6064472A (en) | 1983-09-19 | 1983-09-19 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6064472A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241967A (en) * | 1985-04-19 | 1986-10-28 | Hitachi Ltd | Semiconductor integrated circuit device |
JPS62114272A (en) * | 1985-11-14 | 1987-05-26 | Toshiba Corp | Semiconductor device |
JPH04133436A (en) * | 1990-09-26 | 1992-05-07 | Matsushita Electric Ind Co Ltd | Mos type semiconductor device and manufacture thereof |
EP0535917A2 (en) * | 1991-09-30 | 1993-04-07 | STMicroelectronics, Inc. | Method for fabricating integrated circuit transistors |
JPH06104429A (en) * | 1992-09-18 | 1994-04-15 | Rohm Co Ltd | Mos transistor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53108380A (en) * | 1977-03-04 | 1978-09-21 | Hitachi Ltd | Semiconductor device |
JPS5417678A (en) * | 1977-07-08 | 1979-02-09 | Nippon Telegr & Teleph Corp <Ntt> | Insulated-gate type semiconductoa device |
JPS55151363A (en) * | 1979-05-14 | 1980-11-25 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Mos semiconductor device and fabricating method of the same |
JPS5827369A (en) * | 1981-07-27 | 1983-02-18 | ゼロツクス・コ−ポレ−シヨン | Short channel type field effect transistor |
-
1983
- 1983-09-19 JP JP17256383A patent/JPS6064472A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53108380A (en) * | 1977-03-04 | 1978-09-21 | Hitachi Ltd | Semiconductor device |
JPS5417678A (en) * | 1977-07-08 | 1979-02-09 | Nippon Telegr & Teleph Corp <Ntt> | Insulated-gate type semiconductoa device |
JPS55151363A (en) * | 1979-05-14 | 1980-11-25 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Mos semiconductor device and fabricating method of the same |
JPS5827369A (en) * | 1981-07-27 | 1983-02-18 | ゼロツクス・コ−ポレ−シヨン | Short channel type field effect transistor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241967A (en) * | 1985-04-19 | 1986-10-28 | Hitachi Ltd | Semiconductor integrated circuit device |
JPS62114272A (en) * | 1985-11-14 | 1987-05-26 | Toshiba Corp | Semiconductor device |
JPH04133436A (en) * | 1990-09-26 | 1992-05-07 | Matsushita Electric Ind Co Ltd | Mos type semiconductor device and manufacture thereof |
EP0535917A2 (en) * | 1991-09-30 | 1993-04-07 | STMicroelectronics, Inc. | Method for fabricating integrated circuit transistors |
EP0535917A3 (en) * | 1991-09-30 | 1996-06-12 | Sgs Thomson Microelectronics | Method for fabricating integrated circuit transistors |
US5837587A (en) * | 1991-09-30 | 1998-11-17 | Sgs-Thomson Microelectronics, Inc. | Method of forming an integrated circuit device |
US5894158A (en) * | 1991-09-30 | 1999-04-13 | Stmicroelectronics, Inc. | Having halo regions integrated circuit device structure |
US6027979A (en) * | 1991-09-30 | 2000-02-22 | Stmicroelectronics, Inc. | Method of forming an integrated circuit device |
JPH06104429A (en) * | 1992-09-18 | 1994-04-15 | Rohm Co Ltd | Mos transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6518623B1 (en) | Semiconductor device having a buried-channel MOS structure | |
JPH06326306A (en) | Mos transistor and preparation thereof | |
JPH0693494B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH0992729A (en) | Semiconductor device and fabrication thereof | |
JPS6064472A (en) | Semiconductor device | |
JPS63257231A (en) | Manufacture of semiconductor device | |
KR100385127B1 (en) | Semiconductor device manufacturing method | |
JPS6025028B2 (en) | Manufacturing method of semiconductor device | |
JPS6038879A (en) | Manufacture of semiconductor device | |
JPH07106557A (en) | Semiconductor device and manufacture of the same | |
JPH03262154A (en) | Manufacture of bicmos type semiconductor integrated circuit | |
JPS6039868A (en) | Manufacture of semiconductor device | |
JPH06204244A (en) | Manufacture of semiconductor device | |
JPH0387059A (en) | Semiconductor integrated circuit | |
JPH02219237A (en) | Mis type semiconductor device | |
JPH01187870A (en) | Semiconductor device and its manufacture | |
JPS60235437A (en) | Manufacture of semiconductor device | |
JPS60226168A (en) | Complementary mos semiconductor device | |
JPS60117658A (en) | Manufacture of mos dynamic memory | |
KR940004258B1 (en) | Manufacturing method of soi structure device | |
KR0144882B1 (en) | Method of manufacturing double-diffusion MOS field transistor | |
JPS59181553A (en) | Manufacture of semiconductor device | |
JPH036844A (en) | Manufacture of semiconductor integrated circuit | |
JPS6367778A (en) | Manufacture of semiconductor device | |
JPH06196642A (en) | Semiconductor device and manufacture thereof |