JPH04116846A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH04116846A
JPH04116846A JP23780090A JP23780090A JPH04116846A JP H04116846 A JPH04116846 A JP H04116846A JP 23780090 A JP23780090 A JP 23780090A JP 23780090 A JP23780090 A JP 23780090A JP H04116846 A JPH04116846 A JP H04116846A
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor device
semiconductor
manufacturing
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23780090A
Other languages
Japanese (ja)
Inventor
Toshiaki Iwamatsu
俊明 岩松
Kazuyuki Sugahara
和之 須賀原
Yasuaki Inoue
靖朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23780090A priority Critical patent/JPH04116846A/en
Publication of JPH04116846A publication Critical patent/JPH04116846A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of a parasitic transistor by providing an ion implanted area on the side face of the active layer of a semiconductor by continuous rotation oblique ion implantation. CONSTITUTION:A resist is applied to a semiconductor layer 2 on an insulating substrate l. Then, after making island-like patterning on the semiconductor layer 2, a P<+> area 21 is formed by implanting boron into the layer 2 by rotating the substrate l while the substrate l is inclined by 45 deg.. After the resist 3 is removed, an oxide film 4 is formed by oxidizing the surface of the semiconductor layer 2 and a gate electrode 6 is formed on the oxide film 4. Therefore, the occurrence of a parasitic transistor can be suppressed through simple processes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置及びその製造方法、特に絶縁膜
状に形成した半導体装置及びその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a semiconductor device formed in the shape of an insulating film and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

半導体装置の高性能化を図るために、回路素子を誘電体
で分離し浮遊容量の少ない半導体集積回路を製造する試
みや、さらには回路素子を立体的に多層積層化した集積
型半導体装置、いわゆる三次元回路素子を製造する試み
がなされている。
In order to improve the performance of semiconductor devices, attempts have been made to separate circuit elements with dielectrics and manufacture semiconductor integrated circuits with less stray capacitance, and even more so-called integrated semiconductor devices in which circuit elements are stacked three-dimensionally in multiple layers. Attempts have been made to fabricate three-dimensional circuit elements.

第3図は従来の絶縁膜上に形成された半導体装置の縦断
面図であり、図において、101はシリコン基板上に二
酸化シリコン(以下、酸化膜と称する)を形成した絶縁
基板、102は厚さ200人の酸化膜、111はボロン
濃度I X 10 ”/ad。
FIG. 3 is a vertical cross-sectional view of a conventional semiconductor device formed on an insulating film. The oxide film of 200 people, 111 is the boron concentration I x 10 ''/ad.

厚さ1000人の単結晶シリコンからなるチャネル領域
、112は砒素濃度I X 10 ”/alの結晶から
なるソース・ドレイン拡散領域、103は厚さ8000
人のAfからなる電極配線、104は燐を高濃度にドー
プした多結晶シリコンゲート電極である。以上のよにし
てNMo5トランジスタが絶縁膜101上に形成されて
いた。
A channel region made of single crystal silicon with a thickness of 1000 μm, 112 a source/drain diffusion region made of crystal with an arsenic concentration of I x 10 ”/al, and 103 with a thickness of 8000 μm
The electrode wiring 104 made of Af is a polycrystalline silicon gate electrode heavily doped with phosphorus. As described above, the NMo5 transistor was formed on the insulating film 101.

第4図は、従来の半導体装置の電気特性である。FIG. 4 shows the electrical characteristics of a conventional semiconductor device.

従来の半導体装置ではメサ分離構造を用いている。Conventional semiconductor devices use a mesa isolation structure.

これはトランジスターを積層化して三次元回路素子を形
成する場合、熱処理が長時間かかるLOGO8分離法か
適用できないからである。
This is because when stacking transistors to form a three-dimensional circuit element, the LOGO8 separation method, which requires a long heat treatment, cannot be applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置の製造方法は以上のように構成されて
おり、活性層112側壁に寄生トランジスターか形成さ
れる。また活性層112の側壁は主面と異なった結晶面
を持つため主面に形成されたトランジスと異なったしき
い値をもつ。その結果第4図に示すようにサブスレッシ
ョルド領域においてキンクが発生し素子の特性に悪影響
を与えるという問題点があった。さらにメサ分離構造で
は活性層112のエツジ付近のゲート酸化膜が薄くなり
、エツジに電界が集中するなどの影響によりゲート耐圧
が低下するという問題点があった。
The conventional method for manufacturing a semiconductor device is configured as described above, and a parasitic transistor is formed on the side wall of the active layer 112. Furthermore, since the sidewalls of the active layer 112 have a crystal plane different from the main surface, they have a different threshold voltage than the transistor formed on the main surface. As a result, as shown in FIG. 4, kinks occur in the subthreshold region, which adversely affects the characteristics of the device. Furthermore, the mesa isolation structure has the problem that the gate oxide film near the edges of the active layer 112 becomes thinner, and the gate breakdown voltage decreases due to effects such as concentration of an electric field on the edges.

そして上記寄生トランジスターの影響を避けるために従
来、米国特許第4753896号に示すような方法か提
案されている。
In order to avoid the influence of the parasitic transistor, a method as shown in US Pat. No. 4,753,896 has been proposed.

第5図の製造工程図を用いて説明すると、図(a)に示
すように半導体基板10上の層間絶縁物12上の半導体
14上に酸化膜16をデポし、さらにこの酸化膜16上
にシリコン窒化膜18(以下、窒化膜と称する)と酸化
膜2oをデボし、レジスト22をマスクとして窒化膜1
8と酸化膜16゜20をパターンニングする。次に図(
b)に示すようにレジスト26を設け、絶縁膜12上の
半導体層14′で示す部分にボロンイオン注入する。そ
の後回(C)に示すように酸化膜2oを除去したのち窒
化膜18.酸化膜16の側面に酸化膜かなるサイドウオ
ール28を作製し後述の図Cd)に示されるようにトラ
ンジスタフィールド32とする。その後、図(d)に示
すように半導体層14′をパターンニングしてから、半
導体層14′の側面に酸化膜からなるサイドウオール3
0を作製する。そして窒化膜18.酸化膜15.サイド
ウオール28除去後、通常のMOSプロセスでMo3)
ランシスターを形成する。
To explain using the manufacturing process diagram in FIG. 5, as shown in FIG. 5(a), an oxide film 16 is deposited on the semiconductor 14 on the interlayer insulator 12 on the semiconductor substrate 10, and The silicon nitride film 18 (hereinafter referred to as nitride film) and the oxide film 2o are debossed, and the nitride film 1 is deposited using the resist 22 as a mask.
8 and the oxide film 16°20 are patterned. Next, the figure (
As shown in b), a resist 26 is provided, and boron ions are implanted into the portion indicated by the semiconductor layer 14' on the insulating film 12. Thereafter, as shown in step (C), after removing the oxide film 2o, the nitride film 18. A side wall 28 made of an oxide film is formed on the side surface of the oxide film 16 to form a transistor field 32 as shown in Figure Cd) to be described later. After that, the semiconductor layer 14' is patterned as shown in FIG.
Create 0. and nitride film 18. Oxide film 15. After sidewall 28 is removed, Mo3) is applied using a normal MOS process.
Form a run sister.

以上のように構成することでサイドウオール30で半導
体活性領域14のエツジの電界集中を防止し、イオン注
入層14′により寄生トランジスタの発生を抑えている
が、このプロセスフローでは工程数が多く、また、2度
のサイドウオール28.30の形成にCVD法で850
℃程度の高温熱処理が必要なため三次元素子の作製には
適していないという欠点があった。
With the above configuration, the sidewall 30 prevents electric field concentration at the edge of the semiconductor active region 14, and the ion implantation layer 14' suppresses the generation of parasitic transistors, but this process flow requires a large number of steps. In addition, the CVD method was used to form the sidewall 28.30mm.
It has the disadvantage that it is not suitable for producing tertiary elements because it requires high-temperature heat treatment on the order of °C.

この発明は上記のような問題点を解決するためになされ
たもので、簡単な製造フローで寄生トランジスタの発生
をなくすことができる半導体装置の製造方法を得ること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can eliminate the generation of parasitic transistors with a simple manufacturing flow.

またフィールドエツジの電界集中を防ぐとともに寄生ト
ランジスタの発生をなくすことができる半導体装置及び
その製造方法を得ることを目的とする。
Another object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can prevent electric field concentration at field edges and eliminate the generation of parasitic transistors.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる半導体装置の製造方法は、半導体活性
層の側面に連続回転斜めイオン注入を用いてイオン注入
領域を設けるようにしたものである。
A method of manufacturing a semiconductor device according to the present invention is such that an ion implantation region is provided on a side surface of a semiconductor active layer using continuous rotation oblique ion implantation.

また、半導体層に断面略台形のテーパをつけて島状にバ
ターニングするとともに、該テーパ部側面に連続回転斜
めイオン注入を用いてイオン注入領域を設けるようにし
たものである。
Further, the semiconductor layer is tapered to have a substantially trapezoidal cross section and patterned into an island shape, and an ion implantation region is provided on the side surface of the tapered portion using continuous rotation oblique ion implantation.

〔作用〕[Effect]

この発明において、半導体の活性層エツジに連続回転イ
オンを注入するようにしたので寄生トランジスタの発生
を簡単な製造工程で抑えることかできる。また半導体活
性層にテーパをつけてパターンニングすることでエツジ
の電界集中を抑えることができる。
In this invention, since continuously rotating ions are implanted into the edge of the active layer of the semiconductor, the generation of parasitic transistors can be suppressed through a simple manufacturing process. Furthermore, by patterning the semiconductor active layer in a tapered manner, electric field concentration at the edges can be suppressed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例による半導体装置の製造方法を工
程別に示した断面図であり、図において1は絶縁基板、
2はシリコン半導体膜、3はレジスト、4は酸化膜、6
はゲート電極である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view showing each step of a method for manufacturing a semiconductor device according to an embodiment of the present invention. In the figure, 1 is an insulating substrate;
2 is a silicon semiconductor film, 3 is a resist, 4 is an oxide film, 6
is the gate electrode.

次に製造方法について説明する。Next, the manufacturing method will be explained.

図(a)に示すように、絶縁基板1上の半導体層2にレ
ジスト3を塗布する。
As shown in Figure (a), a resist 3 is applied to the semiconductor layer 2 on the insulating substrate 1.

次に図(b)に示すように、半導体層2を高上にパター
ンニングし、絶縁基板1を45度に傾は回転させながら
50KeVでI X 10 ”/aIrのボロン(B1
)を注入しP+領域21を作る。
Next, as shown in Figure (b), the semiconductor layer 2 is patterned in a high position, and while the insulating substrate 1 is rotated at an angle of 45 degrees, boron (B1
) is implanted to form a P+ region 21.

そして図(C)に示すようにレジスト3除去後、半導体
層2表面を酸化して200人程度の酸化膜4作り、その
上にゲート電極6を形成する。
As shown in FIG. 3C, after removing the resist 3, the surface of the semiconductor layer 2 is oxidized to form an oxide film 4 of about 200 layers, and a gate electrode 6 is formed thereon.

その後は、通常のMOSのプロセスフローに従ってMO
Sトランジスターを作製する。
After that, follow the normal MOS process flow.
Fabricate an S transistor.

このように本実施例では半導体層2に斜め45度にイオ
ン注入したので活性層2側壁に簡単にP9領域21を熱
処理することなく作製することができ、寄生トランジス
ターの発生を制御することかできる。
In this example, since ions were implanted into the semiconductor layer 2 at an angle of 45 degrees, the P9 region 21 can be easily formed on the side wall of the active layer 2 without heat treatment, and the generation of parasitic transistors can be controlled. .

第2図は、本発明の他の実施例による半導体装置の製造
工程を示す断面図であり、第1図と同一符号は同一また
は相当部分を示し、5はP+領域である。
FIG. 2 is a sectional view showing the manufacturing process of a semiconductor device according to another embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same or corresponding parts, and 5 is a P+ region.

まず、図(a)に示すように、上記実施例と同様に絶縁
基板1上の半導体2にレジスト3を塗布する。
First, as shown in Figure (a), a resist 3 is applied to the semiconductor 2 on the insulating substrate 1 in the same manner as in the above embodiment.

次に図(b)に示すようにレジスト3を残し、下層の半
導体層2をパターンニングする。このとき、半導体層2
に30度の角度のテーパをつけてパターンニングする。
Next, as shown in Figure (b), the resist 3 is left and the underlying semiconductor layer 2 is patterned. At this time, the semiconductor layer 2
Pattern with a taper at a 30 degree angle.

次に、45度に基板1を傾は回転させなから50KeV
でl X 10 ′3/aIrのボロンを注入しP+領
域5を上記テーパ状と成った半導体層2の側壁に作る。
Next, tilt the substrate 1 at 45 degrees and rotate it to a voltage of 50 KeV.
Then, boron of 1 x 10 '3/aIr is implanted to form a P+ region 5 on the side wall of the tapered semiconductor layer 2.

そして図(C)に示すように、レジスト3除去後、半導
体層2表面に厚さ200人程度の酸化膜4を形成し、さ
らにゲート電極6を形成する。
Then, as shown in FIG. 3C, after removing the resist 3, an oxide film 4 with a thickness of about 200 layers is formed on the surface of the semiconductor layer 2, and a gate electrode 6 is further formed.

その後は、通常のMOSプロセスフローに従ってMOS
トランジスタを作製する。
After that, follow the normal MOS process flow to complete the MOS
Fabricate a transistor.

このように本実施例では、半導体層2と基板1とのエツ
ジ部の角度を150度とするとともに、半導体層2に斜
め45度にイオン注入ようにしたので、簡単な構造でも
って電界集中が起こるのを避けることができ、また、高
温処理を避けて半導体層の側壁部にP1領域を作製した
ので素子特性を損なうことなく寄生トランジスタの発生
を抑制することができる。
As described above, in this embodiment, the angle of the edge portion between the semiconductor layer 2 and the substrate 1 is set to 150 degrees, and the ions are implanted into the semiconductor layer 2 at an angle of 45 degrees, so that electric field concentration can be reduced with a simple structure. Furthermore, since the P1 region is formed on the side wall of the semiconductor layer while avoiding high-temperature treatment, the generation of parasitic transistors can be suppressed without impairing device characteristics.

なお、酸化時に900度程度の温度で、酸化を行なうと
エツジ部の酸化膜厚は極端に薄くなる事が報告されてい
るが、このプロセスフローで作製すると、上記温度にて
ゲート酸化膜4を形成しても酸化膜厚は薄くはならず、
ゲート耐圧の低下を避けることができる。
It has been reported that if oxidation is performed at a temperature of about 900 degrees, the oxide film thickness at the edge becomes extremely thin, but when fabricated using this process flow, the gate oxide film 4 is formed at the above temperature. Even if it is formed, the oxide film thickness will not become thinner,
A decrease in gate breakdown voltage can be avoided.

なお、上記実施例では、NMOSを作製する例を示した
が、PMO3でも逆の導電型不純物を斜め連続回転イオ
ン注入すれば同様の方法を用いて製造することができ、
さらにNMOS、PMOSトランジスタを同一基板上に
作製することもできる。
Although the above example shows an example of manufacturing NMOS, PMO3 can also be manufactured using the same method by performing diagonal continuous rotational ion implantation of impurities of the opposite conductivity type.
Furthermore, NMOS and PMOS transistors can also be manufactured on the same substrate.

また、多数積層化した三次元回路素子にも適用できる。It can also be applied to three-dimensional circuit elements that are laminated in large numbers.

さらに、上記実施例ではMOS)ランジスタを例として
示したが、その他の素子の分離に適用しても同様の効果
が得られる。
Further, in the above embodiment, a MOS (MOS) transistor was shown as an example, but similar effects can be obtained even when applied to isolation of other elements.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体装置の製造方法に
よれば、連続回転斜めイオン注入技術を用いたので簡単
なプロセスで寄生トランジスタの発生を抑制することが
できる、また絶縁膜上の半導体層のパターンニングを断
面略台形になるよにテーパをつけて行なうようにしたの
で基板と半導体層とのエツジ部における電界集中がなく
なり、素子特性がよく信頼性の高い半導体装置を得るこ
とができるという効果がある。
As described above, according to the method for manufacturing a semiconductor device according to the present invention, since the continuous rotation oblique ion implantation technique is used, the generation of parasitic transistors can be suppressed with a simple process, and the semiconductor device layer on the insulating film can be suppressed. Since the patterning is performed with a taper so that the cross section is approximately trapezoidal, electric field concentration at the edge of the substrate and semiconductor layer is eliminated, making it possible to obtain a highly reliable semiconductor device with good device characteristics. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体装置の製造方
法を示す工程別断面図、第2図はこの発明の他の実施例
による半導体装置の製造方法を示す工程別断面図、第3
図は従来の半導体装置の断面図、第4図は従来の半導体
装置のの電気特性(ID−VG特性)を説明するための
図、第5図は従来の他の半導体装置の製造方法を示す工
程別断面図である。 1は絶縁基板、2はシリコン半導体膜、3はレジスト、
4は酸化膜、21はP1シリコン領域、6はゲート電極
配線である。 なお図中同一符号は同−又は相当部分を示す。
1 is a step-by-step sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a step-by-step sectional view showing a method for manufacturing a semiconductor device according to another embodiment of the invention, and FIG.
The figure is a cross-sectional view of a conventional semiconductor device, FIG. 4 is a diagram for explaining the electrical characteristics (ID-VG characteristics) of a conventional semiconductor device, and FIG. 5 is a diagram showing a method of manufacturing another conventional semiconductor device. It is a sectional view according to process. 1 is an insulating substrate, 2 is a silicon semiconductor film, 3 is a resist,
4 is an oxide film, 21 is a P1 silicon region, and 6 is a gate electrode wiring. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁体上の半導体層に回路素子を形成する半導体
装置の製造方法において、 該半導体層を島状にパターンニングする際に半導体層に
その断面が略台形状となるテーパをつけてパターニング
する工程と、 半導体層の側壁に斜めに連続回転イオン注入により電気
的活性不純物を注入する工程とを備えたことを特徴とす
る半導体装置の製造方法。
(1) In a method of manufacturing a semiconductor device in which a circuit element is formed in a semiconductor layer on an insulator, when patterning the semiconductor layer into an island shape, the semiconductor layer is patterned with a taper so that the cross section thereof is approximately trapezoidal. 1. A method of manufacturing a semiconductor device, comprising: a step of implanting an electrically active impurity obliquely into a side wall of a semiconductor layer by continuous rotational ion implantation.
(2)絶縁体上の半導体層に回路素子が形成された半導
体装置において、 該半導体層はその両側部にテーパ部を有する断面略台形
状となっていることを特徴とする半導体装置。
(2) A semiconductor device in which a circuit element is formed on a semiconductor layer on an insulator, wherein the semiconductor layer has a substantially trapezoidal cross section with tapered portions on both sides thereof.
(3)半導体層にその断面が略台形状となるテーパをつ
けてパターニングする工程において、テーパ角度を30
度としたことを特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。
(3) In the step of patterning the semiconductor layer with a taper so that its cross section is approximately trapezoidal, the taper angle is set at 30°.
2. A method for manufacturing a semiconductor device according to claim 1, characterized in that the method comprises:
(4)絶縁体上の半導体層に回路素子を形成する半導体
装置の製造方法において、 該半導体層を島状にパターンニングする工程と、半導体
層の側壁に斜めに連続回転イオン注入により電気的活性
不純物を注入する工程とを備えたことを特徴とする半導
体装置の製造方法。
(4) A method for manufacturing a semiconductor device in which a circuit element is formed in a semiconductor layer on an insulator, which includes a step of patterning the semiconductor layer into an island shape, and performing electrical activation by diagonally continuous rotational ion implantation into the sidewall of the semiconductor layer. 1. A method of manufacturing a semiconductor device, comprising the step of implanting impurities.
JP23780090A 1990-09-06 1990-09-06 Semiconductor device and its manufacture Pending JPH04116846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23780090A JPH04116846A (en) 1990-09-06 1990-09-06 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23780090A JPH04116846A (en) 1990-09-06 1990-09-06 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH04116846A true JPH04116846A (en) 1992-04-17

Family

ID=17020605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23780090A Pending JPH04116846A (en) 1990-09-06 1990-09-06 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH04116846A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407845A (en) * 1992-10-15 1995-04-18 Fujitsu Limited Method of manufacturing thin film transistors in a liquid crystal display apparatus
US5518949A (en) * 1995-07-18 1996-05-21 Winbond Electronics Corporation Electrical isolation method for devices made on SOI wafer
US5698885A (en) * 1994-03-17 1997-12-16 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
JP2007103491A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Semiconductor device and manufacturing method of semiconductor device
JP2007273968A (en) * 2006-03-08 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US7847348B2 (en) 2008-03-14 2010-12-07 Samsung Electronics Co., Ltd. Semiconductor apparatus
US8294157B2 (en) 2006-03-08 2012-10-23 Semiconducter Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407845A (en) * 1992-10-15 1995-04-18 Fujitsu Limited Method of manufacturing thin film transistors in a liquid crystal display apparatus
US5462885A (en) * 1992-10-15 1995-10-31 Fujitsu Limited Method of manufacturing thin film transistors in a liquid crystal display apparatus
US5496752A (en) * 1992-10-15 1996-03-05 Fujitsu Limited Method of manufacturing thin film transistors in a liquid crystal display apparatus
US5496749A (en) * 1992-10-15 1996-03-05 Fujitsu Limited Method of manufacturing thin film transistors in a liquid crystal display apparatus
US5698885A (en) * 1994-03-17 1997-12-16 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
US5801081A (en) * 1994-03-17 1998-09-01 Fujitsu Ltd. Semiconductor device and method of manufacturing semiconductor device
US5518949A (en) * 1995-07-18 1996-05-21 Winbond Electronics Corporation Electrical isolation method for devices made on SOI wafer
JP2007103491A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Semiconductor device and manufacturing method of semiconductor device
JP2007273968A (en) * 2006-03-08 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US8294157B2 (en) 2006-03-08 2012-10-23 Semiconducter Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9029864B2 (en) 2006-03-08 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7847348B2 (en) 2008-03-14 2010-12-07 Samsung Electronics Co., Ltd. Semiconductor apparatus

Similar Documents

Publication Publication Date Title
JP3239202B2 (en) MOS transistor and method of manufacturing the same
JPH04102317A (en) Manufacture of semiconductor device
JPH0355984B2 (en)
JP2006261703A (en) Mesa separated silicon on insulator transistor and manufacturing method of the same
JPH11204782A (en) Semiconductor device and manufacture therefor
JPH02166762A (en) Compact cmos device and
JPS5856268B2 (en) Manufacturing method of semiconductor device
JPH04116846A (en) Semiconductor device and its manufacture
JPS63293850A (en) Manufacture of semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JP2571004B2 (en) Thin film transistor
JPS6251216A (en) Manufacture of semiconductor device
JPH06132299A (en) Insulating gate-type transistor and manufacture thereof
JPS5923476B2 (en) Manufacturing method of semiconductor device
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JPH0472770A (en) Manufacture of semiconductor device
JPH05343413A (en) Bipolar transistor and manufacture thereof
JP4467162B2 (en) Manufacturing method of semiconductor device
JPH0252859B2 (en)
JPH05166919A (en) Semiconductor device and manufacture thereof
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
JPH0567634A (en) Manufacture of mis type semiconductor device
EP0528290B1 (en) Semiconductor device and manufacturing method thereof
JPS62269339A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device