JPH06267972A - Manufacture of mos transistor - Google Patents

Manufacture of mos transistor

Info

Publication number
JPH06267972A
JPH06267972A JP3202319A JP20231991A JPH06267972A JP H06267972 A JPH06267972 A JP H06267972A JP 3202319 A JP3202319 A JP 3202319A JP 20231991 A JP20231991 A JP 20231991A JP H06267972 A JPH06267972 A JP H06267972A
Authority
JP
Japan
Prior art keywords
polysilicon layer
mask
oxide film
gate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3202319A
Other languages
Japanese (ja)
Other versions
JP3041093B2 (en
Inventor
Akihiro Funato
昭弘 船渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP3202319A priority Critical patent/JP3041093B2/en
Publication of JPH06267972A publication Critical patent/JPH06267972A/en
Application granted granted Critical
Publication of JP3041093B2 publication Critical patent/JP3041093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enable a high withstanding voltage and a microstructure to be provided by implanting ions with a mask film for oxidation and ion implantation as a mask to form a low concentration region, oxidizing the side wall of a polysilicon layer at a specified temperature, and implating ions with the oxide film as a mask to form a high concentration region, thereby to reduce the electric field concentration on the gate end. CONSTITUTION:On a silicon substrate 1, a gate oxide film 2 is formed, and on the surface thereof, a polysilicon layer 3 is deposited. The polysilicon layer 3 is undoped undoped or doped with an impurity to deposit a SiN film 4 on the polysilicon layer 3 as a mask film for oxidation and ion implantation. Ions are implanted with the SiN film 4 as a mask to form a low concentration source 10 and a low concentration drain 5. Then, the side wall of the polysilicon layer 3 is oxidized at 700 deg.C to 1200 deg.C, and with the oxide film 6 as a mask ions are implanted to form a high concentration source 11 and a high concentration drain 7. As a result, the low concentration drain 5 can be formed in self alignment in the drain end, and a fine gate can thus be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路を構成
するMOSトランジスタ、特に高耐圧が要求されるもの
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MOS transistor, which constitutes a semiconductor integrated circuit, and in particular, one which requires a high breakdown voltage.

【0002】[0002]

【従来の技術】図3は通常のMOSトランジスタと従来
の高耐圧化のために電界集中の緩和を計ったMOSトラ
ンジスタの構造を示す。図において1はシリコン基板、
2はゲート酸化膜、3はポリシリコンゲート、5は低濃
度ドレイン、7は高濃度ドレイン、8はサイドスペー
サ、9はLDD(Lightly doped dra
in)である。
2. Description of the Related Art FIG. 3 shows a structure of a normal MOS transistor and a conventional MOS transistor in which electric field concentration is relaxed for higher breakdown voltage. In the figure, 1 is a silicon substrate,
2 is a gate oxide film, 3 is a polysilicon gate, 5 is a low concentration drain, 7 is a high concentration drain, 8 is a side spacer, and 9 is an LDD (Lightly doped drain).
in).

【0003】図3(a)は通常のMOSトランジスタを
示す。図3(b)はオフセットゲート構造とし、ドレイ
ン端に低濃度ドレイン5を設けてゲート端の電界集中の
緩和を計ったMOSトランジスタを示し、図3(c)は
ドレイン端のゲート酸化膜2を厚くしてゲート端の電界
集中の緩和を計ったMOSトランジスタを示し、図3
(d)は自己整合的にLDD9を設けポリシリコンゲー
ト3の側壁にサイドスペーサ8を設けて高濃度ドレイン
を形成したMOSトランジスタを示す。
FIG. 3A shows a normal MOS transistor. FIG. 3B shows a MOS transistor having an offset gate structure, in which a low concentration drain 5 is provided at the drain end to relax electric field concentration at the gate end, and FIG. 3C shows the gate oxide film 2 at the drain end. FIG. 3 shows a MOS transistor that is thickened to reduce electric field concentration at the gate end.
(D) shows a MOS transistor in which a LDD 9 is provided in a self-aligned manner and a side spacer 8 is provided on the side wall of the polysilicon gate 3 to form a high-concentration drain.

【0004】[0004]

【発明が解決しようとする課題】従来の図3(b),
(c)に示すMOSトランジスタではオフセット構造と
するためにマスク合わせを必要とし、このマスク合わせ
のために微細化が制限されるという問題があった。また
従来の図3(d)に示すMOSトランジスタでは自己整
合的に形成できるがLDD9の横方向の寸法がサイドス
ペーサ8の横方向の寸法とほぼ等しい寸法しかとれない
ため用途が比較的低電圧に限られ、微細化に伴ってドレ
イン端の電界集中が大きくなり短チャネル効果が現われ
るという問題があった。本発明は上記問題を解決するた
めになされたもので、自己整合的にドレイン端に低濃度
ドレインを形成し、高耐圧化と微細化を可能にする方法
を提供することを目的とする。
FIG. 3B of the prior art,
The MOS transistor shown in (c) has a problem that mask alignment is required to form an offset structure, and miniaturization is limited due to this mask alignment. The conventional MOS transistor shown in FIG. 3D can be formed in a self-aligned manner, but the dimension of the LDD 9 in the lateral direction is substantially equal to the dimension of the side spacer 8 in the lateral direction, so that the application is relatively low voltage. However, there is a problem that the electric field concentration at the drain end becomes large with the miniaturization, and the short channel effect appears. The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of forming a low-concentration drain at a drain end in a self-aligning manner to enable a high breakdown voltage and miniaturization.

【0005】[0005]

【課題を解決するための手段】本発明の製造方法は、シ
リコン基板の素子形成領域の表面に形成したゲート酸化
膜上にポリシリコン層を堆積し、該ポリシリコン層はノ
ンドープかあるいは不純物をドープし、あるいは、上記
ゲート酸化膜上に第1のポリシリコン層を堆積し該第1
のポリシリコン層にリン又はヒ素を5×1020/cm3
以上に不純物を注入し、該第1のポリシリコン層上に第
2のポリシリコン層を堆積し該第2のポリシリコン層は
ノンドープかあるいは不純物を注入しても不純物濃度を
1×1020/cm3 以下に抑え、さらに上記単層のポリ
シリコン層あるいは2層のポリシリコン層上に酸化及び
イオン注入用マスクとして使用するSiN等の膜を堆積
し、ゲート領域のパターニングを行ない、パターニング
したSiN膜等をマスクにイオン注入を行ない低濃度領
域を形成し、上記ポリシリコン層の側壁酸化を行ない、
酸化により体積が膨張したポリシリコン層側壁に形成し
た酸化膜をマスクにイオン注入を行ない高濃度ドレイン
を形成することを特徴とする方法である。
According to the manufacturing method of the present invention, a polysilicon layer is deposited on a gate oxide film formed on the surface of an element forming region of a silicon substrate, and the polysilicon layer is non-doped or doped with impurities. Alternatively, a first polysilicon layer is deposited on the gate oxide film and the first polysilicon layer is deposited.
Of phosphorus or arsenic in the polysilicon layer of 5 × 10 20 / cm 3
Impurities are implanted as described above, a second polysilicon layer is deposited on the first polysilicon layer, and the second polysilicon layer is non-doped or has an impurity concentration of 1 × 10 20 / cm 3 kept below, and further depositing a film of SiN or the like to be used as oxidation and ion implantation mask the polysilicon layer or two-layer polysilicon layer of the single layer performs patterning of the gate region, was patterned SiN Ion implantation is performed using a film or the like as a mask to form a low-concentration region, and sidewall oxidation of the polysilicon layer is performed.
This is a method characterized in that a high concentration drain is formed by performing ion implantation using an oxide film formed on the side wall of the polysilicon layer whose volume is expanded by oxidation as a mask.

【0006】[0006]

【実施例1】図1は本発明の実施例の1つである。シリ
コン基板1にフィールド酸化膜を形成した後、素子形成
領域の表面にゲート酸化膜2を形成し〔図1(a)〕、
次に表面にポリシリコン層3を1000〜3000Å堆
積する。このポリシリコン層はノンドープあるいは不純
物を注入してもいずれでもよいが、ゲート抵抗の低減の
ため5×1020/cm3 程度の注入を行なう〔図1
(b)〕。その上に酸化及びイオン注入用マスク膜とし
てSiN膜4を1000Å堆積する〔図1(c)〕。こ
の時ポリシリコン層3上にSiO2 膜を形成しその上に
SiN膜を形成する構造を採り入れてもよい。続いてゲ
ート領域のポリシリコン層3をSF6 +C26 Cl系
ガスでエッチングし〔図1(d)〕、パターニングした
SiN膜をマスクにボロンあるいはフッ化ボロンを30
〜100keV、2〜8×1013/cm2 の条件で注入
を行ない、低濃度ソース10、低濃度ドレイン5を形成
する〔図1(e)〕。この際通常のイオン注入によって
もよいが、回転イオン注入によると後工程でドライブイ
ンを行なう必要がなく、低濃度ソース,ドレインをポリ
シリコンゲートにオーバーラップさせることができる。
また、斜め注入によりドレイン側からソース側に向けて
注入を行なうことで低濃度ソースの横方向の寸法を低濃
度ドレインの横方向の寸法より小さくすることができ
る。次に900℃20分間ウェット酸化を行なう〔図1
(f)〕。この時形成される酸化膜厚は2400Å程度
である。続いてSiN膜を除去し低濃度ソース10、低
濃度ドレイン5がポリシリコンゲート3にオーバーラッ
プするように900〜1100℃N2 雰囲気でドライブ
インを行なう〔図1(g)〕。次に先の酸化によって形
成した酸化膜6をマスクにしてボロンあるいはフッ化ボ
ロンを30〜80keV、1〜8×1015/cm2 でイ
オン注入を行ない、高濃度ソース11、高濃度ドレイン
7を形成する〔図1(h)〕。これ以後は通常のIC製
造工程により層間絶縁膜を形成し、電極、保護膜を形成
する。この製造方法により通常のMOSトランジスタよ
り5V程度高耐圧化が計られたMOSトランジスタが形
成可能である。
Embodiment 1 FIG. 1 is one of the embodiments of the present invention. After forming a field oxide film on the silicon substrate 1, a gate oxide film 2 is formed on the surface of the element formation region [FIG. 1 (a)].
Next, a polysilicon layer 3 is deposited on the surface by 1000 to 3000 liters. This polysilicon layer may be non-doped or may be doped with impurities, but is implanted at about 5 × 10 20 / cm 3 to reduce the gate resistance [FIG.
(B)]. An SiN film 4 as a mask film for oxidation and ion implantation is deposited thereon by 1000 Å [FIG. 1 (c)]. At this time, a structure may be adopted in which a SiO 2 film is formed on the polysilicon layer 3 and a SiN film is formed thereon. Subsequently, the polysilicon layer 3 in the gate region is etched with SF 6 + C 2 F 6 Cl-based gas [FIG. 1 (d)], and boron or boron fluoride is used as a mask with the patterned SiN film as a mask.
Implantation is performed under the conditions of ˜100 keV and 2˜8 × 10 13 / cm 2 to form the low concentration source 10 and the low concentration drain 5 [FIG. 1 (e)]. At this time, although normal ion implantation may be used, rotary ion implantation does not require drive-in in a later step, and the low-concentration source and drain can overlap the polysilicon gate.
Further, by performing the implantation from the drain side toward the source side by oblique implantation, the lateral dimension of the low concentration source can be made smaller than the lateral dimension of the low concentration drain. Next, wet oxidation is performed at 900 ° C. for 20 minutes [FIG. 1
(F)]. The oxide film thickness formed at this time is about 2400Å. Subsequently, the SiN film is removed, and drive-in is performed in a N 2 atmosphere at 900 to 1100 ° C. so that the low-concentration source 10 and the low-concentration drain 5 overlap the polysilicon gate 3 [FIG. 1 (g)]. Next, using the oxide film 6 formed by the previous oxidation as a mask, boron or boron fluoride is ion-implanted at 30 to 80 keV and 1 to 8 × 10 15 / cm 2 to form the high concentration source 11 and the high concentration drain 7. It is formed [FIG. 1 (h)]. After that, an interlayer insulating film is formed by a normal IC manufacturing process, and an electrode and a protective film are formed. With this manufacturing method, it is possible to form a MOS transistor having a withstand voltage higher than that of a normal MOS transistor by about 5V.

【0007】[0007]

【実施例2】図2は本発明の他の実施例を示す。シリコ
ン基板1にフィールド酸化膜を形成した後、素子形成領
域の表面にゲート酸化膜2を形成し〔図2(a)〕、次
に表面に第1ポリシリコン層3aを1000〜3000
Å堆積する。この第1のポリシリコン層3aはリン又は
ヒ素を5×1020/cm3 ドープし〔図2(b)〕、そ
の上に第2のポリシリコン層3bを1000〜3000
Å堆積する。この第2のポリシリコン層はノンドープか
あるいは不純物を注入しても濃度を1×1020/cm3
以下に抑える〔図2(c)〕。その上に酸化およびイオ
ン注入用マスク膜としてSiN膜4を1000Å堆積す
る〔図2(d)〕。この時第2のポリシリコン層3b上
にSiO2 膜を形成しその上にSiN膜を形成する構造
を採り入れてもよい。続いてゲート領域のポリシリコン
層をSF6 +C2 6 Cl系ガスでエッチングし〔図2
(e)〕、パターニングしたSiN膜をマスクにボロン
あるいはフッ化ボロンを30〜100keV、2〜8×
1013/cm2 の条件で注入を行ない低濃度ソース1
0、低濃度ドレイン5を形成する〔図2(f)〕。この
際通常のイオン注入によってもよいが、回転イオン注入
によると後工程でドライブインを行なう必要がなく、低
濃度ソース、ドレインをポリシリコンゲートにオーバー
ラップさせることができる。また、斜め注入によりドレ
イン側からソース側に向けて注入を行なうことで低濃度
ソースの横方向の寸法を低濃度ドレインの横方向の寸法
より小さくすることができる。次に900℃20分間ウ
ェット酸化を行なう〔図2(g)〕。ポリシリコン層3
a,3bの側壁酸化はリン又はヒ素の不純物濃度が5×
1020/cm3 以上の場合と1×1020/cm3 以下の
場合とでは形成される酸化膜の厚さに不純物濃度依存性
があり、第1のポリシリコン層3aの側壁に形成する酸
化膜の厚さは第2のポリシリコン層3bの側壁に形成さ
れる酸化膜の厚さより厚くなることを利用して、第1の
ポリシリコン層3aの側壁に第2のポリシリコン層3b
の側壁に形成される酸化膜より2倍以上厚い酸化膜6を
形成させる〔図2(h)〕。上記酸化条件では第1のポ
リシリコン層3aは2400Å第2のポリシリコン層3
bは600Åの酸化膜厚が得られる。このリン又はヒ素
の不純物濃度に依存する酸化膜の厚さの比率は、700
〜900℃ウェット酸化では第1のポリシリコン層3a
が第2のポリシリコン層3bに較べて4〜5倍厚く、9
00〜1200℃ウェット酸化で3〜4倍、900〜1
200℃ドライ酸化で2倍程度であり、この濃度依存性
は700〜900℃のウェット酸化において顕著であ
る。しかし、本発明の製造方法では形成される酸化膜厚
の比が2倍以上あれば高耐圧化の効果が十分あらわれる
ため、いずれの酸化方法も適用可能である。続いてSi
N膜4を除去し低濃度ドレイン5がT字型構造ゲートの
第1のポリシリコン層3aの部分にオーバーラップする
ように900〜1100℃N2 雰囲気でドライブインを
行なう〔図2(h)〕。オーバーラップする構造の方が
信頼性の点から優れている。なお、低濃度ドレイン,低
濃度ソース形成工程に回転イオン注入を用いた場合に
は、このドライブインが必要がなくなる。次に先の酸化
によって形成した酸化膜6をマスクにしてボロンあるい
はフッ化ボロンを30〜80keV、1〜8×1015
cm2 でイオン注入を行ない、高濃度ソース11、高濃
度ドレイン7を形成する〔図2(i)〕。これ以後は通
常のIC製造工程により層間絶縁膜、保護膜を形成す
る。第2のポリシリコン層3bには図2(h)に示す工
程以後の熱処理により第1のポリシリコン層3aからリ
ン又はヒ素が拡散するので良好なオーミックコンタクト
になる。この製造方法により通常のMOSトランジスタ
より10V以上高耐圧化が計られたMOSトランジスタ
が形成可能である。また、マスク合わせが不用のため容
易にゲート長を短縮することができ、0.1μmゲート
の形成も可能である。
Second Embodiment FIG. 2 shows another embodiment of the present invention. After forming the field oxide film on the silicon substrate 1, the gate oxide film 2 is formed on the surface of the element formation region [FIG. 2 (a)], and then the first polysilicon layer 3a is formed on the surface of 1000 to 3000.
Å Accumulate. The first polysilicon layer 3a is doped with phosphorus or arsenic at 5 × 10 20 / cm 3 [FIG. 2 (b)], and the second polysilicon layer 3b is deposited on the first polysilicon layer 3a at 1000 to 3000.
Å Accumulate. This second polysilicon layer is non-doped or has a concentration of 1 × 10 20 / cm 3 even if impurities are implanted.
It suppresses below (FIG.2 (c)). An SiN film 4 is deposited thereon as a 1000 Å mask film for oxidation and ion implantation [FIG. 2 (d)]. At this time, a structure in which a SiO 2 film is formed on the second polysilicon layer 3b and a SiN film is formed thereon may be adopted. Then, the polysilicon layer in the gate region is etched with SF 6 + C 2 F 6 Cl-based gas [FIG.
(E)], with the patterned SiN film as a mask, boron or boron fluoride is added at 30 to 100 keV, 2 to 8 ×
Low-concentration source 1 is implanted under the condition of 10 13 / cm 2.
0, the low concentration drain 5 is formed [FIG. 2 (f)]. At this time, although normal ion implantation may be used, rotary ion implantation does not require drive-in in a later step, and the low-concentration source and drain can overlap the polysilicon gate. Further, by performing the implantation from the drain side toward the source side by oblique implantation, the lateral dimension of the low concentration source can be made smaller than the lateral dimension of the low concentration drain. Next, wet oxidation is performed at 900 ° C. for 20 minutes [FIG. 2 (g)]. Polysilicon layer 3
Sidewall oxidation of a and 3b has a phosphorus or arsenic impurity concentration of 5 ×
The thickness of the oxide film formed depends on the impurity concentration between 10 20 / cm 3 and above and 1 × 10 20 / cm 3 and below, and the oxidation formed on the side wall of the first polysilicon layer 3a. Since the thickness of the film is thicker than the thickness of the oxide film formed on the side wall of the second polysilicon layer 3b, the second polysilicon layer 3b is formed on the side wall of the first polysilicon layer 3a.
An oxide film 6 which is twice or more thicker than the oxide film formed on the side wall of is formed [FIG. 2 (h)]. Under the above oxidizing conditions, the first polysilicon layer 3a is 2400Å the second polysilicon layer 3a.
For b, an oxide film thickness of 600Å can be obtained. The thickness ratio of the oxide film depending on the impurity concentration of phosphorus or arsenic is 700
The first polysilicon layer 3a is formed by wet oxidation up to 900 ° C.
Is 4 to 5 times thicker than the second polysilicon layer 3b.
Wet oxidation at 0 to 1200 ℃ 3 to 4 times, 900 to 1
It is approximately doubled at 200 ° C. dry oxidation, and this concentration dependency is remarkable in wet oxidation at 700 to 900 ° C. However, in the manufacturing method of the present invention, if the ratio of the oxide film thickness to be formed is twice or more, the effect of increasing the withstand voltage is sufficiently exhibited, and therefore any oxidation method can be applied. Then Si
The N film 4 is removed, and drive-in is performed in an N 2 atmosphere at 900 to 1100 ° C. so that the low concentration drain 5 overlaps the first polysilicon layer 3a of the T-shaped structure gate [FIG. 2 (h)]. ]. The overlapping structure is superior in terms of reliability. If the rotary ion implantation is used in the low concentration drain and low concentration source forming process, this drive-in is not necessary. Next, using the oxide film 6 formed by the previous oxidation as a mask, boron or boron fluoride is added at 30 to 80 keV, 1 to 8 × 10 15 /
Ion implantation is performed at a cm 2 to form a high concentration source 11 and a high concentration drain 7 [FIG. 2 (i)]. After that, an interlayer insulating film and a protective film are formed by a normal IC manufacturing process. Since phosphorus or arsenic diffuses from the first polysilicon layer 3a into the second polysilicon layer 3b by the heat treatment after the step shown in FIG. 2H, a good ohmic contact is obtained. With this manufacturing method, it is possible to form a MOS transistor having a breakdown voltage higher than that of a normal MOS transistor by 10 V or more. Further, since the mask alignment is unnecessary, the gate length can be easily shortened, and a 0.1 μm gate can be formed.

【0009】[0009]

【発明の効果】以上説明したように本発明によれば、自
己整合的にドレイン端に低濃度ドレインを形成できるた
めマスク合わせがなくなり微細なゲートが形成できる。
またポリシリコンゲートと低濃度ドレインの間に厚い酸
化膜を自己整合的に形成し、ゲート端の電界集中を緩和
し高耐圧化およびホットエレクトロンの発生を抑え、高
耐圧構造MOSトランジスタをより微細化することがで
きる。また、低濃度ドレイン形成時に斜め注入すること
でドレイン側の低濃度領域に較べてソース側の低濃度領
域の横方向の寸法を小さくすることが可能となり、オフ
セットゲート構造が形成可能となりソース抵抗を低減で
きるという効果もある。
As described above, according to the present invention, since a low concentration drain can be formed at the drain end in a self-aligning manner, mask alignment is eliminated and a fine gate can be formed.
In addition, a thick oxide film is formed between the polysilicon gate and the low concentration drain in a self-aligned manner to alleviate the electric field concentration at the gate end to increase the withstand voltage and suppress the generation of hot electrons, and further downsize the high withstand voltage structure MOS transistor. can do. Also, by obliquely implanting when forming the low concentration drain, the lateral dimension of the low concentration region on the source side can be made smaller than that of the low concentration region on the drain side, and an offset gate structure can be formed and the source resistance can be reduced. There is also an effect that it can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を示す説明図である。FIG. 1 is an explanatory view showing a manufacturing method of the present invention.

【図2】本発明の他の製造方法を示す説明図である。FIG. 2 is an explanatory view showing another manufacturing method of the present invention.

【図3】通常のMOSトランジスタと従来の高耐圧化の
ために電界集中の緩和を計ったMOSトランジスタの構
造を示す説明図である。
FIG. 3 is an explanatory diagram showing a structure of a normal MOS transistor and a conventional MOS transistor in which electric field concentration is relaxed for high breakdown voltage.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 ゲート酸化膜 3 ポリシリコン層 3a 第1のポリシリコン層 3b 第2のポリシリコン層 4 SiN膜 5 低濃度ドレイン 6 酸化膜 7 高濃度ドレイン 1 Silicon Substrate 2 Gate Oxide Film 3 Polysilicon Layer 3a First Polysilicon Layer 3b Second Polysilicon Layer 4 SiN Film 5 Low Concentration Drain 6 Oxide Film 7 High Concentration Drain

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月27日[Submission date] July 27, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板の素子形成領域の表面に形
成したゲート酸化膜上にポリシリコン層を堆積し、該ポ
リシリコン層はノンドープかあるいは不純物をドープ
し、該ポリシリコン層上に酸化及びイオン注入用マスク
膜を堆積し、ゲート領域のパターニングを行ない、該酸
化及びイオン注入用マスク膜をマスクにイオン注入し低
濃度領域を形成し、700〜1200℃で上記ポリシリ
コン層の側壁を酸化し、該酸化膜をマスクにイオン注入
し高濃度領域を形成することを特徴とするMOSトラン
ジスタの製造方法。
1. A polysilicon layer is deposited on a gate oxide film formed on the surface of an element formation region of a silicon substrate, and the polysilicon layer is undoped or doped with impurities, and the polysilicon layer is oxidized and ionized. An implantation mask film is deposited, the gate region is patterned, ions are implanted using the oxidation and ion implantation mask film as a mask to form a low concentration region, and the sidewall of the polysilicon layer is oxidized at 700 to 1200 ° C. A method of manufacturing a MOS transistor, characterized in that a high concentration region is formed by ion-implanting the oxide film as a mask.
【請求項2】 シリコン基板の素子形成領域の表面に形
成したゲート酸化膜上に第1のポリシリコン層を堆積
し、該第1のポリシリコン層にリン又はヒ素を5×10
20/cm3 以上に不純物を注入し、該第1のポリシリコ
ン層上に第2のポリシリコン層を堆積し、該第2のポリ
シリコン層はノンドープかあるいは1×1020/cm3
以下に不純物を注入し、該第2のポリシリコン層上に酸
化及びイオン注入用マスク膜を堆積し、ゲート領域のパ
ターニングを行ない、該酸化及びイオン注入用マスク膜
をマスクにイオン注入し低濃度領域を形成し、700〜
1200℃で上記第1及び第2のポリシリコン層の側壁
を酸化し、上記第1のポリシリコン層の酸化膜厚を上記
第2のポリシリコン層の酸化膜厚の2倍以上の厚さに形
成し、上記第1のポリシリコン層の酸化膜をマスクにイ
オン注入し高濃度領域を形成することを特徴とするMO
Sトランジスタの製造方法。
2. A first polysilicon layer is deposited on a gate oxide film formed on the surface of an element formation region of a silicon substrate, and phosphorus or arsenic is added to the first polysilicon layer in an amount of 5 × 10 5.
Impurities are implanted to 20 / cm 3 or more and a second polysilicon layer is deposited on the first polysilicon layer, and the second polysilicon layer is undoped or 1 × 10 20 / cm 3
Then, impurities are implanted, an oxidation and ion implantation mask film is deposited on the second polysilicon layer, a gate region is patterned, and the oxidation and ion implantation mask film is ion-implanted as a mask to reduce the concentration. Area to form 700-
The sidewalls of the first and second polysilicon layers are oxidized at 1200 ° C. so that the oxide film thickness of the first polysilicon layer is twice or more the oxide film thickness of the second polysilicon layer. And a high-concentration region is formed by ion implantation using the oxide film of the first polysilicon layer as a mask.
Manufacturing method of S-transistor.
JP3202319A 1991-07-18 1991-07-18 Method for manufacturing MOS transistor Expired - Fee Related JP3041093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3202319A JP3041093B2 (en) 1991-07-18 1991-07-18 Method for manufacturing MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3202319A JP3041093B2 (en) 1991-07-18 1991-07-18 Method for manufacturing MOS transistor

Publications (2)

Publication Number Publication Date
JPH06267972A true JPH06267972A (en) 1994-09-22
JP3041093B2 JP3041093B2 (en) 2000-05-15

Family

ID=16455578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3202319A Expired - Fee Related JP3041093B2 (en) 1991-07-18 1991-07-18 Method for manufacturing MOS transistor

Country Status (1)

Country Link
JP (1) JP3041093B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980058440A (en) * 1996-12-30 1998-10-07 김영환 Gate electrode formation method of semiconductor device
JP2002009283A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Semiconductor device and its manufacturing method
WO2003088365A1 (en) * 2002-04-17 2003-10-23 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
JP2005353975A (en) * 2004-06-14 2005-12-22 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980058440A (en) * 1996-12-30 1998-10-07 김영환 Gate electrode formation method of semiconductor device
JP2002009283A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Semiconductor device and its manufacturing method
WO2003088365A1 (en) * 2002-04-17 2003-10-23 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
US6876045B2 (en) 2002-04-17 2005-04-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and process for manufacturing the same
CN100405612C (en) * 2002-04-17 2008-07-23 松下电器产业株式会社 Semiconductor device and process for manufacturing the same
JP2005353975A (en) * 2004-06-14 2005-12-22 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP3041093B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JPH10223771A (en) Semiconductor device and fabrication thereof
JP4904472B2 (en) Manufacturing method of semiconductor device
JP4505349B2 (en) Manufacturing method of semiconductor device
JP3746907B2 (en) Manufacturing method of semiconductor device
JPH06267972A (en) Manufacture of mos transistor
JPH07153952A (en) Semiconductor device and manufacture thereof
JP2781913B2 (en) Method of manufacturing semiconductor device having LDD structure
JP2002057330A (en) Insulated gate semiconductor device and its manufacturing method
US7550357B2 (en) Semiconductor device and fabricating method thereof
US6949471B2 (en) Method for fabricating poly patterns
JP2968078B2 (en) Method for manufacturing MOS transistor
JPH0370139A (en) Manufacture of semiconductor device
JPH0666327B2 (en) MOS semiconductor device and method of manufacturing the same
JP3260200B2 (en) Method for manufacturing semiconductor device
JPH0773128B2 (en) Method for manufacturing semiconductor device
JP2904081B2 (en) Method for manufacturing semiconductor device
JPH0521454A (en) Manufacture of semiconductor device
JPH06216333A (en) Manufacture of semiconductor storage device
JPS61101077A (en) Manufacture of semiconductor device
JPH05326551A (en) Manufacture of semiconductor device
JPH03276729A (en) Mos-type semiconductor device and manufacture thereof
JP3191313B2 (en) Method for manufacturing semiconductor device
JPS62250673A (en) Manufacture of semiconductor device
JPH11307774A (en) Semiconductor device and manufacture thereof
JP2001267560A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees