JPH0521454A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0521454A
JPH0521454A JP17081891A JP17081891A JPH0521454A JP H0521454 A JPH0521454 A JP H0521454A JP 17081891 A JP17081891 A JP 17081891A JP 17081891 A JP17081891 A JP 17081891A JP H0521454 A JPH0521454 A JP H0521454A
Authority
JP
Japan
Prior art keywords
metal silicide
polycrystalline silicon
silicide layer
silicon layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17081891A
Other languages
Japanese (ja)
Inventor
Yosuke Kiyono
洋介 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP17081891A priority Critical patent/JPH0521454A/en
Publication of JPH0521454A publication Critical patent/JPH0521454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To comparatively simply form a high-reliability MOS transistor with an LDD structure. CONSTITUTION:A polycrystalline silicon layer 4 is formed on a gate insulating film 3 and a high-melting-point metal silicide layer 5 formed sequentially on it; then, a gate electrode by an eaves structure wherein the gate size of the high-melting-point metal silicide layer 5 in a channel direction is longer than the size of the polycrystalline silicon layer 4 is formed. After that, impurity ions are implanted with an acceleration voltage which transmits through the high-melting-point metal silicide layer 5 but which does not transmit through the polycrystalline silicon layer 4; an N<-> type drain region 7 and an N<-> type source region 6, whose impurity concentration is comparatively thin, are formed. In addition, impurity ions are implanted at an acceleration voltage at which the high-melting-point metal silicide layer 5 acts as a mask; an N-type drain region 9 and an N-type source region 8, whose impurity concentration is comparatively thin, are formed. Thereby, a MOS transistor, by an LDD structure, whose high reliability can be ensured can be formed by a comparatively simple manufacturing process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にMOS型半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a MOS type semiconductor device.

【0002】[0002]

【従来の技術】微細なNチャネルMOSトランジスタの
諸特性の変動をもたらす主要因は、ドレイン領域近くの
高電界中のホットエレクトロンにあるので、高信頼性素
子を得るためには、この電界を緩和させなくてはならな
い。このためには従来LDD(Lightly Dop
ed Drain)構造と呼ばれるドレイン領域の不純
物分布をなだらかにしたものが作られている。
2. Description of the Related Art The main cause of fluctuations in various characteristics of a fine N-channel MOS transistor is hot electrons in a high electric field near the drain region. Therefore, in order to obtain a highly reliable element, this electric field is relaxed. I have to let them do it. For this purpose, the conventional LDD (Lightly Dop)
An ed drain structure having a smoothed impurity distribution in the drain region is produced.

【0003】図3は従来のLDD構造のMOSトランジ
スタの一例の断面図である。
FIG. 3 is a sectional view of an example of a conventional MOS transistor having an LDD structure.

【0004】P型シリコン基板1にフィールド絶縁膜2
を形成して素子領域を区画し、素子領域内にゲート絶縁
膜3を形成する。多結晶シリコン層でゲート電極14を
形成し、ゲート電極14の側壁に傾斜面を有するシリコ
ン酸化膜15を形成する。リンなどのN型不純物をイオ
ン注入して傾斜濃度を有するN型領域16,17とN型
ソース領域8,ドレイン領域9を形成し、LDD構造の
MOSトランジスタを得る。
A field insulating film 2 is formed on a P-type silicon substrate 1.
Are formed to partition the element region, and the gate insulating film 3 is formed in the element region. A gate electrode 14 is formed of a polycrystalline silicon layer, and a silicon oxide film 15 having an inclined surface is formed on the side wall of the gate electrode 14. An N-type impurity such as phosphorus is ion-implanted to form N-type regions 16 and 17 having a gradient concentration, an N-type source region 8 and a drain region 9 to obtain an LDD structure MOS transistor.

【0005】傾斜面を有するシリコン酸化膜に比例して
不純物濃度が変化するN型領域16,17はソース及び
ドレイン領域における高電界を緩和するためのものであ
る。
The N-type regions 16 and 17 in which the impurity concentration changes in proportion to the silicon oxide film having the inclined surface are for alleviating a high electric field in the source and drain regions.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
たLDD構造を得るためには傾斜面を有するシリコン酸
化膜15を形成する必要があるが、このシリコン酸化膜
15を形成するのは簡単ではなく、製造工程が長くなり
工数もかかるという欠点がある。
However, in order to obtain the above-mentioned LDD structure, it is necessary to form the silicon oxide film 15 having an inclined surface, but it is not easy to form this silicon oxide film 15. It has the drawback of lengthening the manufacturing process and increasing the number of steps.

【0007】本発明の目的は、比較的簡単にLDD構造
で高信頼性MOSトランジスタを形成することができる
半導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a semiconductor device which can relatively easily form a highly reliable MOS transistor with an LDD structure.

【0008】[0008]

【課題を解決するための手段】本発明によれば、多結晶
シリコン層と高融点金属ケイ化物層の二層から成るゲー
ト電極において、高融点金属ケイ化物層のチャネル方向
の寸法が多結晶シリコン層のチャネル方向の寸法より大
きくなるようにパターンを形成し、その後不純物イオン
を高融点金属ケイ化物層は透過するが多結晶シリコン層
は透過しない加速電圧にて注入する工程と、さらに高融
点金属ケイ化物層も多結晶シリコン層も透過しない加速
電圧にて不純物イオンを注入することを特徴としてい
る。
According to the present invention, in a gate electrode comprising two layers of a polycrystalline silicon layer and a refractory metal silicide layer, the dimension of the refractory metal silicide layer in the channel direction is polycrystalline silicon. Forming a pattern larger than the dimension of the layer in the channel direction, and then implanting impurity ions at an accelerating voltage that transmits the refractory metal silicide layer but not the polycrystalline silicon layer; The feature is that the impurity ions are implanted at an acceleration voltage that does not permeate the silicide layer or the polycrystalline silicon layer.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の製造工程に従う半導体装
置の断面図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device according to a manufacturing process of an embodiment of the present invention.

【0010】まず、図1(a)に示す様にP型シリコン
基板1にフィールド絶縁膜2を形成して素子領域を区画
し、素子領域にゲート絶縁膜3を形成する。この上に多
結晶シリコン層4とその上に高融点金属ケイ化物(例え
ばタングステンシリサイド)層5をそれぞれ100nm
程度の厚さで順次形成して二層構造のゲート電極を構成
する。次に、一般的なリソグラフィ及びリアクティブ・
イオン・エッチング等によりゲートパターンを形成した
後で、バッファード弗酸(例えばHF:NH4 F=3:
80)にてエッチングを行ない、ゲート電極の構造をタ
ングステンシリサイド層5のゲート寸法が多結晶シリコ
ン層4の寸法よりもチャンネル方向に例えば200nm
程度長いひさし構造になるように形成する。これを図1
(b)に示す。その後リンなどのN型不純物イオンを注
入する場合にこのひさし構造を利用して、まずタングス
テンシリサイド層5は透過するが多結晶シリコン層は透
過しない加速電圧例えば100keV程度で注入するこ
とにより不純物濃度の比較的薄いN- 型ドレイン領域7
及びソース領域6を形成する。これを図1(c)に示
す。さらに、ヒ素イオンをタングステンシリサイド層5
がマスクとなる加速電圧、例えば70keV程度で注入
することにより不純物濃度の比較的濃いN型ドレイン領
域9及びソース領域8を形成する。これを図1(d)に
示す。これにより比較的簡単に精度良くLDD構造を形
成することができる。
First, as shown in FIG. 1A, a field insulating film 2 is formed on a P-type silicon substrate 1 to divide an element region, and a gate insulating film 3 is formed in the element region. A polycrystalline silicon layer 4 and a refractory metal silicide (for example, tungsten silicide) layer 5 thereon are each formed to a thickness of 100 nm.
A gate electrode having a two-layer structure is formed by sequentially forming the gate electrodes with a certain thickness. Next, general lithography and reactive
After forming the gate pattern by ion etching or the like, buffered hydrofluoric acid (for example, HF: NH 4 F = 3:
80), the structure of the gate electrode is set so that the gate dimension of the tungsten silicide layer 5 is 200 nm in the channel direction more than the dimension of the polycrystalline silicon layer 4.
The eaves structure is formed to have a relatively long length. Figure 1
It shows in (b). When N-type impurity ions such as phosphorus are implanted thereafter, the eaves structure is utilized to first implant the tungsten silicide layer 5 at an accelerating voltage of, for example, about 100 keV, which does not penetrate the polycrystalline silicon layer. Relatively thin N - type drain region 7
And the source region 6 is formed. This is shown in FIG. Further, arsenic ions are added to the tungsten silicide layer 5
Are implanted at an accelerating voltage serving as a mask, for example, about 70 keV to form the N-type drain region 9 and the source region 8 having a relatively high impurity concentration. This is shown in FIG. As a result, the LDD structure can be formed relatively easily and accurately.

【0011】図2は本発明の他の実施例の断面図であ
る。P型シリコン基板1上のゲート絶縁膜3を介して形
成されたゲート電極は第1の実施例と同様の二層構造を
有している。この実施例では、信頼性上問題となるドレ
イン近傍のゲート電極のみがひさし構造をしており、不
純物イオンをイオン種及び加速電圧を選んで二度に分け
て注入することで、ドレイン側にのみ高電界を緩和する
ための不純物濃度の比較的薄いN- 型ドレイン領域7が
形成されたLDD構造とすることができる。
FIG. 2 is a sectional view of another embodiment of the present invention. The gate electrode formed on the P-type silicon substrate 1 via the gate insulating film 3 has a two-layer structure similar to that of the first embodiment. In this embodiment, only the gate electrode near the drain, which is a problem in terms of reliability, has an eaves structure, and by implanting impurity ions in two separate steps by selecting the ion species and acceleration voltage, only the drain side can be injected. An LDD structure in which an N type drain region 7 having a relatively low impurity concentration for relaxing a high electric field is formed can be obtained.

【0012】[0012]

【発明の効果】以上述べたように本発明は、半導体基板
上のゲート絶縁膜を介して形成された多結晶シリコン層
とその上の高融点金属ケイ化物層を順次成膜し、高融点
金属ケイ化物層のチャネル方向の寸法が多結晶シリコン
層のチャネル方向の寸法よりも大きくなるようにゲート
電極を形成した後、不純物イオンを高融点金属ケイ化物
層は透過するが多結晶シリコン層は透過しない加速電圧
にて注入し、さらに高融点金属ケイ化物層がマスクとな
る加速電圧にて注入することにより、比較的簡単にLD
D構造で高信頼性MOSトランジスタを形成することが
できるという効果を有する。
As described above, according to the present invention, a polycrystalline silicon layer formed via a gate insulating film on a semiconductor substrate and a refractory metal silicide layer thereon are sequentially formed to form a refractory metal. After forming the gate electrode so that the dimension of the silicide layer in the channel direction is larger than the dimension of the polycrystalline silicon layer in the channel direction, impurity ions are transmitted through the refractory metal silicide layer but are transmitted through the polycrystalline silicon layer. It is relatively easy to perform LD by implanting at an acceleration voltage that does not
This has the effect that a highly reliable MOS transistor can be formed with the D structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するために工程順に示
した半導体装置の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor device, which is shown in order of steps for explaining an embodiment of the present invention.

【図2】本発明の他の実施例を説明するための半導体装
置の断面図である。
FIG. 2 is a sectional view of a semiconductor device for explaining another embodiment of the present invention.

【図3】従来のLDD構造のMOSトランジスタの製造
方法の一例を説明するための素子の断面図である。
FIG. 3 is a cross-sectional view of an element for explaining an example of a conventional method for manufacturing a MOS transistor having an LDD structure.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 フィールド絶縁膜 3 ゲート絶縁膜 4 多結晶シリコン層 5 高融点金属ケイ化物層 6 N- 型ソース領域 7 N- 型ドレイン領域 8 N型ソース領域 9 N型ドレイン領域 14 ゲート電極1 P-type silicon substrate 2 Field insulating film 3 Gate insulating film 4 Polycrystalline silicon layer 5 Refractory metal silicide layer 6 N type source region 7 N type drain region 8 N type source region 9 N type drain region 14 Gate electrode

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 8617−4M H01L 21/265 L Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/265 8617-4M H01L 21/265 L

Claims (1)

【特許請求の範囲】 【請求項1】 半導体基板上に設けられたゲート絶縁膜
上に多結晶シリコン層と高融点金属ケイ化物層を順次成
膜する工程と、前記高融点金属ケイ化物層のチャネル方
向の寸法が前記多結晶シリコン層のチャネル方向の寸法
よりも大きくなるようにゲート電極を形成する工程と、
前記ゲート電極のうち高融点金属ケイ化物層は透過する
が多結晶シリコン層は透過しない加速電圧にて不純物イ
オンを注入する工程と、前記ゲート電極のうち高融点金
属ケイ化物層も多結晶シリコン層も透過しない加速電圧
にて不純物イオンを注入する工程とを含むことを特徴と
する半導体装置の製造方法。
Claim: What is claimed is: 1. A step of sequentially forming a polycrystalline silicon layer and a refractory metal silicide layer on a gate insulating film provided on a semiconductor substrate, and a step of forming the refractory metal silicide layer. Forming a gate electrode so that the dimension in the channel direction is larger than the dimension in the channel direction of the polycrystalline silicon layer;
A step of implanting impurity ions at an accelerating voltage that allows the refractory metal silicide layer of the gate electrode to pass through but does not pass through the polycrystalline silicon layer; and the refractory metal silicide layer and the polycrystalline silicon layer of the gate electrode as well. And a step of implanting impurity ions at an accelerating voltage that does not permeate the semiconductor device.
JP17081891A 1991-07-11 1991-07-11 Manufacture of semiconductor device Pending JPH0521454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17081891A JPH0521454A (en) 1991-07-11 1991-07-11 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17081891A JPH0521454A (en) 1991-07-11 1991-07-11 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0521454A true JPH0521454A (en) 1993-01-29

Family

ID=15911905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17081891A Pending JPH0521454A (en) 1991-07-11 1991-07-11 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0521454A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226518A (en) * 1994-02-10 1995-08-22 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
US6316297B1 (en) 1998-12-28 2001-11-13 Fujitsu Quantum Devices Limited Semiconductor device and method for fabricating the same
US6624473B1 (en) * 1999-03-10 2003-09-23 Matsushita Electric Industrial Co., Ltd. Thin-film transistor, panel, and methods for producing them
WO2006132172A1 (en) * 2005-06-07 2006-12-14 Nec Corporation Fin type field effect transistor, semiconductor device and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621276A (en) * 1985-06-26 1987-01-07 Nec Corp Mos type semiconductor device
JPS6229168A (en) * 1985-07-31 1987-02-07 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621276A (en) * 1985-06-26 1987-01-07 Nec Corp Mos type semiconductor device
JPS6229168A (en) * 1985-07-31 1987-02-07 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226518A (en) * 1994-02-10 1995-08-22 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
US6316297B1 (en) 1998-12-28 2001-11-13 Fujitsu Quantum Devices Limited Semiconductor device and method for fabricating the same
US6624473B1 (en) * 1999-03-10 2003-09-23 Matsushita Electric Industrial Co., Ltd. Thin-film transistor, panel, and methods for producing them
US6812490B2 (en) 1999-03-10 2004-11-02 Matsushita Electric Industrial Co., Ltd. Thin-film transistor, panel, and methods for producing them
WO2006132172A1 (en) * 2005-06-07 2006-12-14 Nec Corporation Fin type field effect transistor, semiconductor device and production method thereof
US7859065B2 (en) 2005-06-07 2010-12-28 Nec Corporation Fin-type field effect transistor and semiconductor device
US8247294B2 (en) 2005-06-07 2012-08-21 Nec Corporation Manufacturing process of fin-type field effect transistor and semiconductor

Similar Documents

Publication Publication Date Title
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH06342914A (en) Manufacture of semiconductor device
US6087238A (en) Semiconductor device having reduced-width polysilicon gate and non-oxidizing barrier layer and method of manufacture thereof
JPH0521454A (en) Manufacture of semiconductor device
JP2730535B2 (en) Method for manufacturing semiconductor device
JP2931243B2 (en) Method for manufacturing semiconductor device
JP3088556B2 (en) Semiconductor device manufacturing method
JPH02196434A (en) Manufacture of mos transistor
JPH0548110A (en) Manufacture of semiconductor element
JPH0529337A (en) Semiconductor device
JPS63185064A (en) Manufacture of semiconductor device
JP3376305B2 (en) Method for manufacturing semiconductor device
JPH1131814A (en) Manufacture of semiconductor device
JPH06267972A (en) Manufacture of mos transistor
JPH08213601A (en) Semiconductor device and its manufacturing method
JPH0479336A (en) Production of semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPH0590290A (en) Manufacture of semiconductor device
JPH0513430A (en) Semiconductor emenent and manufacture thereof
JPH02174236A (en) Manufacture of semiconductor device
JPS60226169A (en) Manufacture of semiconductor device
JPH04127538A (en) Semiconductor device and manufacture thereof
JPH0590574A (en) Semiconductor device
JPH04142749A (en) Manufacture of semiconductor device
JPH07130997A (en) Manufacture of high-breakdown-strength transistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970805