JPH04133436A - Mos type semiconductor device and manufacture thereof - Google Patents

Mos type semiconductor device and manufacture thereof

Info

Publication number
JPH04133436A
JPH04133436A JP25803990A JP25803990A JPH04133436A JP H04133436 A JPH04133436 A JP H04133436A JP 25803990 A JP25803990 A JP 25803990A JP 25803990 A JP25803990 A JP 25803990A JP H04133436 A JPH04133436 A JP H04133436A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
source
conductivity type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25803990A
Other languages
Japanese (ja)
Other versions
JP2806028B2 (en
Inventor
Shinji Odanaka
紳二 小田中
Kazumi Kurimoto
栗本 一実
Kikuyo Ooe
大江 きく代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2258039A priority Critical patent/JP2806028B2/en
Publication of JPH04133436A publication Critical patent/JPH04133436A/en
Application granted granted Critical
Publication of JP2806028B2 publication Critical patent/JP2806028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title MOS type semiconductor device having the characteristics meeting the requirements of restraining the short channel effect while enhancing the resistance to deterioration in hot electrons in the miniaturization step by a method wherein the first conductivity type high concentration layers are formed on the positions beneath the second conductivity type second source/drain layers formed to be overlapped with a gate electrode. CONSTITUTION:The title MOS type semiconductor device is provided with the first conductivity type semiconductor substrate 1, a gate insulating film selectively formed on the semiconductor substrate 1, a gate electrode 7 formed on the gate insulating film 6, the second conductivity type first source/drain layer 4 formed in the semiconductor substrate 1 excluding said substrate 1 beneath the gate electrode 7, the second source/drain layers 5 shallower than the first source/drain layer 4 and formed in the part of the semiconductor substrate 1 beneath the gate electrode 7, the first conductivity type high concentration layers 2 deeper than the second source/drain layers 5 and having the maximum concentration value on the shallower position than the bottom part of the first source/drain layer 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明iLMOS型半導体装置の微細化を進める上で顕
在化する短チヤネル効果とホットエレクトロンによって
引き起こされるデバイス特性劣化を独立したデバイス構
造要素によって抑制し高信頼性をもたらす高密度なMO
S型半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention aims to suppress deterioration of device characteristics caused by short channel effects and hot electrons as the iLMOS type semiconductor device is miniaturized by independent device structural elements. High-density MO for reliability
The present invention relates to an S-type semiconductor device and a method for manufacturing the same.

従来の技術 超集積回路装置いわゆるVLS Iにおいて、低消費電
力ならびに高集積化の要請からMOS型集積回路装置の
重要性が増していも しかしなが収微細化に伴いサブス
レッシュホルド特性が劣化し待機時のリーク電流につな
が4 いわゆる短チヤネル効果やドレイン近傍の高電界
によって引き起こされるホットエレクトロン誘導デバイ
ス特性劣化が微細化に重大な問題となってきている。
Conventional Technology Ultra-integrated circuit devices In so-called VLSI, MOS integrated circuit devices have become increasingly important due to the demand for low power consumption and high integration. However, with miniaturization, subthreshold characteristics deteriorate and The deterioration of hot electron-induced device characteristics caused by the so-called short channel effect and the high electric field near the drain is becoming a serious problem with miniaturization.

そこで、この解決のために種種の構造ならびに製造プロ
セスが提案されてい4 以下(I)短チャネル効果抑飢
 ならびに(II)ホットエレクトロン劣化抑制の2点
から説明する。
Therefore, various structures and manufacturing processes have been proposed to solve this problem, and will be explained below from two points: (I) suppression of short channel effect and (II) suppression of hot electron degradation.

例えば アイ・イー・イー・イー 1982 アイ・イ
ー・デイ・エム(IEEE、  1982  IEDM
)Technical  Digest  p、718
−721にS、Ogura等によって提案された構造を
第3図に示す。
For example, IEE 1982 IEDM (IEEE, 1982 IEDM)
) Technical Digest p, 718
FIG. 3 shows the structure proposed by S., Ogura et al.

同図において、 31は低濃度基板(p型)、 32は
高濃度p型不純物@  33はしきい値電圧制御用p型
不純物凰 34は高濃度ソース/ドレインlj  35
は低濃度ソース/ドレイン!、  36はゲート絶縁I
ll、  37はゲート電極 38はアルミ配線になっ
ていも この構造で(よ ゲート電極37をマスクにして2重イ
オン注入によって自己整合的に 低濃度ソース/ドレイ
ン層35および高濃度p型不純物層32を形成し ゲー
ト電極37と側壁酸化膜38をマスクにして自己整合的
に高濃度ソース/ドレイン層34を形成している。
In the figure, 31 is a low concentration substrate (p type), 32 is a high concentration p type impurity @ 33 is a p type impurity for threshold voltage control, 34 is a high concentration source/drain lj 35
is a low concentration source/drain! , 36 is gate insulation I
ll, 37 is a gate electrode, and 38 is an aluminum wiring, but this structure is maintained (Yo) Using the gate electrode 37 as a mask, double ion implantation is performed in a self-aligned manner to form a low concentration source/drain layer 35 and a high concentration p-type impurity layer 32. A highly doped source/drain layer 34 is formed in a self-aligned manner using the gate electrode 37 and sidewall oxide film 38 as a mask.

この低濃度ソース/ドレイン層35によって、ドレイン
近傍の高電界を緩和し ホットエレクトロン劣化耐性を
向上させるととも+’w  高濃度p型不純物層32に
よってドレイン層からのポテンシャルの伸びを抑え ソ
ース/ドレインと基板間の寄生容量を増大させることな
く短チヤネル効果を抑制している。
This low-concentration source/drain layer 35 alleviates the high electric field near the drain and improves hot electron degradation resistance, and the +'w high-concentration p-type impurity layer 32 suppresses potential growth from the drain layer source/drain. This suppresses the short channel effect without increasing the parasitic capacitance between the substrate and the substrate.

また1988  VLSIシンポジウムTechnic
al  Digest  p、73−74にC,S、O
h等によって提案された構造を第4図(a)〜(C)に
示す。
Also 1988 VLSI Symposium Technic
C, S, O in al Digest p, 73-74
The structure proposed by H. et al. is shown in FIGS. 4(a) to 4(C).

同図において、 41は低濃度基板(p型)、42はり
、l−0,15umの深さをもつ浅い領域と0.15−
0,2 umの深さをもつ深い領域とからなるソース/
ドレイン慰 43はゲート絶縁膜44はゲート電極 4
5はL−字型側壁酸化膜46は側壁窒化!  47はし
きい値電圧制御用p型不純物層になっていも この構造
で(友 側壁窒化膜46によってL−字型側壁酸化膜4
5を形成しく同図(b))、その後側壁窒化膜46を除
去した抵 ゲート電極44とL−字型側壁酸化膜バタン
45をマスクとして、−度のイオン注入によって0゜1
−0.15umの深さをもつ浅い領域と0.15−0.
2u、rnの深さをもつ深い領域とからなるソース/ド
レイン層42を形成しく同図(C))、浅いソース/ド
レイン層部が短チヤネル効果抑制に寄与する。
In the figure, 41 is a low concentration substrate (p type), 42 beams, a shallow region with a depth of l-0, 15 um, and a shallow region with a depth of l-0, 15 um.
A source consisting of a deep region with a depth of 0.2 um/
The drain electrode 43 is the gate insulating film 44, and the gate electrode 4
5, the L-shaped sidewall oxide film 46 is sidewall nitrided! Even if 47 becomes a p-type impurity layer for threshold voltage control, in this structure (the sidewall nitride film 46 forms an L-shaped sidewall oxide film 4).
After that, using the resistive gate electrode 44 from which the sidewall nitride film 46 was removed and the L-shaped sidewall oxide film button 45 as a mask, ion implantation was performed at -degrees to 0°1.
A shallow region with a depth of -0.15 um and a 0.15-0.
A source/drain layer 42 consisting of a deep region having a depth of 2u and rn is formed (FIG. 2(C)), and the shallow source/drain layer portion contributes to suppressing the short channel effect.

以上のように大きく2つの提案がなされている。As mentioned above, two major proposals have been made.

発明が解決しようとする課題 しかしなが収 これらの構造ではやはり十分ではな(1
o  第3図に示した構造では 以下の重大な問題点が
ある。高濃度p型不純物層32と低濃度ソース/ドレイ
ン層35(よ ゲート電極37をマスクにして自己整合
的に形成するた嵌 高濃度p型不純物層32は高濃度ソ
ース/ドレイン層34と低濃度ソース/ドレイン層35
を取り囲むように形成された構造になっている。このた
数 短チヤネル効果抑制には効果的ではある力交 低濃
度ソース/ドレイン層35の側面にも高濃度p型不純物
層が形成されているた数 ドレイン近傍における電界を
強くし ホットエレクトロン劣化耐性は著しく低下すも また 第4図(c)に示される構造では以下の問題点か
あム L−字型側壁酸化膜パターン45をマスクとして
ソース/ドレイン層を形成しているたA  O,1−0
,15umと浅い領域をもつソース/ドレイン層42を
備えた構造になっている。
However, these structures are still not sufficient to solve the problem that the invention aims to solve (1
o The structure shown in Figure 3 has the following serious problems. The high concentration p-type impurity layer 32 and the low concentration source/drain layer 35 are formed in a self-aligned manner using the gate electrode 37 as a mask. Source/drain layer 35
It has a structure that surrounds it. This number is effective in suppressing the short channel effect. A high concentration p-type impurity layer is also formed on the side surface of the low concentration source/drain layer 35. This number strengthens the electric field near the drain and makes it resistant to hot electron degradation. However, the structure shown in FIG. 4(c) has the following problems. -0
, 15 um, and a source/drain layer 42 having a shallow region.

このた数 短チヤネル効果抑制効果はある程度期待でき
る力(ホットエレクトロン劣化耐性向上を大きく期待す
ることはできな賎 その理由(よ(1)ソース/ドレイ
ン層42の浅い領域の不純物層の濃度値は1.0E19
/am’程度しか低下せずホットエレクトロン劣化耐性
を大きく向上させな(〜 (2)ゲート電極44とL−字型側壁酸化膜パターン4
5をマスクにしてソース/ドレイン層42を形成してい
るた数 ゲート電極44とソース/ドレイン層42のオ
ーバーラツプがわずかしか形成されず、ホットエレクト
ロン劣化耐性を大きく向上させなl、′Y。
The effect of suppressing the short channel effect can be expected to some extent (it is not possible to expect much improvement in resistance to hot electron degradation).The reason (1) The concentration value of the impurity layer in the shallow region of the source/drain layer 42 is 1.0E19
/am' and does not significantly improve hot electron degradation resistance (~ (2) Gate electrode 44 and L-shaped sidewall oxide film pattern 4
Since the source/drain layer 42 is formed using the gate electrode 44 as a mask, only a slight overlap between the gate electrode 44 and the source/drain layer 42 is formed, which greatly improves hot electron degradation resistance.

(3)しきい値電圧制御用p型不純物層47以外に基板
と同導電型の高濃度層がないた敦 微細化するにつれて
短チヤネル効果が顕著になる。
(3) There is no high-concentration layer of the same conductivity type as the substrate other than the p-type impurity layer 47 for threshold voltage control. As the device becomes finer, the short channel effect becomes more noticeable.

つまり、従来構造では微細化に際し 短チヤネル効果抑
制とホットエレクトロン劣化耐性向上をともに満足する
特性を示すものではな1%  したがって、本発明は 
このような従来の構造が有する問題点に鑑みてなされた
もので、新規な構造のMOS型半導体装置及び全く新し
いプロセスを用いたその製造方法であ4 課題を解決するための手段 本発明は 第1導電型の半導体基板と、この半導体基板
上に選択的に形成されたゲート絶縁膜と、このゲート絶
縁膜上に形成されたゲート電極と、このゲート電極直下
の第1導電型の半導体基板の外の半導体基板内に形成さ
れた第2導電型の第1のソース/ドレイン層と、この第
1のソース/ドレイン層よりも浅く、かつゲート電極直
下の半導体基板の一部まで形成された第2のソース/ド
レイン層と、この第2のソース/ドレイン層直下でかつ
前記第1のソース/ドレイン層の側部に 前記第2のソ
ース/ドレイン層よりも深く、前記第1ソース/ドレイ
ン層低部よりも浅い位置に最大濃度値をもつ第1導電型
の高濃度層とを備えたMOS型半導体装置である。
In other words, the conventional structure does not exhibit characteristics that satisfy both short channel effect suppression and improvement of hot electron degradation resistance during miniaturization.
The present invention has been made in view of the problems of the conventional structure, and is a MOS type semiconductor device with a new structure and a manufacturing method thereof using a completely new process. A semiconductor substrate of a first conductivity type, a gate insulating film selectively formed on this semiconductor substrate, a gate electrode formed on this gate insulating film, and a semiconductor substrate of a first conductivity type directly below this gate electrode. A first source/drain layer of a second conductivity type formed in the outer semiconductor substrate, and a second source/drain layer formed shallower than the first source/drain layer and extending to a part of the semiconductor substrate directly under the gate electrode. a second source/drain layer, and a first source/drain layer that is deeper than the second source/drain layer, immediately below the second source/drain layer and on a side of the first source/drain layer. This is a MOS type semiconductor device including a first conductivity type high concentration layer having a maximum concentration value at a position shallower than the lower portion.

また本発明は上記MOS型半導体装置を以下の方法によ
って製造すム 即ち本発明は 第1導電型の半導体基板
上にゲート絶縁膜を介してゲート電極を形成した後、前
記ゲート電極をマスクにして第2導電型の第2のソース
/ドレイン層を形成する工程と、前記半導体基板全面に
第1の絶縁膜を堆積せしめる工程と、前記第1の絶縁膜
全面に第2の絶縁膜を堆積せしめる工程と、前記第2の
絶縁膜のドライエツチングをおこなって前記第1の絶縁
膜の側面を覆う如く第2の絶縁膜パターンを自己整合的
に形成した後、前記ゲート電極とこのゲート電極の側面
を覆う第1の絶縁膜および第2の絶縁膜パターンをマス
クとして第1のソース/ドレイン層を形成する工程と、
前記第2の絶縁膜パターンをエツチング除去した後、前
記ゲート電極とこのゲート電極の側面を覆う第1の絶縁
膜をマスクとして第1導電型の不純物を導入して高濃度
層を形成する工程を備えたMOS型半導体装置の製造方
法 または第1導電型の半導体基板上にゲート絶縁膜を
介してゲート電極を形成した後、前記ゲート電極をマス
クにして第2導電型の第2のソース/ドレイン層を形成
する工程と、前記半導体基板全面に絶縁膜を堆積せし取
 前記ゲート電極とこのゲート電極の側面を覆う絶縁膜
をマスクとして第1導電型の不純物を導入して高濃度層
を形成する工程と、  前記半導体基板全面に絶縁膜を
再び堆積せし嵌 この絶縁膜のドライエツチングをおこ
なって前記ゲート電極の側面を覆うように絶縁膜パター
ンを自己整合的に形成した後、前記ゲート電極とこのゲ
ート電極の側面を覆う絶縁膜パターンをマスクとして第
1のソース/ドレイン層を形成する工程を備えたMOS
型半導体装置の製造方法を用いる。
The present invention also provides a method for manufacturing the above-mentioned MOS type semiconductor device by the following method. Namely, the present invention provides a method for manufacturing a MOS type semiconductor device by forming a gate electrode on a semiconductor substrate of a first conductivity type via a gate insulating film, and then using the gate electrode as a mask. a step of forming a second source/drain layer of a second conductivity type; a step of depositing a first insulating film over the entire surface of the semiconductor substrate; and a step of depositing a second insulating film over the entire surface of the first insulating film. After dry etching the second insulating film to form a second insulating film pattern in a self-aligned manner so as to cover the side surface of the first insulating film, the gate electrode and the side surface of the gate electrode are etched. forming a first source/drain layer using the first insulating film and the second insulating film pattern as masks;
After removing the second insulating film pattern by etching, a step of introducing impurities of a first conductivity type using the gate electrode and the first insulating film covering the side surfaces of the gate electrode as a mask to form a highly concentrated layer is performed. Alternatively, a gate electrode is formed on a semiconductor substrate of a first conductivity type via a gate insulating film, and then a second source/drain of a second conductivity type is formed using the gate electrode as a mask. A step of forming a layer and depositing an insulating film over the entire surface of the semiconductor substrate. Using the gate electrode and the insulating film covering the side surfaces of the gate electrode as a mask, impurities of a first conductivity type are introduced to form a highly concentrated layer. re-depositing and fitting an insulating film over the entire surface of the semiconductor substrate; dry etching the insulating film to form an insulating film pattern in a self-aligned manner so as to cover the side surfaces of the gate electrode; A MOS comprising a step of forming a first source/drain layer using an insulating film pattern covering the side surface of the gate electrode as a mask.
A method for manufacturing a type semiconductor device is used.

作用 本発明のMOS型半導体装置(よ 第1導電型の半導体
基板上二 第2導電型の第1のソース/ドレイン層をゲ
ート電極とオーバーラツプして形成り第2導電型の第2
のソース/ドレイン層を第1のソース/ドレイン層の外
側L  かつ第1のソース/ドレイン層よりも深く形成
したソース/ドレイン構造において、第1導電型の高濃
度層を第1のソース/ドレイン層の側部で、第2のソー
ス/ドレイン層直下の位置に形成するたム 第2のラス
/ドレイ2層の側部にしきい値電圧制御用の低濃度な第
1導電型不純物層を形成することができも このた数 
短チヤネル効果抑制用第1導電型の高濃度層がホットエ
レクトロン劣化耐性の低下を引き起こすことなく、短チ
ヤネル効果を抑制して微細化が容易にな4 また本発明の製造方法により、極めて高信頼な高密度化
が可能となる。すなわ板 ゲート電極をマスクとして低
濃度で浅いソース/ドレイン層を、ゲート電極と第1の
絶縁層をマスクとして基板と同導電型の高濃度不純物層
を、ゲート電極と第1の絶縁層と第2の絶縁層をマスク
にして高濃度で深いソース/ドレイン層が形成されてい
るた敦基板と同導電型の高濃度不純物層をドレイン近傍
で高電界を引き起こすことなく確定することができも 実施例 以下、本発明の実施例を第1図と第2図に基づいて説明
すも 第1図においては 1は低濃度基板(p型)、2は高濃
度p型不純物凰 3はしきい値電圧制御用p型不純物#
 4は高濃度ソース/ドレイン恩5は低濃度で浅いソー
ス/ドレイン胤 6はゲト絶縁焦 7はゲート電極 8
はアルミ配線であム この第1図で特徴的なことは 高濃度p型不純物層2が
低濃度で浅いソース/ドレイン層5直下のみに形成され
ており、低濃度で浅いソース/ドレイン層の側部に し
きい値電圧制御用p型不純物層3が形成されていること
である。
Operation of the MOS type semiconductor device of the present invention (i.e., a first source/drain layer of a second conductivity type is formed on a semiconductor substrate of a first conductivity type, and a second source/drain layer of a second conductivity type is formed so as to overlap a gate electrode.
In a source/drain structure in which a source/drain layer is formed outside the first source/drain layer and deeper than the first source/drain layer, a highly doped layer of the first conductivity type is formed between the first source/drain layer and the first source/drain layer. A low concentration impurity layer of the first conductivity type for threshold voltage control is formed on the side of the second layer/drain layer at a position directly below the second source/drain layer. This number can also be
The high concentration layer of the first conductivity type for suppressing the short channel effect suppresses the short channel effect and facilitates miniaturization without causing a decrease in hot electron degradation resistance. This makes it possible to achieve higher density. In other words, a shallow source/drain layer with a low concentration is formed using the gate electrode as a mask, a highly concentrated impurity layer of the same conductivity type as the substrate is formed using the gate electrode and the first insulating layer as a mask, and a layer with a high concentration of impurities of the same conductivity type as the substrate is formed with the gate electrode and the first insulating layer. Using the second insulating layer as a mask, it is possible to define a highly concentrated impurity layer of the same conductivity type as the Atsushi substrate on which a highly concentrated and deep source/drain layer is formed without causing a high electric field near the drain. EXAMPLES Below, examples of the present invention will be explained based on FIGS. 1 and 2. In FIG. 1, 1 is a low concentration substrate (p type), 2 is a high concentration p type impurity layer, and 3 is a threshold. P-type impurity for value voltage control #
4 is a high concentration source/drain layer 5 is a low concentration and shallow source/drain layer 6 is a gate insulation layer 7 is a gate electrode 8
is an aluminum wiring. What is distinctive about this figure is that the high concentration p-type impurity layer 2 is formed only directly under the low concentration and shallow source/drain layer 5; A p-type impurity layer 3 for threshold voltage control is formed on the side.

このたべ 低濃度で浅いソース/ドレイン層5の側部端
において高電界が発生することがなく、ホットエレクト
ロン劣化耐性を著しく向上せしめることかできも また
 高濃度p型不純物層2の濃度値をホットエレクトロン
劣化耐性を低下させることなく高くすることができるた
数 短チヤネル効果を著しく抑制することが可能であム
 つまり、このような構造によってはじめてホットエレ
クトロン劣化耐性を向上させなが収 短チヤネル効果を
著しく抑制することが可能である。
In this case, a high electric field is not generated at the side edges of the low-concentration, shallow source/drain layer 5, and the resistance to hot electron degradation can be significantly improved. It is possible to significantly suppress the short channel effect without reducing the resistance to hot electron degradation.In other words, with this structure, the resistance to hot electron degradation can be improved while suppressing the short channel effect. It is possible to suppress it significantly.

次に 第2図(a)〜(d)を用いて、その製造方法の
一例についてそのポイントとなる点を説明する。
Next, the main points of an example of the manufacturing method will be explained using FIGS. 2(a) to 2(d).

まず、第2図(a)に示すようヘ しきい値電圧制御用
p型不純物層3を表面上に有した低濃度基板(p−型)
1に選択的にゲート絶縁膜6、ゲート電極7を形成する
。その後、ゲート電極7をマスクにして、砒素を加速電
圧40KeV、 ドーズ量4.0E13/cm2でイオ
ン注入して、ソース/ドレイン層5を形成する。このと
き、ソース/ドレイン層5は低濃度で浅く形成でき、し
かL低濃度で浅いソース/ドレイン層5はゲート電極7
と完全にオーバーラツプする。
First, as shown in FIG. 2(a), a low concentration substrate (p-type) has a p-type impurity layer 3 for threshold voltage control on its surface.
1, a gate insulating film 6 and a gate electrode 7 are selectively formed. Thereafter, using the gate electrode 7 as a mask, arsenic ions are implanted at an acceleration voltage of 40 KeV and a dose of 4.0E13/cm2 to form the source/drain layer 5. At this time, the source/drain layer 5 can be formed shallowly with a low concentration.
completely overlap.

次(へ 第2図(b)に示すように 基板全面にCVD
法で酸化膜9aと窒化膜10aを堆積する。
Next (to) As shown in Figure 2 (b), CVD is applied to the entire surface of the substrate.
An oxide film 9a and a nitride film 10a are deposited by a method.

ここで、酸化膜厚は50nm、  窒化膜厚は250n
m程度に設定する。
Here, the oxide film thickness is 50nm, and the nitride film thickness is 250nm.
Set to about m.

この後、第2図(C)に示すように ドライエツチング
をおこなって、酸化膜9b側面を覆うように窒化膜パタ
ーン10bを自己整合的に形成する。このとき、基板上
の酸化膜9bは30nm程度に減少すム この後、ゲー
ト電極7とゲート電極7の側面を覆う酸化膜9aおよび
窒化膜パターン10bをマスクにして、砒素を加速電圧
80KeV、 ドーズ量6’、0E15/cm2でイオ
ン注入して、ソース/ドレイン層4を形成する。このと
き、ソース/ドレイン層4は高濃度で深く形成でき、し
かもゲート電極端から0.3 umの距離からイオン注
入されているた敢 高濃度で深いソース/ドレイン層4
は低濃度で浅いソース/ドレイン層5を覆うことはな(
箋 次に第2図(d)に示すようl二 窒化膜パターン10
bをフッ酸HFで200秒程置方理した後、熱いリン酸
H,PO,でエツチング除去する。このとき、基板上の
酸化膜9Cは10nm程度に減少す4 この工程の後、
ゲート電極7とゲート電極7の側面を覆う酸化膜パター
ン9Cをマスクにして、ボロンを加速電圧80KeV、
 ドーズ量3゜2E12/am2でイオン注入して、高
濃度p型不純物層2が形成できも また ゲート電極7
の側面を覆う酸化膜パターン9Cによって、高濃度p型
不純物層2は低濃度で浅いソース/ドレイン層5の側面
を覆うことはなum この後、通常のプロセスでアルミ配線8を形成してMO
S型半導体装置を得も な択 本実施例で(よ 第1導電型の半導体基板上にゲ
ート絶縁膜6を介してゲート電極7を形成した後、前記
ゲート電極7をマスクにして第2導電型の第2のソース
/ドレイン層5を形成する工程と、前記半導体基板全面
に第1の絶縁膜9aを堆積せしめる工程と、前記第1の
絶縁膜9a全面に第2の絶縁膜10aを堆積せしめる工
程と、前記第2の絶縁膜10aのドライエツチングをお
こなって前記第1の絶縁膜9aの側面を覆う如く第2の
絶縁膜パターン10bを自己整合的に形成した後、前記
ゲート電極7とこのゲート電極の側面を覆う第1の絶縁
膜および第2の絶縁膜パターンをマスクとして第1のソ
ース/ドレイン層4を形成する工程と、前記第2の絶縁
膜パターン10bをエツチング除去した後、前記ゲート
電極7とこのグー1電極の側面を覆う第1の絶縁膜9c
をマスクとして第1導電型の不純物を導入して高濃度層
2を形成する工程を備えたMOS型半導体装置の製造方
法について説明した力(第1導電型の半導体基板上にゲ
ート絶縁膜を介してゲート電極を形成した後、前記ゲー
ト電極をマスクにして第2導電型の第2のソース/ドレ
イン層を形成する工程と、前記半導体基板全面に絶縁膜
を堆積せしへ前記ゲート電極とこのゲート電極の側面を
覆う絶縁膜をマスクとして第1導電型の不純物を導入し
て高濃度層を形成する工程と、前記半導体基板全面に絶
縁膜を再び堆積せしぬ この絶縁膜のドライエツチング
をおこなって前記ゲート電極の側面を覆うように絶縁膜
パターンを自己整合的に形成した後、前記ゲート電極と
このゲート電極の側面を覆う絶縁膜パターンをマスクと
して第1のソース/ドレイン層を形成する工程を備えた
MOS型半導体装置の製造方法を用いてもよ賎 発明の効果 以上の説明から明らかなように 本発明の構造を有する
MOS型半導体装置により、基板と同導電型の高濃度不
純物層が低濃度で浅いソース/ドレイン層直下に形成で
き、低濃度で浅いソース/ドレイン層側面に基板と同導
電型の高濃度不純物層による高電界を発生せしめること
がなり℃ このたべ ホットエレクトロン劣化耐性を低
下させることなく基板と同導電型の高濃度不純物層の濃
度値を十分に高くすることができ、短チヤネル効果を著
しく抑制することが可能であり、微細化のし易いMOS
型半導体装置を得ることができもまた 本発明の製造方
法により、極めて高信頼な高密度化が可能となム すな
わ板 ゲート電極をマスクとして低濃度で浅いソース/
ドレイン層を、ゲート電極と第1の絶縁層をマスクとし
て基板と同導電型の高濃度不純物層を、ゲート電極と第
1の絶縁層と第2の絶縁層をマスクにして高濃度で深い
ソース/ドレイン層が形成されているた敢 基板と同導
電型の高濃度不純物層をドレイン近傍で高電界を引き起
こすことなく確定することができる。
Thereafter, as shown in FIG. 2C, dry etching is performed to form a nitride film pattern 10b in a self-aligned manner so as to cover the side surface of the oxide film 9b. At this time, the oxide film 9b on the substrate is reduced to about 30 nm. After that, using the gate electrode 7 and the oxide film 9a covering the side surfaces of the gate electrode 7 and the nitride film pattern 10b as masks, arsenic is heated at an acceleration voltage of 80 KeV and at a dose. Source/drain layers 4 are formed by ion implantation at a dose of 6', 0E15/cm2. At this time, the source/drain layer 4 can be formed deep with a high concentration, and the ions are implanted from a distance of 0.3 um from the end of the gate electrode.
does not cover the shallow source/drain layer 5 with low concentration (
Next, as shown in FIG. 2(d), two nitride film patterns 10 are formed.
After treating b with hydrofluoric acid HF for about 200 seconds, it was removed by etching with hot phosphoric acid H, PO. At this time, the oxide film 9C on the substrate is reduced to about 10 nm.4 After this step,
Using the gate electrode 7 and the oxide film pattern 9C covering the side surfaces of the gate electrode 7 as a mask, boron was heated at an acceleration voltage of 80 KeV.
Although the highly concentrated p-type impurity layer 2 can be formed by ion implantation at a dose of 3゜2E12/am2, the gate electrode 7
The high concentration p-type impurity layer 2 does not cover the side surfaces of the low concentration and shallow source/drain layer 5 due to the oxide film pattern 9C covering the side surfaces of the MO.
In this embodiment, a gate electrode 7 is formed on a semiconductor substrate of a first conductive type via a gate insulating film 6, and then a second conductive semiconductor is formed using the gate electrode 7 as a mask. a step of forming a second source/drain layer 5 of a type, a step of depositing a first insulating film 9a on the entire surface of the semiconductor substrate, and a step of depositing a second insulating film 10a on the entire surface of the first insulating film 9a. After forming a second insulating film pattern 10b in a self-aligned manner so as to cover the side surface of the first insulating film 9a by dry etching the second insulating film 10a, the gate electrode 7 and the second insulating film pattern 10b are formed in a self-aligned manner. After forming the first source/drain layer 4 using the first insulating film and the second insulating film pattern covering the side surfaces of the gate electrode as masks, and etching away the second insulating film pattern 10b, a first insulating film 9c covering the side surfaces of the gate electrode 7 and the goo 1 electrode;
A method for manufacturing a MOS type semiconductor device comprising a step of introducing impurities of a first conductivity type to form a highly concentrated layer 2 using a mask as a mask (a method of manufacturing a MOS type semiconductor device comprising a step of forming a highly concentrated layer 2 on a semiconductor substrate of a first conductivity type through a gate insulating film). After forming a gate electrode, a step of forming a second source/drain layer of a second conductivity type using the gate electrode as a mask, and depositing an insulating film on the entire surface of the semiconductor substrate to form a second source/drain layer between the gate electrode and the second conductivity type. A step of introducing an impurity of the first conductivity type using the insulating film covering the side surface of the gate electrode as a mask to form a highly concentrated layer, and dry etching of the insulating film without depositing the insulating film again on the entire surface of the semiconductor substrate. After forming an insulating film pattern in a self-aligned manner so as to cover the side surface of the gate electrode, a first source/drain layer is formed using the gate electrode and the insulating film pattern covering the side surface of the gate electrode as a mask. Effects of the Invention As is clear from the above explanation, the MOS type semiconductor device having the structure of the present invention can be used to produce a highly concentrated impurity layer of the same conductivity type as the substrate. can be formed directly under the shallow, low-concentration source/drain layer, and generates a high electric field on the side surface of the shallow, low-concentration source/drain layer due to the highly concentrated impurity layer of the same conductivity type as the substrate. The concentration value of the highly concentrated impurity layer of the same conductivity type as the substrate can be made sufficiently high without reducing the conductivity, and the short channel effect can be significantly suppressed, making it possible to easily miniaturize MOS.
In other words, the manufacturing method of the present invention makes it possible to obtain extremely reliable and high-density semiconductor devices.
A high concentration impurity layer of the same conductivity type as the substrate is formed using the drain layer as a mask, a high concentration impurity layer of the same conductivity type as the substrate is formed using the gate electrode and the first insulating layer as a mask, and a high concentration deep source layer is formed using the gate electrode, the first insulating layer and the second insulating layer as masks. / A highly concentrated impurity layer of the same conductivity type as the substrate in which the drain layer is formed can be determined without causing a high electric field in the vicinity of the drain.

従って、本発明のMOS型半導体装置f戴VLSIに要
求されるホットエレクトロン劣化耐性が高く、短チヤネ
ル効果を著しく抑制した高集積化技術のためには必要不
可欠なものであり、その工業的価値は極めて犬きl、%
Therefore, the MOS type semiconductor device of the present invention has high resistance to hot electron degradation required for the VLSI, and is essential for high integration technology that significantly suppresses short channel effects, and its industrial value is high. Very dog-like l,%

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるMOS型半導体装置
の構造断面図 第2図は同装置の製造工程の概略断面図
 第3図は従来のMOS型半導体装置の構造断面図 第
4図は他の従来のMOS型半導体装置の構造断面図およ
び製造工程の概略断面図である。 1・・・低濃度基板(p−型)、 2・・・高濃度p型
不純物Jt3・・・しきい値電圧制御用p型不純物恩 
4・・・高濃度ソース/ドレイン恩 5・・・低濃度で
浅いソース/ドレイン恩 6・・・ゲート絶縁A 7・
・・ゲト電楓 8・・・アルミ耐振 代理人の氏名 弁理士 小鍜治 明 はが2名第1図 箭2図 7ケートIR慢 ! 2鳳鷹度P型不純鋤層 第 図 37ケート電i 第 図 (α)
FIG. 1 is a cross-sectional view of the structure of a MOS semiconductor device according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the manufacturing process of the device. FIG. 3 is a cross-sectional view of the structure of a conventional MOS semiconductor device. FIG. 2 is a structural cross-sectional view and a schematic cross-sectional view of the manufacturing process of another conventional MOS type semiconductor device. 1...Low concentration substrate (p-type) 2...High concentration p-type impurity Jt3...P-type impurity for threshold voltage control
4... High concentration source/drain layer 5... Low concentration and shallow source/drain layer 6... Gate insulation A 7.
...Getoden Kaede 8...Name of aluminum vibration-resistant agent Patent attorney Akira Okaji Haga 2 persons Figure 1, Figure 2, Figure 7, Kate IR Arrogance! 2 P-type impurity layer Fig. 37 Ketodeni Fig. (α)

Claims (5)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板と、 この半導体基板上に選択的に形成されたゲート絶縁膜と
、 このゲート絶縁膜上に形成されたゲート電極と、このゲ
ート電極直下の第1導電型の半導体基板の外の半導体基
板内に形成された第2導電型の第1のソース/ドレイン
層と、 この第1のソース/ドレイン層よりも浅く、かつゲート
電極直下の半導体基板の一部まで形成された第2のソー
ス/ドレイン層と、 この第2のソース/ドレイン層直下でかつ前記第1のソ
ース/ドレイン層の側部に 前記第2のソース/ドレイ
ン層よりも深く、前記第1ソース/ドレイン層低部より
も浅い位置に最大濃度値をもつ第1導電型の高濃度層と
を備えたMOS型半導体装置。
(1) A semiconductor substrate of a first conductivity type, a gate insulating film selectively formed on this semiconductor substrate, a gate electrode formed on this gate insulating film, and a first conductivity type semiconductor substrate directly below this gate electrode. a first source/drain layer of a second conductivity type formed in the semiconductor substrate outside the semiconductor substrate; and a part of the semiconductor substrate that is shallower than the first source/drain layer and directly below the gate electrode. a second source/drain layer formed therein; A MOS type semiconductor device comprising a first conductivity type high concentration layer having a maximum concentration value at a position shallower than a lower part of a source/drain layer.
(2)ゲート電極両側部にL−字形の絶縁膜層が形成さ
れたことを特徴とする請求項1に記載のMOS型半導体
装置。
(2) The MOS semiconductor device according to claim 1, wherein L-shaped insulating film layers are formed on both sides of the gate electrode.
(3)第1のソース/ドレイン層端からゲート電極端ま
で単調に減少する第2導電型の不純物層が形成されたこ
とを特徴とする請求項1に記載のMOS型半導体装置。
(3) The MOS semiconductor device according to claim 1, further comprising an impurity layer of the second conductivity type that decreases monotonically from the end of the first source/drain layer to the end of the gate electrode.
(4)第1導電型の半導体基板上にゲート絶縁膜を介し
てゲート電極を形成した後、前記ゲート電極をマスクに
して第2導電型の第2のソース/ドレイン層を形成する
工程と、 前記半導体基板全面に第1の絶縁膜を堆積せしめる工程
と、 前記第1の絶縁膜全面に第2の絶縁膜を堆積せしめる工
程と、 前記第2の絶縁膜のドライエッチングをおこなって前記
第1の絶縁膜の側面を覆う如く第2の絶縁膜パターンを
自己整合的に形成した後、前記ゲート電極とこのゲート
電極の側面を覆う第1の絶縁膜および第2の絶縁膜パタ
ーンをマスクとして第1のソース/ドレイン層を形成す
る工程と、前記第2の絶縁膜パターンをエッチング除去
した後、前記ゲート電極とこのゲート電極の側面を覆う
第1の絶縁膜をマスクとして第1導電型の不純物を導入
して高濃度層を形成する工程を備えたMOS型半導体装
置の製造方法。
(4) forming a gate electrode on a semiconductor substrate of a first conductivity type via a gate insulating film, and then forming a second source/drain layer of a second conductivity type using the gate electrode as a mask; a step of depositing a first insulating film over the entire surface of the semiconductor substrate; a step of depositing a second insulating film over the entire surface of the first insulating film; and dry etching the second insulating film to remove the first insulating film. After forming a second insulating film pattern in a self-aligned manner so as to cover the side surface of the insulating film, a second insulating film pattern is formed using the gate electrode and the first insulating film and second insulating film pattern covering the side surface of the gate electrode as masks. After removing the second insulating film pattern by etching, a first conductivity type impurity is added using the gate electrode and the first insulating film covering the side surfaces of the gate electrode as a mask. 1. A method for manufacturing a MOS type semiconductor device, comprising a step of introducing a high concentration layer to form a high concentration layer.
(5)第1導電型の半導体基板上にゲート絶縁膜を介し
てゲート電極を形成した後、前記ゲート電極をマスクに
して第2導電型の第2のソース/ドレイン層を形成する
工程と、 前記半導体基板全面に絶縁膜を堆積せしめ、前記ゲート
電極とこのゲート電極の側面を覆う絶縁膜をマスクとし
て第1導電型の不純物を導入して高濃度層を形成する工
程と、 前記半導体基板全面に絶縁膜を再び堆積せしめ、この絶
縁膜のドライエッチングをおこなって前記ゲート電極の
側面を覆うように絶縁膜パターンを自己整合的に形成し
た後、前記ゲート電極とこのゲート電極の側面を覆う絶
縁膜パターンをマスクとして第1のソース/ドレイン層
を形成する工程を備えたMOS型半導体装置の製造方法
(5) forming a gate electrode on a semiconductor substrate of a first conductivity type via a gate insulating film, and then forming a second source/drain layer of a second conductivity type using the gate electrode as a mask; depositing an insulating film over the entire surface of the semiconductor substrate, and using the gate electrode and the insulating film covering the side surfaces of the gate electrode as a mask, introducing impurities of a first conductivity type to form a highly concentrated layer; An insulating film is again deposited on the insulating film, and this insulating film is dry-etched to form an insulating film pattern in a self-aligned manner so as to cover the side surfaces of the gate electrode. A method for manufacturing a MOS type semiconductor device, comprising a step of forming a first source/drain layer using a film pattern as a mask.
JP2258039A 1990-09-26 1990-09-26 Method for manufacturing MOS type semiconductor device Expired - Fee Related JP2806028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258039A JP2806028B2 (en) 1990-09-26 1990-09-26 Method for manufacturing MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258039A JP2806028B2 (en) 1990-09-26 1990-09-26 Method for manufacturing MOS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH04133436A true JPH04133436A (en) 1992-05-07
JP2806028B2 JP2806028B2 (en) 1998-09-30

Family

ID=17314691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258039A Expired - Fee Related JP2806028B2 (en) 1990-09-26 1990-09-26 Method for manufacturing MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2806028B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029681A1 (en) * 2008-09-10 2010-03-18 パナソニック株式会社 Semiconductor device and method for manufacturing the same
JP2012235001A (en) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2012235002A (en) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp Semiconductor device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064472A (en) * 1983-09-19 1985-04-13 Toshiba Corp Semiconductor device
JPS6337663A (en) * 1986-07-31 1988-02-18 Fujitsu Ltd Manufacture of semiconductor device
JPS63293979A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064472A (en) * 1983-09-19 1985-04-13 Toshiba Corp Semiconductor device
JPS6337663A (en) * 1986-07-31 1988-02-18 Fujitsu Ltd Manufacture of semiconductor device
JPS63293979A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029681A1 (en) * 2008-09-10 2010-03-18 パナソニック株式会社 Semiconductor device and method for manufacturing the same
JP2012235001A (en) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2012235002A (en) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2806028B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JPS6344770A (en) Field effect transistor and manufacture of the same
JP2003069009A (en) Method of manufacturing ldmos transistor
JPH04133436A (en) Mos type semiconductor device and manufacture thereof
JPH01259560A (en) Semiconductor integrated circuit device
JPH05226672A (en) Manufacture of vertical type field-effect transistor and transistor manufactured through said method
JPS6025028B2 (en) Manufacturing method of semiconductor device
US6013554A (en) Method for fabricating an LDD MOS transistor
JP2663946B2 (en) Method for manufacturing semiconductor device
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JPH0637106A (en) Manufacture of semiconductor device
JPS60241259A (en) Manufacture of read only memory
JPS6158987B2 (en)
JP4026270B2 (en) Semiconductor device and manufacturing method thereof
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JPH05291573A (en) Semiconductor device and manufacture thereof
JPH06267972A (en) Manufacture of mos transistor
JP3363675B2 (en) Method for manufacturing semiconductor device
JPH08186252A (en) Semiconductor device
JP2608373B2 (en) Semiconductor memory device and method of manufacturing the same
JPH06204456A (en) Semiconductor device
JPH11274486A (en) Semiconductor device and its manufacturing method
JPH06151451A (en) Manufacture of semiconductor device
JPH03148834A (en) Manufacture of mos transistor
KR100898257B1 (en) Method for manufacturing of semiconductor device
JPH0992824A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees