JPH0548110A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH0548110A
JPH0548110A JP3202994A JP20299491A JPH0548110A JP H0548110 A JPH0548110 A JP H0548110A JP 3202994 A JP3202994 A JP 3202994A JP 20299491 A JP20299491 A JP 20299491A JP H0548110 A JPH0548110 A JP H0548110A
Authority
JP
Japan
Prior art keywords
layer
opening
impurity region
film
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3202994A
Other languages
Japanese (ja)
Other versions
JP3161767B2 (en
Inventor
Yoshiyuki Kanai
美之 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20299491A priority Critical patent/JP3161767B2/en
Publication of JPH0548110A publication Critical patent/JPH0548110A/en
Application granted granted Critical
Publication of JP3161767B2 publication Critical patent/JP3161767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the concentration controllability of layers so as to reduce the fluctuation of a threshold value by implanting ions of P-type impurity into a P<-> layer after ions of an N-type impurity are implanted into the P<-> layer after an opening and gate pattern are formed and, at the same time, diffusing controlled amount of the impurity in an N<+> layer. CONSTITUTION:After an opening 5 and gate pattern composed of a CVD SiO2 film 4, poly-Si film 3, and SiO film 2 are formed on an N-type semiconductor substrate 1, an N<+> layer 12 is formed in a P<-> layer 6 by implanting ions of an N-type impurity As into the layer 6 by using the gate pattern as a mask. Then, after removing the ion-implanted N-type impurities, the N<+> layer 12 and a P<+> layer 13 are formed in the layer 6 by implanting ions of a P-type impurity into and heat treating the layer 6. At the time of forming the N<+> and P<+> layers 12 and 13, controlled amount of the impurity is diffused in the layer 12 and the side wall of an Si-removed section becomes an N<+> layer. When the N<+> layer is formed by ion implantation in such way, the concentration controllability can be improved and fluctuation of a threshold can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体素子における
縦型で二重拡散型MOSFETの製造方法に関するもの
であり、よりよい電気特性を得る方法を提供するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a vertical double diffusion MOSFET in a semiconductor device, and provides a method for obtaining better electric characteristics.

【0002】[0002]

【従来の技術】従来、この種の半導体素子の製造方法
は、IEDM.88(1988)IEEE(米)p.8
13−816に開示されるものであり、縦型の二重拡散
型MOSFETを例に、図3(a)〜(c)に示し、以
下に説明する。
2. Description of the Related Art Conventionally, a method of manufacturing a semiconductor device of this type has been described in IEDM. 88 (1988) IEEE (US) p. 8
13-816, a vertical double diffusion MOSFET is shown as an example in FIGS. 3A to 3C, and will be described below.

【0003】図3(a)に示すように、U型半導体基体
1の主表面上に1000ÅのSiO2 膜2、4000Å
の導電性を有するポリシリコン膜3及び8000ÅのC
VDSiO2 膜4を順次形成する。次に所望のパターニ
ングにより、前記SiO2 膜2、ポリシリコン膜3及び
CVDSiO2 膜4をエッチングして、開孔部5を開孔
することでCVDSiO2 膜4、ポリシリコン膜3及び
SiO2 膜2よりなるゲートパターンを形成する。
As shown in FIG. 3A, a 1000 Å SiO 2 film 2, 4000 Å is formed on the main surface of the U-type semiconductor substrate 1.
Conductive polysilicon film 3 and C of 8000Å
The VDSiO 2 film 4 is sequentially formed. The next desired patterning, the SiO 2 film 2, by etching the polysilicon film 3 and CVD SiO 2 film 4, CVD SiO 2 film 4 by opening the opening portion 5, the polysilicon film 3 and the SiO 2 film A gate pattern of 2 is formed.

【0004】次に図3(b)に示すように、前記パター
ニングしたゲートパターンをマスクにP型不純物である
ボロンをイオン注入法にてU型半導体基体1内に注入
し、熱処理を施すことにより、P- 層6を形成する。次
にN型不純物であるリンを含むPSG膜を12000Å
形成した後、ドライエッチングによる異方性エッチング
を行い、PSGサイドウォール7を形成し、サイドウォ
ール開孔部8を形成する。
Then, as shown in FIG. 3B, boron, which is a P-type impurity, is implanted into the U-type semiconductor substrate 1 by an ion implantation method using the patterned gate pattern as a mask, and heat treatment is performed. , P layer 6 is formed. Next, a PSG film containing phosphorus which is an N-type impurity
After the formation, the anisotropic etching by dry etching is performed to form the PSG sidewall 7 and the sidewall opening portion 8.

【0005】次に図3(c)に示すようにCVDSiO
2 膜4及びPSGサイドウォール7をマスクにイオン注
入法にてP型不純物であるボロンを、サイドウォール開
孔部8下のP- 層6内に注入する。次に熱処理を施し、
イオン注入したボロンを拡散しP+ 層10を形成すると
共に、PSGサイドウォール7中のリンが、P- 層内に
拡散し横拡りにより、ポリシリコン膜3の下に又サイド
ウォール開孔部内に拡散してN+層9が形成される。次
に、メタルを全面に蒸着することにより、サイドウォー
ル開孔部内で前記N+ 層9とP+ 層10とオーミックコ
ンタクトしたソース電極となるメタル11を形成する。
Next, as shown in FIG. 3C, CVDSiO
2 Using the film 4 and the PSG sidewall 7 as a mask, boron, which is a P-type impurity, is implanted into the P layer 6 below the sidewall opening 8 by ion implantation. Next, heat treatment is applied,
The ion-implanted boron is diffused to form the P + layer 10, and the phosphorus in the PSG sidewall 7 diffuses into the P layer and spreads laterally, so that it is below the polysilicon film 3 and inside the sidewall opening. To form an N + layer 9. Next, metal is vapor-deposited on the entire surface to form a metal 11 serving as a source electrode in ohmic contact with the N + layer 9 and the P + layer 10 in the sidewall opening.

【0006】以上の工程により縦型の二重拡散型MOS
FETが得られる。
Through the above process, the vertical double diffusion type MOS
FET is obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
た製造方法では、N+ 層9の形成をPSGサイドウォー
ル7中のリンの拡散により形成している為、P- 層6中
に入るリン濃度はPSGサイドウォール形成時のリン濃
度及び、PSGサイドウォール7からシリコン中へ拡散
させる熱処理条件により決まる。この為、P- 層6中に
入るリン濃度はバラツキが大きくなり、N+ 層の接合深
さのバラツキが大きくなる。これにより、二重拡散型M
OSFETでは、VT (閾値)のバラツキが大きくなる
問題点があった。
However, in the above-mentioned manufacturing method, since the N + layer 9 is formed by the diffusion of phosphorus in the PSG sidewall 7, the concentration of phosphorus entering the P layer 6 is reduced. It is determined by the phosphorus concentration at the time of forming the PSG sidewall and the heat treatment conditions for diffusing from the PSG sidewall 7 into silicon. Therefore, the phosphorus concentration in the P layer 6 has a large variation, and the junction depth of the N + layer also has a large variation. This allows double diffusion type M
The OSFET has a problem that the variation in V T (threshold value) becomes large.

【0008】又、N+ 層9とメタル11とのオーミック
コンタクトは、PSGサイドウォール7からP- 層6中
に拡散し、横拡りした部分で取っており、前述したリン
濃度によるコンタクト部分の面積のバラツキが大きい
為、コンタクト抵抗のバラツキが大きくなる問題点があ
った。
Further, the ohmic contact between the N + layer 9 and the metal 11 is taken in the laterally diffused portion diffused from the PSG sidewall 7 into the P layer 6, and the contact portion of the contact portion due to the phosphorus concentration described above is taken. Since there is a large variation in the area, there is a problem that the variation in the contact resistance becomes large.

【0009】この発明は、以上述べた電気特性が悪くな
る問題点を除去する為、N+ 層をイオン注入法で形成し
てN型不純物濃度の制御性を良くした製造方法を提供す
ることを目的とする。
In order to eliminate the above-mentioned problems of deteriorating the electrical characteristics, the present invention provides a manufacturing method in which the N + layer is formed by the ion implantation method to improve the controllability of the N-type impurity concentration. To aim.

【0010】[0010]

【課題を解決するための手段】この発明は前述の目的の
ために、半導体素子の製造方法において、開孔部とゲー
トパターンを形成した後、N+ 層形成の為のN型不純物
をP- 層中にゲートパターンをマスクにしてイオン注入
する。その後開孔部側壁にSiO2 サイドウォールを形
成した後、SiO2 サイドウォールをマスクにして、P
- 層のシリコンを0.3μm程エッチング除去して、前
記イオン注入したN型不純物を除去する。次に再度Si
2 サイドウォールをマスクにP型不純物をP- 層中に
イオン注入して、熱処理を施すことにより、N+ 層とP
+ 層を形成する。この時N+ 層は制御された不純物量が
拡散され、前記シリコン除去した部分の側壁はN+ 層と
なる。次に全面にメタルを蒸着して、N+ 層とシリコン
除去した部分の側壁を中心にコンタクトを取ると共に、
+ 層とシリコン除去した底面でコンタクトするように
したものである。
SUMMARY OF THE INVENTION The present invention for the purpose described above, in the manufacturing method of the semiconductor device, after forming the opening and the gate pattern, the N-type impurity for the N + layer formed P - Ions are implanted in the layer using the gate pattern as a mask. Then, after forming a SiO 2 sidewall on the side wall of the opening, using the SiO 2 sidewall as a mask, P
- silicon layer is etched away as 0.3 [mu] m, removing the ion-implanted N-type impurity. Then again Si
A P-type impurity is ion-implanted into the P layer using the O 2 sidewall as a mask, and a heat treatment is applied to the N + layer and the P layer.
+ Form a layer. At this time N + layer weight was controlled impurity is diffused, the side wall of the silicon removed portion becomes N + layer. Next, metal is vapor-deposited on the entire surface to make contact with the N + layer and the side wall of the silicon-removed portion as a center, and
The contact is made with the P + layer at the bottom surface where the silicon is removed.

【0011】[0011]

【作用】前述したように、この発明によれば、N+ 層を
イオン注入法にて形成した為、濃度の制御性が良くな
り、N+ 層の接合深さの精度が向上する為、VT のバラ
ツキが小さくなる。又ソース電極とのコンタクト面積の
精度が向上する為、コンタクト抵抗のバラツキが小さく
なる等電気特性が向上する。
As described above, according to the present invention, since the N + layer is formed by the ion implantation method, the controllability of the concentration is improved and the accuracy of the junction depth of the N + layer is improved. The variation of T becomes small. Further, since the accuracy of the contact area with the source electrode is improved, the variation in contact resistance is reduced and the electrical characteristics are improved.

【0012】[0012]

【実施例】この発明の第1の実施例を図1(a)〜
(e)に従い説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is shown in FIGS.
A description will be given according to (e).

【0013】図1(a)に示すように、従来方法と同様
に、N型半導体基体1の主表面上に1000Å程の絶縁
膜としてSiO2 膜2、4000Å程の導電性を有する
膜としてポリシリコン膜3及び8000Å程の絶縁膜と
してCVDSiO2 膜4を順次形成した後、所望のゲー
トパターニングにより、前記CVDSiO2 膜4、ポリ
シリコン膜3及びSiO2 膜2をエッチング除去して、
開孔部5及びCVDSiO2 膜4とポリシリコン膜3と
SiO2 膜2よりなるゲートパターンを形成する。
As shown in FIG. 1A, similarly to the conventional method, a SiO 2 film 2 as an insulating film of about 1000 Å is formed on the main surface of the N-type semiconductor substrate 1, and a poly-silicon film having a conductivity of about 4000 Å is formed. After the CVD SiO 2 film 4 is sequentially formed as a silicon film 3 and an insulating film of about 8000 Å, the CVD SiO 2 film 4, the polysilicon film 3 and the SiO 2 film 2 are etched and removed by desired gate patterning,
A gate pattern composed of the opening 5 and the CVD SiO 2 film 4, the polysilicon film 3 and the SiO 2 film 2 is formed.

【0014】次に図1(b)に示すように、前記ゲート
パターンをマスクにして、イオン注入法にてボロンを4
0keVで5×1013ions/cm2 程開孔部5内のN
型半導体基体1中に注入し、熱処理を施すことにより、
接合深さ2μm程のP- 層6を形成する。次に前記ゲー
トパターンを同様にマスクにしてN型不純物、例えばヒ
素をイオン注入法にて40keVで1×1016ions
/cm2 程、開孔部5内でP- 層6中の表面に注入し、N
+ インプラ(イオン注入)層7を形成する。
Next, as shown in FIG. 1B, using the gate pattern as a mask, an ion implantation method is performed to change the amount of boron to 4
About 5 × 10 13 ions / cm 2 N in the opening 5 at 0 keV
By injecting into the semiconductor substrate 1 and heat-treating,
A P layer 6 having a junction depth of about 2 μm is formed. Next, using the gate pattern as a mask, an N-type impurity such as arsenic is ion-implanted at 40 keV and 1 × 10 16 ions.
/ Cm 2 is injected into the surface of the P layer 6 in the opening 5, and N
+ Implant (ion implantation) layer 7 is formed.

【0015】次に図1(c)のように、絶縁膜としてC
VD法にて不純物を含まないSiO2 膜を12000Å
程形成した後、ドライエッチングによる異方性エッチン
グにより横方向の長さが12000Å程のSiO2 サイ
ドウォール8を開孔部5の側壁に形成して、サイドウォ
ール開孔部9を形成する。
Next, as shown in FIG. 1C, C is used as an insulating film.
12000Å SiO 2 film containing no impurities by VD method
After the formation, the SiO 2 side wall 8 having a lateral length of about 12,000 Å is formed on the side wall of the opening 5 by anisotropic etching by dry etching to form the side wall opening 9.

【0016】次に図1(d)のように、SiO2 サイド
ウォール8及び前記ゲートパターンをマスクにして、ド
ライエッチングによりサイドウォール開孔部9下のシリ
コンを0.3μm程除去して、N+ インプラ層7を除去
し、開孔部10を形成する。次に同様にSiO2 サイド
ウォール8及び前記ゲートパターンをマスクにしてイオ
ン注入法にて開孔部10内のP- 層6中に前記N+ イン
プラ層7のドーズ量より少ない量、例えば40keVで
1×1015ions/cm2 程注入し、P+ インプラ層1
1を形成する。
Next, as shown in FIG. 1D, with the SiO 2 sidewall 8 and the gate pattern as a mask, the silicon under the sidewall opening 9 is removed by about 0.3 μm by dry etching. + The implanter layer 7 is removed and the opening 10 is formed. Next, similarly, by using the SiO 2 sidewall 8 and the gate pattern as a mask, an ion implantation method is applied to the P layer 6 in the opening 10 with an amount smaller than the dose amount of the N + implantation layer 7, for example, 40 keV. Inject about 1 × 10 15 ions / cm 2 and p + implant layer 1
1 is formed.

【0017】次に図1(e)のように、1000℃、6
0分程の熱処理を施すことにより、N+ インプラ層7及
びP+ インプラ層11が拡散されて、接合深さ0.5μ
m程のN+ 層12及び拡散深さ1μm程のP+ 層13が
形成される。この際、N+ 層12の表面濃度はP+ 層1
3の表面濃度より1桁程濃い為、開孔部10の側壁部付
近はN+ 層となる。
Next, as shown in FIG. 1E, 1000 ° C., 6
By performing the heat treatment for about 0 minutes, the N + implantation layer 7 and the P + implantation layer 11 are diffused, and the junction depth is 0.5 μm.
An N + layer 12 having a thickness of about m and a P + layer 13 having a diffusion depth of about 1 μm are formed. At this time, the surface concentration of the N + layer 12 is P + layer 1
Since the surface concentration is higher than that of No. 3 by about one digit, the vicinity of the side wall of the opening 10 becomes an N + layer.

【0018】次に、全面にメタル14を蒸着して、開孔
部10内でN+ 層12とP+ 層13とオーミックコンタ
クトを取ってソース電極を形成する。
Next, a metal 14 is vapor-deposited on the entire surface, and ohmic contact is made with the N + layer 12 and the P + layer 13 in the opening portion 10 to form a source electrode.

【0019】以上の製造方法により縦型の二重拡散型M
OSFETが得られる。
By the above manufacturing method, the vertical double diffusion type M
An OSFET is obtained.

【0020】尚本実施例ではSiO2 サイドウォール8
は不純物を含まないCVDSiO2 膜で形成したが、P
SGSiO2 膜等の不純物を含むSiO2 膜であって
も、N+ 層12の接合深さに影響を与えない濃度又は入
らないように薄いSiO2 膜を形成する等のことを施せ
ば、使用してかまわないことはいうまでもない。
In this embodiment, the SiO 2 sidewall 8 is used.
Was formed of a CVD SiO 2 film containing no impurities.
Even if the SiO 2 film containing impurities such as the SGSiO 2 film is used, if a thin SiO 2 film is formed so that the concentration does not affect the junction depth of the N + layer 12 or that it does not enter, it is used. Needless to say, it does not matter.

【0021】又本実施例でNチャンネルの二重拡散型M
OSFETを例にしたが、絶縁ゲートバイポーラトラン
ジスタ等の同構造の半導体素子やPとNを逆にしてPチ
ャンネルに適用できることはいうまでもない。
Further, in this embodiment, an N channel double spread type M
Although the OSFET is taken as an example, it goes without saying that it can be applied to a semiconductor element having the same structure such as an insulated gate bipolar transistor or P channel by reversing P and N.

【0022】次に第2の実施例を図2(a)〜(c)に
より説明する。
Next, a second embodiment will be described with reference to FIGS.

【0023】図2(a)に示すように、第1の実施例の
図1(a)同様CVDSiO2 膜4を17000Å程形
成した後、図1(b)〜(c)の工程を施し、P+ イン
プラ層11の形成まで施した後、図2(b)に示すよう
に、全面にドライエッチングによる異方性エッチング又
はウェットエッチングを0.5μm程施し、SiO2
イドウォール8を0.5μm程縮小し、つまりサイドウ
ォール開孔部を片側0.5μm程拡げてN+ インプラ層
7の露出部21を形成する。
As shown in FIG. 2 (a), a CVD SiO 2 film 4 of about 17,000 Å is formed as in FIG. 1 (a) of the first embodiment, and then the steps of FIGS. 1 (b) to 1 (c) are performed. After the formation of the P + implantation layer 11, as shown in FIG. 2B, the entire surface is subjected to anisotropic etching by dry etching or wet etching by about 0.5 μm, and the SiO 2 sidewall 8 is formed by 0.5 μm. The width is reduced, that is, the side wall opening is expanded by 0.5 μm on one side to form the exposed portion 21 of the N + implantation layer 7.

【0024】次に図2(c)のように、1000℃で6
0分程の熱処理を施し、N+ 層12、P+ 層13を形成
した後、メタル14を全面に蒸着して、露出部21と開
孔部10の側壁付近でN+ 層12と開孔部10の底部で
+ 層13とオーミックコンタクトを取るソース電極を
形成する。
Next, as shown in FIG. 2 (c), 6 at 1000.degree.
After heat treatment for about 0 minutes to form the N + layer 12 and the P + layer 13, the metal 14 is vapor-deposited on the entire surface, and the N + layer 12 and the opening are formed in the vicinity of the exposed portion 21 and the side wall of the opening 10. A source electrode having ohmic contact with the P + layer 13 is formed at the bottom of the portion 10.

【0025】以上の工程を施すことにより縦型の二重拡
散型MOSFETが得られる。
By performing the above steps, a vertical double diffusion MOSFET can be obtained.

【0026】尚、本第2の実施例では、SiO2 サイド
ウォールの縮小を、N+ 層12及びP+ 層13の形成前
に行ったが、形成後に行ってもかまわないことはいうま
でもない。
In the second embodiment, the SiO 2 sidewall is reduced before the formation of the N + layer 12 and the P + layer 13, but it goes without saying that it may be performed after the formation. Absent.

【0027】[0027]

【発明の効果】以上、詳細に説明したように、この発明
によればN+ 層をイオン注入法にて形成した為、濃度の
制御性が良くなりN+ 層の接合深さの精度が向上する
為、VT のバラツキが小さくなる。又、ソース電極との
コンタクト面積の精度が向上する為、コンタクト抵抗の
バラツキが小さくなる等、電気特性が向上する。
As described in detail above, according to the present invention, since the N + layer is formed by the ion implantation method, the controllability of the concentration is improved and the accuracy of the junction depth of the N + layer is improved. Therefore, the variation of V T becomes small. Further, since the accuracy of the contact area with the source electrode is improved, the variation in contact resistance is reduced and the electrical characteristics are improved.

【0028】又、第2の実施例に示したように、P+
散層形成のイオン注入を施した後、SiO2 サイドウォ
ールを小さくして、N+ 層の露出部を形成するようにす
ると、ソース電極とN+ 層とのコンタクト面積が大きく
なる為、コンタクト抵抗が低減すると共に露出部で確実
にオーミックコンタクトが得られる為、よりコンタクト
抵抗のバラツキが低減される。
Further, as shown in the second embodiment, after the ion implantation for forming the P + diffusion layer is performed, the SiO 2 sidewall is reduced to form the exposed portion of the N + layer. Since the contact area between the source electrode and the N + layer is large, the contact resistance is reduced and ohmic contact is surely obtained in the exposed portion, so that the variation in the contact resistance is further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の工程断面図である。FIG. 1 is a process sectional view of a first embodiment of the present invention.

【図2】本発明の第2の実施例の工程断面図である。FIG. 2 is a process sectional view of a second embodiment of the present invention.

【図3】従来例の工程断面図である。FIG. 3 is a process sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 N型半導体基体 2 SiO2 膜 3 ポリシリコン膜 4 CVDSiO2 膜 5 開孔部 6 P- 層 7 N+ インプラ層 8 SiO2 サイドウォール 9 サイドウォール開孔部 10 開孔部 11 P+ インプラ層 12 N+ 層 13 P+ 層 14 メタルDESCRIPTION OF SYMBOLS 1 N-type semiconductor substrate 2 SiO 2 film 3 Polysilicon film 4 CVDSiO 2 film 5 Opening part 6 P - layer 7 N + implantation layer 8 SiO 2 sidewall 9 Sidewall opening portion 10 Opening portion 11 P + implantation layer 12 N + layer 13 P + layer 14 metal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8617−4M H01L 21/265 L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 8617-4M H01L 21/265 L

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a) 第1の導電型の半導体基体の一
方の主表面上に、第1の絶縁膜及び導電性を有する導電
膜及び第2の絶縁膜を順次形成した後所望のパターニン
グを施し、前記第1の絶縁膜及び導電膜及び第2の絶縁
膜からなるゲートパターン部と前記半導体基体に到達す
る第1の開孔部を形成する工程と、 (b) 前記第1の開孔部内の前記半導体基体中に不純
物を拡散して、第2の導電型の第1の不純物領域を形成
した後、第1の開孔部内の該第1の不純物領域中で表面
部分に、第1の導電型の第2の不純物領域を形成する工
程と、 (c) 前記第1の開孔部の側壁に絶縁膜よりなるサイ
ドウォールを形成する工程と、 (d) 前記第1の開孔部内で前記サイドウォールがな
い部分の前記半導体基体の表面部分をエッチング除去し
て、前記第2の不純物領域を除去した第2の開孔部を形
成し、次に、前記第2の開孔部内の前記第1の不純物領
域中に第2の導電型の第3の不純物領域を形成する工程
と、 (e) 熱処理を施し、前記第2の不純物領域より拡散
して第4の不純物領域を、又前記第3の不純物領域より
拡散して第5の不純物領域を形成し、次にメタルを蒸着
して前記第2の開孔部内で、前記第4及び第5の不純物
領域とオーミックコンタクトを取る工程と、 を施すことを特徴とする半導体素子の製造方法。
1. (a) A first insulating film, a conductive conductive film, and a second insulating film are sequentially formed on one main surface of a first conductive type semiconductor substrate, and then desired patterning is performed. And forming a gate opening formed of the first insulating film, the conductive film, and the second insulating film, and a first opening reaching the semiconductor substrate, (b) the first opening. After diffusing impurities into the semiconductor substrate in the hole to form a first impurity region of the second conductivity type, a first impurity region in the first hole is exposed to a surface portion in the first impurity region. Forming a second impurity region of the first conductivity type; (c) forming a sidewall made of an insulating film on a sidewall of the first opening; (d) the first opening. By etching away the surface portion of the semiconductor substrate in the portion where the sidewall is not present, A second opening is formed by removing the second impurity region, and a second conductivity type third impurity region is formed in the first impurity region in the second opening. And (e) heat treatment is performed to form a fourth impurity region diffused from the second impurity region and a fifth impurity region diffused from the third impurity region. A step of vapor-depositing metal to make ohmic contact with the fourth and fifth impurity regions in the second opening, and a method of manufacturing a semiconductor element.
【請求項2】 請求項1記載の(a)ないし(d)項ま
での工程を施した後、前記(c)項記載のサイドウォー
ルを更にエッチングにより縮少させて、前記項記載の第
2の不純物領域の露出部を形成した後、請求項1記載の
(e)項の工程を施すことを特徴とする半導体素子の製
造方法。
2. After performing the steps (a) to (d) of claim 1, the sidewall of (c) is further reduced by etching to obtain the second layer of the above item. A method of manufacturing a semiconductor device, which comprises performing the step (e) of claim 1 after forming the exposed portion of the impurity region.
JP20299491A 1991-08-13 1991-08-13 Method for manufacturing semiconductor device Expired - Fee Related JP3161767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20299491A JP3161767B2 (en) 1991-08-13 1991-08-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20299491A JP3161767B2 (en) 1991-08-13 1991-08-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0548110A true JPH0548110A (en) 1993-02-26
JP3161767B2 JP3161767B2 (en) 2001-04-25

Family

ID=16466577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20299491A Expired - Fee Related JP3161767B2 (en) 1991-08-13 1991-08-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3161767B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297989A (en) * 1998-03-30 1999-10-29 Motorola Inc Power switching trench mosfet having aligned source region and its manufacture
JP2001053276A (en) * 1999-07-09 2001-02-23 Intersil Corp Forming method of vertical semiconductor device with increased source contact area
JP2009520365A (en) * 2005-12-14 2009-05-21 フリースケール セミコンダクター インコーポレイテッド Super junction power MOSFET
JP2011091086A (en) * 2009-10-20 2011-05-06 Mitsubishi Electric Corp Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065899A (en) * 2013-09-29 2015-04-13 文莉 永井 Net prop for vegetable garden

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297989A (en) * 1998-03-30 1999-10-29 Motorola Inc Power switching trench mosfet having aligned source region and its manufacture
JP4723698B2 (en) * 1998-03-30 2011-07-13 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Power switching trench MOSFET having matched source region and method of manufacturing the same
JP2001053276A (en) * 1999-07-09 2001-02-23 Intersil Corp Forming method of vertical semiconductor device with increased source contact area
JP2009520365A (en) * 2005-12-14 2009-05-21 フリースケール セミコンダクター インコーポレイテッド Super junction power MOSFET
JP2011091086A (en) * 2009-10-20 2011-05-06 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JP3161767B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US4753898A (en) LDD CMOS process
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
US5648279A (en) Method of manufacturing bipolar transistor having emitter region and external base region formed in self alignment manner
US6261885B1 (en) Method for forming integrated circuit gate conductors from dual layers of polysilicon
US6576521B1 (en) Method of forming semiconductor device with LDD structure
JP3161767B2 (en) Method for manufacturing semiconductor device
JPH09223797A (en) Manufacture of semiconductor device
JP3049496B2 (en) Method of manufacturing MOSFET
JPH05206454A (en) Manufacture of mis-type semiconductor device
JP2931243B2 (en) Method for manufacturing semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JP2900698B2 (en) Manufacturing method of insulated field effect transistor
JP3438395B2 (en) Method for manufacturing semiconductor device
JP2809393B2 (en) Method for manufacturing semiconductor device
JPS6384162A (en) Manufacture of semiconductor device
KR930010118B1 (en) Making method of semiconductor device
KR930011542B1 (en) Manufacturing method of bipolar transistor
JP2554813B2 (en) Method for manufacturing high-speed bipolar transistor
JP2697631B2 (en) Method for manufacturing semiconductor device
JPH01143358A (en) Manufacture of mos semiconductor integrated circuit device
JPH0590594A (en) Manufacture of vertical type mos field effect transistor
KR0167231B1 (en) Isolation method for semiconductor device
JP2573303B2 (en) Method for manufacturing semiconductor device
KR970000465B1 (en) Method for manufacturing semiconductor element
JP3507750B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

LAPS Cancellation because of no payment of annual fees