JPH06104429A - Mos transistor - Google Patents

Mos transistor

Info

Publication number
JPH06104429A
JPH06104429A JP25001892A JP25001892A JPH06104429A JP H06104429 A JPH06104429 A JP H06104429A JP 25001892 A JP25001892 A JP 25001892A JP 25001892 A JP25001892 A JP 25001892A JP H06104429 A JPH06104429 A JP H06104429A
Authority
JP
Japan
Prior art keywords
region
insulating film
gate electrode
gate insulating
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25001892A
Other languages
Japanese (ja)
Inventor
Joji Iida
城士 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP25001892A priority Critical patent/JPH06104429A/en
Publication of JPH06104429A publication Critical patent/JPH06104429A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a reliable MOS transistor where a tunnel current is hard to occur even if a gate insulating film becomes thin and besides the gate insulation resistance is improved. CONSTITUTION:This is a MOS transistor where gate insulating films 2 and 2a are made thicker at the end on the side of the drain region 8 of a gate electrode or at both ends than other parts. Moreover, the breakdown strength of the substrate 1 is made lower than that of the gate electrode 3 by forming a intermediate concentration impurity region 10 of the same conductivity type as that of a semiconductor substrate between the drain region 8 and the semiconductor substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMOSトランジスタに関
する。さらに詳しくは、ゲート絶縁膜が薄くなってもバ
ンド間トンネル電流が発生しにくく、静電耐量も劣化し
ない微細なMOSトランジスタに関する。
The present invention relates to MOS transistors. More specifically, the present invention relates to a fine MOS transistor in which band-to-band tunnel current is unlikely to occur even when the gate insulating film becomes thin and the electrostatic withstand capability does not deteriorate.

【0002】[0002]

【従来の技術】近年、半導体回路の高集積化による素子
の微細化に伴って、MOSトランジスタはドレイン領域
のゲート電極側を低濃度領域としてホットエレクトンロ
ンの注入を防止するLDD(Lightly Doped Drain )構
造のもが採用されるようになった。従来のLDD構造の
MOSトランジスタの構造を図5に断面図で示す。p型
のSiからなる半導体基板21上にゲート絶縁膜22が形成
され、その表面にポリシリコンを堆積させたのち、チャ
ネル領域の周囲を除去してゲート長がLのゲート電極23
が形成されている。そしてゲート電極23をマスクとして
リンイオン(P+)を注入することにより拡散深さの比
較的浅いn- 型の不純物拡散領域24、25が形成されてい
る。ゲート電極23の側部にはシリコン酸化膜などによっ
てサイドウォール26が形成され、サイドウォール26をマ
スクとしてさらにヒ素イオン(As+ )を注入すること
よりチャネル領域(ゲート電極23直下の半導体基板領
域)29の両側にn+ 型のソース領域27およびドレイン領
域28が形成されている。
2. Description of the Related Art In recent years, with the miniaturization of elements due to high integration of semiconductor circuits, MOS transistors have LDDs (Lightly Doped Drains) that prevent injection of hot electronron by making the gate electrode side of the drain region a low concentration region. The structure type has been adopted. FIG. 5 is a sectional view showing the structure of a conventional MOS transistor having an LDD structure. A gate insulating film 22 is formed on a semiconductor substrate 21 made of p-type Si, polysilicon is deposited on the surface of the gate insulating film 22, and then the periphery of the channel region is removed to form a gate electrode 23 having a gate length L.
Are formed. Then, by implanting phosphorus ions (P + ) using the gate electrode 23 as a mask, n -type impurity diffusion regions 24 and 25 having a relatively shallow diffusion depth are formed. A side wall 26 is formed of a silicon oxide film or the like on the side of the gate electrode 23, and arsenic ions (As + ) are further implanted using the side wall 26 as a mask to form a channel region (semiconductor substrate region immediately below the gate electrode 23). An n + type source region 27 and a drain region 28 are formed on both sides of 29.

【0003】この構造において、トランジスタの微細化
に伴いゲート絶縁膜も薄くなるが、ゲート絶縁膜が薄く
なると、バンド間トンネル電流によるソフトリークや外
部からのサージに対する静電耐量の低下が生じる。ここ
にバンド間トンネル電流とは、ゲート電極の電界強度を
うけてLDD拡散層中の不純物が電子を発生することに
より基板側に流れる電流をいう。
In this structure, the gate insulating film becomes thinner with the miniaturization of the transistor, but when the gate insulating film becomes thinner, soft leakage due to the band-to-band tunnel current and the electrostatic withstand capability against external surge occur. Here, the band-to-band tunnel current means a current flowing to the substrate side when the impurities in the LDD diffusion layer generate electrons due to the electric field strength of the gate electrode.

【0004】LDD構造はホットエレクトロンがゲート
電極に注入されるのを防止するホットエレクトロン耐性
には強いが、ソフトリーク電流を増大させてしまう。ま
た、ドレインと基板間の耐圧がゲート絶縁膜よりも高い
ため、出力ピンにドレイン端子が直接結合されているば
あい、出力ピンにかかる静電気がゲート電極側にかか
り、ゲート絶縁膜が破壊し易くなるので、静電破壊耐量
がいちじるしく低下してしまう。これらを解決するため
に入出力部であるI/O部のゲート膜厚のみを厚くした
り、チャネルストッパーの濃度を高くすることにより、
ドレインと基板とのあいだの耐圧をゲート絶縁膜の耐圧
よりも低くしたりしている。
Although the LDD structure has a high resistance to hot electrons which prevents hot electrons from being injected into the gate electrode, it causes an increase in soft leak current. Also, since the breakdown voltage between the drain and the substrate is higher than that of the gate insulating film, when the drain terminal is directly connected to the output pin, the static electricity applied to the output pin is applied to the gate electrode side, and the gate insulating film is easily destroyed. As a result, the electrostatic discharge withstand capability will drop significantly. In order to solve these problems, by increasing only the gate film thickness of the I / O part which is the input / output part or increasing the concentration of the channel stopper,
The breakdown voltage between the drain and the substrate is set lower than the breakdown voltage of the gate insulating film.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、I/O
部のゲート膜厚を厚くすると、マスク工程が1回増える
ことになり、工程数が増えてコストアップとなる。ま
た、チャネルストッパーの濃度を高くすると、チャネル
領域の奥行き(図5で紙面に垂直方向の幅)ΔWが大き
くなり、その結果しきい値電圧が高くなるという狭チャ
ネル効果が生じる。
[Problems to be Solved by the Invention] However, I / O
If the gate film thickness of the portion is increased, the number of mask processes is increased by one, resulting in an increase in the number of processes and an increase in cost. Further, when the concentration of the channel stopper is increased, the depth (width in the direction perpendicular to the paper surface in FIG. 5) ΔW of the channel region increases, and as a result, a narrow channel effect occurs in which the threshold voltage increases.

【0006】このような問題を解決すべく本発明は、ゲ
ート絶縁膜が薄くなってもバンド間トンネル電流が発し
にくく、静電破壊耐量が低下せず、かつ、製造工程を増
加させることなく製造することができる微細なMOSト
ランジスタを提供することを目的とする。
In order to solve such a problem, according to the present invention, even if the gate insulating film becomes thin, a band-to-band tunnel current does not easily occur, the electrostatic breakdown resistance does not decrease, and the manufacturing process is not increased. It is an object of the present invention to provide a fine MOS transistor that can be manufactured.

【0007】[0007]

【課題を解決するための手段】本発明によるMOSトラ
ンジスタは、半導体基板上にゲート絶縁膜を介してゲー
ト電極が形成され、該ゲート電極の両側の半導体基板に
ソース領域とドレイン領域が形成され、少なくともドレ
イン領域のゲート領域側が低濃度不純物領域とされてい
るMOSトランジスタであって、前記ゲート絶縁膜が前
記ゲート電極の少なくともドレイン側端部において、他
の部分よりも厚く形成されていることを特徴とする。
In a MOS transistor according to the present invention, a gate electrode is formed on a semiconductor substrate via a gate insulating film, and a source region and a drain region are formed on the semiconductor substrate on both sides of the gate electrode. A MOS transistor having a low-concentration impurity region at least on the gate region side of the drain region, wherein the gate insulating film is formed thicker than other portions at least at the drain-side end of the gate electrode. And

【0008】前記ゲート絶縁膜の厚く形成された部分
は、前記低濃度不純物領域の全表面を覆うように形成さ
れていることが好ましい。
It is preferable that the thickly formed portion of the gate insulating film is formed so as to cover the entire surface of the low concentration impurity region.

【0009】また、請求項3記載のMOSトランジスタ
は、半導体基板上にゲート絶縁膜を介してゲート電極が
形成され、該ゲート電極の両側の半導体基板にソース領
域とドレイン領域が形成され、少なくともドレイン領域
のゲート領域側が低濃度不純物領域とされてなるMOS
トランジスタであって、前記ドレイン領域のコンタクト
孔直下に高濃度の第1導電型の半導体領域が形成され、
その下に中濃度の第2導電型の半導体領域が形成され、
その下側に低濃度の第2導電型の半導体基板が配されて
いることを特徴とする。
According to another aspect of the MOS transistor of the present invention, a gate electrode is formed on a semiconductor substrate via a gate insulating film, and a source region and a drain region are formed on the semiconductor substrate on both sides of the gate electrode, and at least the drain is formed. MOS in which the gate region side of the region is a low concentration impurity region
In the transistor, a high-concentration first-conductivity-type semiconductor region is formed immediately below the contact hole in the drain region,
A second-conductivity-type semiconductor region of medium concentration is formed thereunder,
A low-concentration second-conductivity-type semiconductor substrate is arranged on the lower side thereof.

【0010】[0010]

【作用】本発明によれば、ゲート絶縁膜の膜厚がゲート
電極の端部において厚く形成されているため、ドレイン
・ゲート間の絶縁耐量が大幅に向上する。一方ゲート絶
縁膜の大部分である中心部は薄いゲート絶縁膜を維持で
き、低いゲート電圧で作動できる。このばあい、LDD
拡散層(低濃度不純物領域)全体が厚い絶縁膜で覆われ
ていると、一層効果がある。
According to the present invention, since the gate insulating film is formed thick at the end portion of the gate electrode, the withstand voltage between the drain and the gate is greatly improved. On the other hand, the central part, which is the majority of the gate insulating film, can maintain a thin gate insulating film and operate at a low gate voltage. In this case, LDD
It is more effective if the entire diffusion layer (low-concentration impurity region) is covered with a thick insulating film.

【0011】また、ドレイン領域と接する部分の基板の
濃度を高くすることにより、ドレイン領域と基板間の絶
縁耐量が相対的に下げられ、大きな静電界が印加されて
も、ゲート絶縁膜での静電破壊が防止され、信頼性が向
上する。
Further, by increasing the concentration of the substrate in the portion in contact with the drain region, the dielectric strength between the drain region and the substrate is relatively lowered, and even if a large electrostatic field is applied, the static electricity in the gate insulating film is increased. Electric breakdown is prevented and reliability is improved.

【0012】さらに、厚い酸化膜は自己整合的に形成さ
れ、工程数を増やすことなく設けられる。
Further, the thick oxide film is formed in a self-aligned manner and provided without increasing the number of steps.

【0013】[0013]

【実施例】つぎに、本発明を添付図面に基づいて説明す
る。
The present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本発明の一実施例である微細MO
Sトランジスタの構造を示す断面図である。ゲート絶縁
膜2がゲート電極3の両端部において厚く形成され、こ
の厚い絶縁膜2aが低濃度不純物領域4、5を完全に覆
っている。これにより、ゲート絶縁膜2が薄くても、低
濃度不純物領域4、5はゲート電極3の電界強度の影響
を受けにくいので、不純物が電子を発生して基板側に電
流が流れることがない。このようにして、バンド間トン
ネル電流の発生を防ぐことができる。さらに、この厚く
形成された絶縁膜2aにより、ドレイン領域8と基板1
とのあいだの耐圧よりも、ゲート絶縁膜2、2aを介し
たドレイン領域8とゲート電極3とのあいだの耐圧の方
が大きくなる。なお、前述の厚い絶縁膜2aは低濃度不
純物領域を完全に覆うことが好ましいが、必ずしも完全
に覆っていなくても効果がある。
FIG. 1 shows a fine MO which is an embodiment of the present invention.
It is sectional drawing which shows the structure of an S transistor. The gate insulating film 2 is formed thick at both ends of the gate electrode 3, and the thick insulating film 2a completely covers the low concentration impurity regions 4 and 5. As a result, even if the gate insulating film 2 is thin, the low-concentration impurity regions 4 and 5 are not easily affected by the electric field strength of the gate electrode 3, so that the impurities do not generate electrons and a current does not flow to the substrate side. In this way, the generation of band-to-band tunnel current can be prevented. Further, the drain region 8 and the substrate 1 are formed by the thick insulating film 2a.
The breakdown voltage between the drain region 8 and the gate electrode 3 via the gate insulating films 2 and 2a is larger than the breakdown voltage between the gate insulating film 2 and the gate electrode 3. It is preferable that the thick insulating film 2a described above completely covers the low-concentration impurity region, but the thick insulating film 2a is effective even if it is not completely covered.

【0015】また、n++型のドレイン領域8とp型のS
i基板1とのあいだに中濃度のp+型の半導体領域10が
設けられている。このように、ドレイン領域8と接して
いる基板1の濃度を上げることにより、ドレイン領域8
と基板1間の耐圧が下る。その結果、一層ドレイン領域
8と基板1とのあいだの耐圧よりも、ゲート絶縁膜2a
を介したドレイン領域8とゲート電極3とのあいだの耐
圧の方が大きくなる。そのため、サージ電圧が印加され
ても、基板1側に逃げ、ゲート絶縁膜2が破壊されにく
い。
Further, the n ++ type drain region 8 and the p type S
A medium-concentration p + type semiconductor region 10 is provided between the i substrate 1. By increasing the concentration of the substrate 1 in contact with the drain region 8 in this manner, the drain region 8
The breakdown voltage between the substrate and the substrate 1 is reduced. As a result, rather than the breakdown voltage between the drain region 8 and the substrate 1, the gate insulating film 2a
The breakdown voltage between the drain region 8 and the gate electrode 3 via the gate electrode becomes larger. Therefore, even if a surge voltage is applied, it escapes to the substrate 1 side and the gate insulating film 2 is less likely to be destroyed.

【0016】以上のような構成にすることにより、出力
ピンにドレイン端子が直接結合されているばあいでも、
ゲート絶縁膜が破壊されることがない。しかも、従来の
ような、I/O部のゲート絶縁膜厚を厚くするためのマ
スク工程の増加や、チャネルストッパの濃度を高くする
ことによる狭チャネル効果の発生という問題も生じな
い。
With the above configuration, even when the drain terminal is directly coupled to the output pin,
The gate insulating film is not destroyed. Moreover, there is no problem of increasing the number of mask steps for increasing the gate insulating film thickness of the I / O portion and the narrow channel effect caused by increasing the concentration of the channel stopper, unlike the conventional case.

【0017】図2(a)に本発明の微細MOSトランジ
スタにおけるドレイン領域8と基板1とのあいだのI−
V特性Aおよびゲート絶縁膜を介したドレイン領域8と
ゲート電極3とのあいだのI−V特性Bをグラフで示
す。また比較例として、図2(b)に従来の微細MOS
トランジスタにおけるドレイン領域と基板とのあいだの
I−V特性Cおよびゲート絶縁膜を介したドレイン領域
とゲート電極とのあいだのI−V特性Dをグラフで示
す。グラフから、本発明においては、ドレイン領域と基
板とのあいだの耐圧V1 よりも、ゲート絶縁膜2を介し
たドレイン領域とゲート電極とのあいだの耐圧V2 の方
が大きく、ドレイン領域と基板とのあいだのソフトリー
クE(図2(b)参照)もないことがわかる。
FIG. 2A shows an I- between the drain region 8 and the substrate 1 in the fine MOS transistor of the present invention.
The V characteristic A and the IV characteristic B between the drain region 8 and the gate electrode 3 via the gate insulating film are shown in a graph. In addition, as a comparative example, FIG.
A graph shows an IV characteristic C between a drain region and a substrate and an IV characteristic D between a drain region and a gate electrode via a gate insulating film in a transistor. From the graph, in the present invention, the breakdown voltage V 2 between the drain region and the gate electrode via the gate insulating film 2 is larger than the breakdown voltage V 1 between the drain region and the substrate, and the drain region and the substrate are large. It can be seen that there is also no soft leak E (see FIG. 2B).

【0018】前述のようにSi基板1がp型のばあい
は、中濃度の半導体領域9もp+ 型であり、ドレイン領
域8は逆にn++型である。
When the Si substrate 1 is p-type as described above, the medium-concentration semiconductor region 9 is also p + -type, and the drain region 8 is conversely n ++ -type.

【0019】また、ゲート絶縁膜2はゲート電極3の両
端部において厚く形成されているが、必ずしも両端部が
厚くされる必要はない。すなわち、サージ電圧が印加さ
れ易い出力ピンと接続されるドレイン領域8側のみであ
ってもよい。
Although the gate insulating film 2 is formed thick at both ends of the gate electrode 3, it is not always necessary to make both ends thick. That is, it may be only on the drain region 8 side connected to the output pin to which the surge voltage is easily applied.

【0020】さらに、図1に示されるようにソース領域
7と基板1とのあいだにも、中濃度のp+ 型半導体領域
9が形成されてもよい。
Further, as shown in FIG. 1, a medium-concentration p + type semiconductor region 9 may be formed between the source region 7 and the substrate 1.

【0021】図1のX−X線およびY−Y線に沿う不純
物濃度のプロファイルを図3にグラフで示す。グラフ中
のC1 〜C4 は図1中のC1 〜C4 における位置の不純
物濃度を示している。グラフからわかるように電極をと
るドレインコンタクト孔19を通るX−X線に沿う不純物
濃度のプロファイルは、Y−Y線に沿うものよりも濃度
差の変化が少なく、(C4 濃度−C3 濃度)<(C1
度−C2 濃度)であり、しかもX−X線領域の方が、絶
対濃度が濃く、Y−Y線部よりX−X線部の方が耐圧が
低い。そのため、出力ピンを経由してドレイン領域8に
入力されるサージ電圧は基板1側に逃げ易く、ゲート絶
縁膜2の方が破壊されることはない。
FIG. 3 is a graph showing the profile of the impurity concentration along the line XX and the line YY in FIG. C 1 to C 4 in the graph indicate the impurity concentrations at the positions C 1 to C 4 in FIG. As can be seen from the graph, the profile of the impurity concentration along the line X-X passing through the drain contact hole 19 serving as an electrode shows a smaller change in the concentration difference than that along the line Y-Y, and thus (C 4 concentration-C 3 concentration ) <(C 1 concentration−C 2 concentration), the absolute concentration is higher in the XX line region, and the breakdown voltage is lower in the XX line portion than in the YY line portion. Therefore, the surge voltage input to the drain region 8 via the output pin easily escapes to the substrate 1 side, and the gate insulating film 2 is not destroyed.

【0022】なお、以上説明した実施例では、ゲート電
極3端部のゲート絶縁膜2aを厚くすることと、ドレイ
ン領域8およびソース領域7の不純物濃度を濃くして、
該領域の下に第2導電型である基板1と同じ導電型の中
濃度領域9、10を形成することの両方について説明した
が、両方同時に行われる必要はなく、いずれか一方でも
効果は大きい。
In the embodiment described above, the gate insulating film 2a at the end of the gate electrode 3 is thickened, and the impurity concentrations of the drain region 8 and the source region 7 are increased,
Both of forming the medium-concentration regions 9 and 10 of the same conductivity type as the substrate 1 of the second conductivity type under the region have been described, but it is not necessary to perform both at the same time, and one of them has a great effect. .

【0023】つぎに本発明のMOSトランジスタの製法
の一例について説明する。
Next, an example of a method for manufacturing the MOS transistor of the present invention will be described.

【0024】まず、通常の製造工程により、p型の半導
体基板1にチャネルストッパ11およびフィールド絶縁膜
12を形成し、ついでゲート絶縁膜2を設ける(図4
(a)参照)。
First, the channel stopper 11 and the field insulating film are formed on the p-type semiconductor substrate 1 by a normal manufacturing process.
12 is formed, and then the gate insulating film 2 is provided (see FIG. 4).
(See (a)).

【0025】つぎに、不純物としてリン(P)をドープ
したポリシリコン膜13を減圧CVD法により堆積し、熱
酸化法によりその上に薄いポリシリコンの酸化膜14を形
成する。さらにその上にチッ化ケイ素膜15をパターニン
グする(図4(b)参照)。
Next, a polysilicon film 13 doped with phosphorus (P) as an impurity is deposited by a low pressure CVD method, and a thin polysilicon oxide film 14 is formed thereon by a thermal oxidation method. Further thereon, a silicon nitride film 15 is patterned (see FIG. 4B).

【0026】つぎに、チッ化ケイ素膜15をマスクとし
て、反応性イオンエッチングによりゲート電極3を形成
する。そしてこのゲート電極3をマスクとしてリンをイ
オン注入することにより低濃度不純物領域4、5を形成
する(図4(c)参照)。
Next, the gate electrode 3 is formed by reactive ion etching using the silicon nitride film 15 as a mask. Then, phosphorus is ion-implanted using the gate electrode 3 as a mask to form low-concentration impurity regions 4 and 5 (see FIG. 4C).

【0027】この状態の基板を約900 ℃で約15分間酸化
すると、ポリシリコンは単結晶シリコンより酸化し易い
ため、ゲート電極3の側面が酸化する。チッ化ケイ素膜
15は酸化防止膜になるため、表面側は余り酸化が進ま
ず、図4(d)に示すように、基板1側が広く酸化さ
れ、ゲートエッジ部に厚い酸化膜2aが形成される。そ
して熱リン酸を用いてチッ化ケイ素膜15を除去する。ひ
き続き、SiH4 ガスとN2 Oガスを導入したCVD法
(820 〜850 ℃、30〜40分)などにより酸化ケイ素(S
iO2 )を全面に堆積し、RIE法などによりエッチバ
ックを行い、サイドウォール16を形成する(図4(d)
参照)。
When the substrate in this state is oxidized at about 900 ° C. for about 15 minutes, since polysilicon is more easily oxidized than single crystal silicon, the side surface of the gate electrode 3 is oxidized. Silicon nitride film
Since 15 is an antioxidant film, the surface side is not oxidized so much, and as shown in FIG. 4D, the substrate 1 side is widely oxidized and a thick oxide film 2a is formed at the gate edge portion. Then, the silicon nitride film 15 is removed using hot phosphoric acid. Subsequently, silicon oxide (S) was formed by a CVD method (820 to 850 ° C., 30 to 40 minutes) in which SiH 4 gas and N 2 O gas were introduced.
iO 2 ) is deposited on the entire surface and etched back by the RIE method or the like to form the sidewall 16 (FIG. 4D).
reference).

【0028】サイドウォール16が設けられたゲート電極
3をマスクとして、ヒ素(As)をイオン打込みして高
濃度のn型のソース領域7およびドレイン領域8を形成
する(図4(d)参照)。
Arsenic (As) is ion-implanted using the gate electrode 3 provided with the sidewalls 16 as a mask to form a high-concentration n-type source region 7 and drain region 8 (see FIG. 4D). .

【0029】つぎに、BPSG(ボロン・リン・シリケ
ートガラス)膜17を減圧CVD法により全面に堆積した
あと、コンタクト孔18、19を形成する(図4(e)参
照)。
Next, a BPSG (boron phosphorus silicate glass) film 17 is deposited on the entire surface by a low pressure CVD method, and then contact holes 18 and 19 are formed (see FIG. 4E).

【0030】コンタクト孔18、19を通して、まずホウ素
(B)をイオン打込みする。ホウ素イオンは比較的深く
打ち込まれ易くn+ 型のソース領域7、ドレイン領域8
をある程度中和するが、その下側に半導体基板内部にp
+ の中濃度不純物領域9、10が形成される。ついで、ヒ
素をイオン打込みして前記ホウ素イオンで中和された部
分を再度n型にすると共に、さらに高濃度のn++型のソ
ース領域7、ドレイン領域8を形成して、図1に示すよ
うな構造のMOSトランジスタが完成される。
First, boron (B) is ion-implanted through the contact holes 18 and 19. Boron ions are easily implanted relatively deeply, and n + type source region 7 and drain region 8 are formed.
Is neutralized to some extent, but p
+ Medium-concentration impurity regions 9 and 10 are formed. Then, arsenic is ion-implanted to make the portion neutralized with the boron ions into the n-type again, and the n ++ -type source region 7 and the drain region 8 of higher concentration are formed, as shown in FIG. A MOS transistor having such a structure is completed.

【0031】[0031]

【発明の効果】本発明によれば、ゲート絶縁膜の膜厚が
ゲート電極の端部において厚く形成されるので、バンド
間トンネル電流の発生を防止できると共に、ゲート絶縁
膜の絶縁耐量も向上する。
According to the present invention, since the gate insulating film is formed thick at the end portion of the gate electrode, it is possible to prevent generation of band-to-band tunnel current and improve the dielectric strength of the gate insulating film. .

【0032】また、ドレイン領域と接する部分の基板の
濃度を高くすることにより、ドレイン領域と基板とのあ
いだの耐圧が下がり、一層ゲート絶縁膜2を介したドレ
イン領域とゲート電極とのあいだの耐圧の方が大きくな
り、ゲート破壊を防ぐことができる。
Further, by increasing the concentration of the substrate in the portion which is in contact with the drain region, the breakdown voltage between the drain region and the substrate is lowered, and the breakdown voltage between the drain region and the gate electrode through the one-layer gate insulating film 2 is lowered. Is larger, and gate breakdown can be prevented.

【0033】さらに本発明によれば、マスク工程を増や
すことなくゲート絶縁耐量を向上させることができ、安
価で、サージ電圧などに耐えうる高性能のMOSトラン
ジスタをうることができる。
Further, according to the present invention, it is possible to obtain a high-performance MOS transistor which can improve the gate dielectric strength without increasing the number of masking steps, is inexpensive, and can withstand a surge voltage or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のMOSトランジスタの構造を示す断面
説明図である。
FIG. 1 is an explanatory cross-sectional view showing the structure of a MOS transistor of the present invention.

【図2】MOSトランジスタのドレイン領域と基板との
あいだのI−V特性およびゲート絶縁膜を介したドレイ
ン領域とゲート電極とのあいだのI−V特性を示す図
で、(a)が本発明によるもの、(b)が従来のトラン
ジスタによるものである。
FIG. 2 is a diagram showing an IV characteristic between a drain region of a MOS transistor and a substrate and an IV characteristic between a drain region and a gate electrode via a gate insulating film. (B) is based on a conventional transistor.

【図3】図1のX−X線およびY−Y線に沿う基板表面
から基板内部への不純物濃度のプロファイルを示す図で
ある。
3 is a diagram showing a profile of an impurity concentration from the substrate surface to the inside of the substrate along the line XX and the line YY in FIG.

【図4】本発明のMOSトランジスタの製造工程を示す
説明図である。
FIG. 4 is an explanatory view showing the manufacturing process of the MOS transistor of the present invention.

【図5】従来のLDD構造のMOSトランジスタの構造
を示す断面説明図である。
FIG. 5 is a cross-sectional explanatory view showing the structure of a conventional LDD structure MOS transistor.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 ゲート絶縁膜 2a ゲート絶縁膜の厚い部分 3 ゲート電極 4、5 低濃度不純物領域 7 ソース領域 8 ドレイン領域 9、10 中濃度の半導体領域 1 semiconductor substrate 2 gate insulating film 2a thick part of gate insulating film 3 gate electrode 4, 5 low concentration impurity region 7 source region 8 drain region 9, 10 medium concentration semiconductor region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にゲート絶縁膜を介してゲ
ート電極が形成され、該ゲート電極の両側の半導体基板
にソース領域とドレイン領域が形成され、少なくともド
レイン領域のゲート領域側が低濃度不純物領域とされて
いるMOSトランジスタであって、前記ゲート絶縁膜が
前記ゲート電極の少なくともドレイン側端部において、
他の部分よりも厚く形成されてなるMOSトランジス
タ。
1. A gate electrode is formed on a semiconductor substrate via a gate insulating film, a source region and a drain region are formed on the semiconductor substrate on both sides of the gate electrode, and at least the drain region on the gate region side is a low concentration impurity region. And the gate insulating film has at least a drain side end of the gate electrode,
A MOS transistor that is formed thicker than other parts.
【請求項2】 前記ゲート絶縁膜の厚く形成された部分
が前記低濃度不純物領域の全表面を覆うように形成され
てなる請求項1記載のMOSトランジスタ。
2. The MOS transistor according to claim 1, wherein the thickly formed portion of the gate insulating film is formed so as to cover the entire surface of the low concentration impurity region.
【請求項3】 半導体基板上にゲート絶縁膜を介してゲ
ート電極が形成され、該ゲート電極の両側の半導体基板
にソース領域とドレイン領域が形成され、少なくともド
レイン領域のゲート領域側が低濃度不純物領域とされて
なるMOSトランジスタであって、前記ドレイン領域の
コンタクト孔直下に高濃度の第1導電型の半導体領域が
形成され、その下に中濃度の第2導電型の半導体領域が
形成され、その下側に低濃度の第2導電型の半導体基板
が配されてなるMOSトランジスタ。
3. A gate electrode is formed on a semiconductor substrate via a gate insulating film, a source region and a drain region are formed on the semiconductor substrate on both sides of the gate electrode, and at least the gate region side of the drain region is a low concentration impurity region. A high-concentration first-conductivity-type semiconductor region is formed immediately below the contact hole in the drain region, and a medium-concentration second-conductivity-type semiconductor region is formed thereunder. A MOS transistor in which a low-concentration second conductivity type semiconductor substrate is arranged on the lower side.
JP25001892A 1992-09-18 1992-09-18 Mos transistor Pending JPH06104429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25001892A JPH06104429A (en) 1992-09-18 1992-09-18 Mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25001892A JPH06104429A (en) 1992-09-18 1992-09-18 Mos transistor

Publications (1)

Publication Number Publication Date
JPH06104429A true JPH06104429A (en) 1994-04-15

Family

ID=17201625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25001892A Pending JPH06104429A (en) 1992-09-18 1992-09-18 Mos transistor

Country Status (1)

Country Link
JP (1) JPH06104429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305299A (en) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2004031804A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2008084996A (en) * 2006-09-26 2008-04-10 Sharp Corp High breakdown voltage transistor, semiconductor device using the same, and manufacturing method of high breakdown voltage transistor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53979A (en) * 1976-06-25 1978-01-07 Hitachi Ltd Preparation of semiconductor device
JPS6064472A (en) * 1983-09-19 1985-04-13 Toshiba Corp Semiconductor device
JPS61226970A (en) * 1985-04-01 1986-10-08 Matsushita Electronics Corp Semiconductor device
JPS62160770A (en) * 1986-01-09 1987-07-16 Toshiba Corp Insulated gate type field effect transistor
JPS62183162A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPS62290177A (en) * 1986-06-09 1987-12-17 Toshiba Corp Manufacture of semiconductor device
JPS6428860A (en) * 1987-07-23 1989-01-31 Nec Corp Semiconductor device and manufacture thereof
JPH02266533A (en) * 1989-04-07 1990-10-31 Sony Corp Manufacture of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53979A (en) * 1976-06-25 1978-01-07 Hitachi Ltd Preparation of semiconductor device
JPS6064472A (en) * 1983-09-19 1985-04-13 Toshiba Corp Semiconductor device
JPS61226970A (en) * 1985-04-01 1986-10-08 Matsushita Electronics Corp Semiconductor device
JPS62160770A (en) * 1986-01-09 1987-07-16 Toshiba Corp Insulated gate type field effect transistor
JPS62183162A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPS62290177A (en) * 1986-06-09 1987-12-17 Toshiba Corp Manufacture of semiconductor device
JPS6428860A (en) * 1987-07-23 1989-01-31 Nec Corp Semiconductor device and manufacture thereof
JPH02266533A (en) * 1989-04-07 1990-10-31 Sony Corp Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305299A (en) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2004031804A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP4677166B2 (en) * 2002-06-27 2011-04-27 三洋電機株式会社 Semiconductor device and manufacturing method thereof
JP2008084996A (en) * 2006-09-26 2008-04-10 Sharp Corp High breakdown voltage transistor, semiconductor device using the same, and manufacturing method of high breakdown voltage transistor
JP4584222B2 (en) * 2006-09-26 2010-11-17 シャープ株式会社 Manufacturing method of high voltage transistor
US7843020B2 (en) 2006-09-26 2010-11-30 Sharp Kabushiki Kaisha High withstand voltage transistor and manufacturing method thereof, and semiconductor device adopting high withstand voltage transistor

Similar Documents

Publication Publication Date Title
US5714393A (en) Diode-connected semiconductor device and method of manufacture
US7528442B2 (en) Semiconductor device and manufacturing method thereof
KR100204805B1 (en) Method for fabricating transistor
JPH11121739A (en) Semiconductor device and manufacture thereof
US6548363B1 (en) Method to reduce the gate induced drain leakage current in CMOS devices
KR100277911B1 (en) Semiconductor device manufacturing method
EP0905789A1 (en) Semiconductor device having soi structure and method for manufacturing the device
US5623154A (en) Semiconductor device having triple diffusion
US5512769A (en) High breakdown voltage semiconductor device and method of fabricating the same
KR100331844B1 (en) Complementary metal oxide semiconductor device
KR100342804B1 (en) Semiconductor device and method of manufacturing the same
JPH06104429A (en) Mos transistor
US6709936B1 (en) Narrow high performance MOSFET device design
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
KR950001152B1 (en) Semiconductor device and manufacturing method thereof
JP3320476B2 (en) Method for manufacturing semiconductor device
KR940010543B1 (en) Fabricating method of mos transistor
KR960013947B1 (en) Mos transistor
KR940004415B1 (en) Making method and structure of mosfet
KR100311177B1 (en) A method of fabricating semiconductor device
KR100188008B1 (en) Method of manufacturing cmos semiconductor device
KR100333356B1 (en) A method of fabricating a semiconductor device
KR100268924B1 (en) method for manufacturing semiconductor device
JPH08186252A (en) Semiconductor device
KR100221620B1 (en) Semiconductor device and the manufacturing method thereof