JPS6229168A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6229168A
JPS6229168A JP16743685A JP16743685A JPS6229168A JP S6229168 A JPS6229168 A JP S6229168A JP 16743685 A JP16743685 A JP 16743685A JP 16743685 A JP16743685 A JP 16743685A JP S6229168 A JPS6229168 A JP S6229168A
Authority
JP
Japan
Prior art keywords
layer
polysilicon
metal
substrate
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16743685A
Other languages
Japanese (ja)
Inventor
Shinjirou Nishikura
西倉 慎次朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP16743685A priority Critical patent/JPS6229168A/en
Publication of JPS6229168A publication Critical patent/JPS6229168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • H01L29/66598Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET forming drain [D] and lightly doped drain [LDD] simultaneously, e.g. using implantation through the wings a T-shaped layer, or through a specially shaped layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To make the formation of an oxide film for the gate side walls unnecessary as well as to eliminate the damage of the Si substrate by sequentially depositing as a gate electrode three layers of polysilicon layer, metal silicide layer and metal layer, side-etching the polysilicon layer against the metal silicide layer and the metal layer, and implanting ions into the substrate. CONSTITUTION:A three-layer structure of polysilicon 4, metal silicide layer 11 and metal layer 12 is formed on a semiconductor substrate 1 through a gate oxide film 3, and after side-etching the polysilicon 4 against the metal silicide layer 11 and the metal layer 12, ions 9 are implanted into the semiconductor substrate 1. As stated above, when arsenic ions 9 for instance are implanted with the polysilicon 4 being etched more laterally than the metal silicide layer 11, the metal silicide layer 11 is a pillar-shaped crystal after evaporation, and the arsenic ions partially pass through this layer and reach the Si substrate 1. Thus an N<-> layer 7 of a less amount of the implanted impurity is formed directly under the undercut portion, and simultaneously an N<+> layer 10 is formed in the Si substrate 1, becoming a source-drain layer. Therefore, the process for forming the side walls of the gate electrode portion can be omitted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、MOS型の半導体装置の製造方法に関し、
特にLDD構造MO8FET製造方法を簡易化できるよ
うにしたものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a MOS type semiconductor device.
In particular, it is possible to simplify the manufacturing method of MO8FET with LDD structure.

(従来の技術) 第2図は従来のMO8型半導体装置の製造工程を示すも
のであり、まず、第2図(&)に示すように、Sl基板
1上に素子分離用酸化膜2、ゲート酸化膜3、ゲート電
極4を順次形成して、ゲート電極4となる部分の上面に
レジスト5を塗布してエツチングを行い、ゲート酸化膜
3とゲート電極4となる部分以外を除去した後、第2図
ら)に示すようにレジスト5を除去する。
(Prior Art) FIG. 2 shows the manufacturing process of a conventional MO8 type semiconductor device. First, as shown in FIG. After sequentially forming the oxide film 3 and the gate electrode 4, applying a resist 5 on the upper surface of the part that will become the gate electrode 4 and performing etching, and removing the part other than the part that will become the gate oxide film 3 and the gate electrode 4, The resist 5 is removed as shown in Figure 2 et al.

次いで、この第2図(b)に示すように、Sl基板1内
にドレイン・ソース電極となる不純物拡散層を形成する
ために、イオン6の注入を行い、第2図(c)に示すよ
うに、n一層7を形成する。
Next, as shown in FIG. 2(b), ions 6 are implanted in order to form impurity diffusion layers that will become drain and source electrodes in the Sl substrate 1, and as shown in FIG. 2(c). Then, n layers 7 are formed.

次いで、第211(d)に示すように、上面にゲート側
壁用酸化膜8を形成し、第2図(e)に示すように、ゲ
ート電極4とゲート酸化膜3の側面のみにゲート側壁用
酸化膜8を残して残りは全部除去する。
Next, as shown in FIG. 211(d), a gate sidewall oxide film 8 is formed on the upper surface, and as shown in FIG. The rest is completely removed except for the oxide film 8.

次に、第2図(f)に示すように、このゲート側壁用酸
化膜8とゲート電極4をマスクとして、第2回目のイオ
ン9の注入を行うと、第2図□□□)に示すように、n
層10が形成され、n′″層7はゲート酸化膜3の斜め
下にのみ形成されることになる。その後、図示しないが
、At配線および各電極と配線を接続するためのフンタ
クトホール、絶縁膜などを形成する。
Next, as shown in FIG. 2(f), a second implantation of ions 9 is performed using this gate sidewall oxide film 8 and gate electrode 4 as a mask, as shown in FIG. Like, n
The layer 10 is formed, and the n''' layer 7 is formed diagonally below the gate oxide film 3.After that, although not shown, holes for connecting the At wiring and each electrode to the wiring are formed. Form an insulating film, etc.

上記ゲート電極4用の材料として従来多結晶シリコン(
以降ポリシリコンと呼ぶ)が用いられており、またソー
ス会ドレイン電極となるSl基板1内の拡散層は、ポリ
シリコンによるゲート電極部分をホトリソ・エツチング
工程によって形成した後、イオン注入法により、電気的
に活成な不純物をSl基板1に打ち込み、ゲート電極4
が形成された部分では、ポリシリコン層により上記不純
物がSl基板1中には入り込まず、ゲート電極4が形成
されていない部分のみに不純物が打ち込まれ、拡散層を
形成する自己整合法(以下、セル7アラインと呼ぶ)に
より製造されてきた。
Conventionally, polycrystalline silicon (
The diffusion layer in the Sl substrate 1, which will become the source/drain electrode, is formed by forming the gate electrode part of polysilicon by a photolithography/etching process, and then by ion implantation. A highly active impurity is implanted into the Sl substrate 1 to form the gate electrode 4.
In the area where the gate electrode 4 is formed, the impurity does not enter into the Sl substrate 1 due to the polysilicon layer, and the impurity is implanted only into the area where the gate electrode 4 is not formed, thereby forming a diffusion layer using the self-alignment method (hereinafter referred to as It has been manufactured by Cell 7 Align).

また、素子の微細化に伴い、ドレイン近傍が高電界にな
り、これにより発生したホットキャリアがゲート酸化膜
3中に注入され、MO8型半導体装置の特性劣化(しき
い値電圧の上昇と相互コンダクタンスの低下)を引き起
こすため、ゲート電極4近傍のソース番ドレイン部分の
拡散層の不純物濃度を低下させるLDD構造(Ligh
tly DopedDrain )となってきた。
In addition, with the miniaturization of devices, a high electric field is generated near the drain, and hot carriers generated thereby are injected into the gate oxide film 3, resulting in deterioration of the characteristics of the MO8 type semiconductor device (increase in threshold voltage and mutual conductance). Therefore, an LDD structure (Light
Try DopedDrain).

LDD構造をセル7アラインで実現する之めには、ゲー
ト電極4を形成した後、上述のように第2図(b)のご
とく低濃度でイオン6の注入を行い、次にゲート側壁用
酸化膜8を堆積させ(第2図(d))、反応性イオンエ
ツチングを行ってゲート!極側面にイオン注入のマスク
となるようにゲート側壁用酸化膜8を残し、2回目のイ
オン注入を高濃度で行い拡散層を形成する(たとえば、
アイ) IJプルJournal of 5olid−
state C1rcuits、Vol 5c−17゜
Nn 2 April 1982 )。
In order to realize the LDD structure by aligning the cells 7, after forming the gate electrode 4, ions 6 are implanted at a low concentration as shown in FIG. A film 8 is deposited (FIG. 2(d)) and reactive ion etching is performed to form the gate! The gate sidewall oxide film 8 is left on the extreme side surface to serve as a mask for ion implantation, and a second ion implantation is performed at a high concentration to form a diffusion layer (for example,
I) IJPuru Journal of 5olid-
state C1rcuits, Vol 5c-17°Nn 2 April 1982).

(発明が解決しようとする問題点) しかし、以上述べた従来の製造方法ではイオン注入工程
が2度行うわけであるが、2回目のイオン9の注入の前
にゲート電極側壁のゲート側4y用酸化膜8を形成し、
エツチング工程が必要で、さらにこのエツチングの際に
81基板1にエツチングによる損傷を引き起こしやすい
という問題点かあつた。
(Problem to be Solved by the Invention) However, in the conventional manufacturing method described above, the ion implantation process is performed twice, but before the second implantation of ions 9, the forming an oxide film 8;
Another problem was that an etching process was required, and the 81 substrate 1 was likely to be damaged by etching during this etching.

この発明は、前記従来技術がもっている問題点のうち、
ゲート側壁用酸化膜を形成する際の工程数が増大し、か
つ81基板が損傷するという点について解決した半導体
装置の製造方法を提供するものである。
This invention solves the problems of the above-mentioned prior art.
The object of the present invention is to provide a method for manufacturing a semiconductor device that solves the problems of increasing the number of steps when forming an oxide film for gate sidewalls and damaging the 81 substrate.

(問題点を解決するための手段) この発明は、半導体装置の製造方法において、ゲート電
極としてポリシリコン、金属シリサイド層、金属層の3
層を順次堆積してこのホ゛リシリコン層が金属シリサイ
ド層と金属層に対してサイドエツチングを施してイオン
を注入する工程を導入したものである。
(Means for Solving the Problems) The present invention provides a method for manufacturing a semiconductor device in which three layers of polysilicon, a metal silicide layer, and a metal layer are used as a gate electrode.
This method introduces a process in which layers are sequentially deposited, the polysilicon layer is side-etched to the metal silicide layer and the metal layer, and ions are implanted.

(作 m) この発明によれば、半導体装置の製造方法において以上
のような工程を導入したので、3層構造のゲート電極の
最下層のポリシリコン層を最上層の金属層に対してアン
ダカットしてイオン注入し、したがって、前記問題点を
除去できる。
(Production m) According to the present invention, since the above steps are introduced in the method for manufacturing a semiconductor device, the lowermost polysilicon layer of the three-layered gate electrode is undercut with respect to the uppermost metal layer. ion implantation, thus eliminating the above-mentioned problems.

(実施例) 以下、この発明の半導体装置の製造方法の実施例につい
て図面に基づき説明する。第1図(a)ないし第1図(
e)はその一実施例の工程説明図である。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device of the present invention will be described based on the drawings. Figure 1(a) to Figure 1(
e) is a process explanatory diagram of one example.

この第1図(a)ないし第1図(e)において、第2図
(a)ないし第2図(2))と同一部分に同一符号を付
して説明する。
In FIG. 1(a) to FIG. 1(e), the same parts as in FIG. 2(a) to FIG. 2(2)) are given the same reference numerals and will be explained.

まず、第1図(IL)に示すように、半導体基板として
P型のSl基板1を酸素雰囲気中で1001酸化し素子
分離用酸化膜2とゲート酸化膜3を形成した後、ポリシ
リコン4をxSooAcvD法により堆積し、リン拡散
を行い次に同時スパッタ法によりシリコンとモリブデン
の二つのスパッタ源からシリコンとモリブデンの組成比
が約1 : 2.5になるように蒸着し、さらに、同じ
スパッタ蒸着装置内で、モリブデンのみを1ooo〜2
000λ蒸着して、金属シリサイド層11と金属層12
を形成する。かくして、ゲート電極となる部分は最下層
のポリシリコン4と中間層の金属シリサイド層11と最
上層の金属層12との3層構造となる。
First, as shown in FIG. 1 (IL), a P-type Sl substrate 1 as a semiconductor substrate is 1001 oxidized in an oxygen atmosphere to form an element isolation oxide film 2 and a gate oxide film 3, and then polysilicon 4 is formed. xSooAcvD method, phosphorus diffusion is performed, and then simultaneous sputtering is performed from two sputtering sources of silicon and molybdenum so that the composition ratio of silicon and molybdenum is approximately 1:2.5, and then the same sputter deposition is performed. Inside the device, only molybdenum is 1ooo~2
000λ vapor deposition to form a metal silicide layer 11 and a metal layer 12.
form. Thus, the portion that will become the gate electrode has a three-layer structure including the polysilicon layer 4 as the bottom layer, the metal silicide layer 11 as the intermediate layer, and the metal layer 12 as the top layer.

この後、ホトリソ工程により第1図(b)に示すように
、レジストパターン5を形成し、第1図(C)に示すよ
うに、四塩化炭素(CC4)と6弗化硫砿(SF6 )
ガスの混合ガスにより0.2 torr 、 250W
でエツチングを行う。
After that, a resist pattern 5 is formed by a photolithography process as shown in FIG. 1(b), and carbon tetrachloride (CC4) and sulfur hexafluoride (SF6) are used as shown in FIG. 1(C).
0.2 torr, 250W due to gas mixture
Perform etching with.

このとき、ポリシリコン4のエツチング速度がモリブデ
ン膜(金属シリサイド層11)のそれより速いため、エ
ツチング後は、ポリシリコン4が金属シリサイド層11
よりも横方向にエツチングされた(アンダカットのある
)状態となる。
At this time, since the etching speed of polysilicon 4 is faster than that of the molybdenum film (metal silicide layer 11), polysilicon 4 is etched into metal silicide layer 11 after etching.
The result is a more horizontally etched state (with an undercut).

この後に、第1図(d)に示すように、砒素のイオン9
の注入を行うと、金属シリサイド層11は、蒸着後は柱
状の結晶であり、砒素イオンは一部この層を通りSl基
板1に到達するので、アンダカット部分の直下は、打ち
込み不純物量が少ないn一層7が形成できるとともに、
Sl基板1中にはn+層10が形成され、ソース争ドレ
イン層となる。
After this, as shown in FIG. 1(d), arsenic ion 9
When implantation is performed, the metal silicide layer 11 is a columnar crystal after vapor deposition, and some of the arsenic ions pass through this layer and reach the Sl substrate 1, so the amount of implanted impurities is small directly under the undercut part. While n single layer 7 can be formed,
An n+ layer 10 is formed in the Sl substrate 1 and serves as a source and drain layer.

(発明の効果) 以上詳細に説明したようにこの発明によれば、ゲート電
極部分をポリシリコン、シリコンと金属の混合した金属
シリサイド層、金属層の3層構造とし、ホトリソ・エツ
チングを行い、金属層に対しポリシリコンの層がアンダ
カットした状態にした後、イオン注入を行うことにより
、金MNの結晶性を利用してイオンが金属層を通過し、
その直下のSt基板上に濃度の薄い拡散層を形成し、L
DD構造としたので、ゲート電極部の側壁を形成する際
の工程を省略でき、この工程の除虫じるSL基板へのプ
ラズマによる損傷を回避できる。
(Effects of the Invention) As described above in detail, according to the present invention, the gate electrode portion has a three-layer structure of polysilicon, a metal silicide layer containing a mixture of silicon and metal, and a metal layer, and is etched by photolithography and etching. After the polysilicon layer is undercut with respect to the layer, by performing ion implantation, the ions pass through the metal layer using the crystallinity of gold MN.
A lightly concentrated diffusion layer is formed on the St substrate immediately below the L
Since the DD structure is adopted, the step of forming the side walls of the gate electrode portion can be omitted, and damage caused by plasma to the SL substrate during this step can be avoided.

さらに、この発明による構造を配線部分に用いると、金
属を用いたことによる抵抗値の減少により回路の高速化
にも寄与できる。
Furthermore, when the structure according to the present invention is used in the wiring portion, the resistance value can be reduced due to the use of metal, which can contribute to increasing the speed of the circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&)ないし第1図(e)はこの発明の半導体装
置の製造方法の一実施例の工程説明図、第2図(a)な
いし第2図(ロ)は従来の半導体装置の製造方法の工程
説明図である。 1・・・St基板、2・・・素子分離用酸化膜、3・・
・ゲート酸化膜、4・・・ポリシリコン、5・・・レジ
スト、9・・・イオン注入、7・・・n一層、10・・
・n+層、11・・・金層シリサイド層、12・・・金
属層。 (r 二〜←し刊1ト飲直の製造わムn月1 第1 図 す (+@図 イ疋求O−F傳イ参老(置e 第 製it方法丙工希呈説明図 2図
FIGS. 1(&) to 1(e) are process explanatory diagrams of an embodiment of the method for manufacturing a semiconductor device of the present invention, and FIGS. It is a process explanatory diagram of a manufacturing method. 1... St substrate, 2... Oxide film for element isolation, 3...
・Gate oxide film, 4...Polysilicon, 5...Resist, 9...Ion implantation, 7...N single layer, 10...
- n+ layer, 11...gold layer silicide layer, 12...metal layer. (r 2 ~ ← 1 publication 1 to drink fresh production time n month 1 1st figure (+ @ figure ← request O-F den ii sanro (place e) figure

Claims (1)

【特許請求の範囲】 (a)半導体基板上にゲート酸化膜を介してポリシリコ
ンと金属シリサイド層と金属層の3層構造を形成する工
程と、 (b)上記ポリシリコンが上記金属シリサイド層と金属
層に対してサイドエッチングを施す工程と、(c)上記
半導体基板にイオンの注入を行う工程と、よりなる半導
体装置の製造方法。
[Claims] (a) A step of forming a three-layer structure of polysilicon, a metal silicide layer, and a metal layer on a semiconductor substrate via a gate oxide film, and (b) forming the polysilicon layer with the metal silicide layer. A method for manufacturing a semiconductor device, comprising the steps of: performing side etching on a metal layer; and (c) implanting ions into the semiconductor substrate.
JP16743685A 1985-07-31 1985-07-31 Manufacture of semiconductor device Pending JPS6229168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16743685A JPS6229168A (en) 1985-07-31 1985-07-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16743685A JPS6229168A (en) 1985-07-31 1985-07-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6229168A true JPS6229168A (en) 1987-02-07

Family

ID=15849670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16743685A Pending JPS6229168A (en) 1985-07-31 1985-07-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6229168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521454A (en) * 1991-07-11 1993-01-29 Nec Yamagata Ltd Manufacture of semiconductor device
JPH0529337A (en) * 1991-07-25 1993-02-05 Nec Yamagata Ltd Semiconductor device
KR100540477B1 (en) * 1998-06-30 2006-03-17 주식회사 하이닉스반도체 Gate electrode formation method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521454A (en) * 1991-07-11 1993-01-29 Nec Yamagata Ltd Manufacture of semiconductor device
JPH0529337A (en) * 1991-07-25 1993-02-05 Nec Yamagata Ltd Semiconductor device
KR100540477B1 (en) * 1998-06-30 2006-03-17 주식회사 하이닉스반도체 Gate electrode formation method of semiconductor device

Similar Documents

Publication Publication Date Title
US5283455A (en) Thin film field effect element having an LDD structure
JPH03173480A (en) Manufacture of semiconductor device having multilayer conduction line lying on board
US5682052A (en) Method for forming isolated intra-polycrystalline silicon structure
US6271064B2 (en) Thin film transistor and method of manufacturing the same
KR20020047230A (en) Method of manufacturing a semiconductor memory device with anti-reflective coating
JPS6229168A (en) Manufacture of semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JPH04116846A (en) Semiconductor device and its manufacture
JPS63207177A (en) Manufacture of semiconductor device
JPH05198796A (en) Semiconductor device and manufacture thereof
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPH0640549B2 (en) Method for manufacturing MOS semiconductor device
JPH01272161A (en) Manufacture of mos type fet
JPH03227024A (en) Manufacture of semiconductor device
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
KR100338090B1 (en) Method for manufacturing semiconductor device
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
JPH01260857A (en) Semiconductor device and manufacture thereof
JPS6154661A (en) Manufacture of semiconductor device
JPH07226502A (en) Mos transistor and manufacture thereof
JPH08222736A (en) Method of manufacturing mos transistor
KR100198630B1 (en) Structure of thin film transistor and making method of the same
JPH0298173A (en) Manufacture of semiconductor memory
JPS62206873A (en) Manufacture of semiconductor device
JPH0629541A (en) Manufacture of semiconductor device