JPH036844A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH036844A
JPH036844A JP1142533A JP14253389A JPH036844A JP H036844 A JPH036844 A JP H036844A JP 1142533 A JP1142533 A JP 1142533A JP 14253389 A JP14253389 A JP 14253389A JP H036844 A JPH036844 A JP H036844A
Authority
JP
Japan
Prior art keywords
region
active region
insulating film
field insulating
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1142533A
Other languages
Japanese (ja)
Inventor
Ichiro Matsuo
一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1142533A priority Critical patent/JPH036844A/en
Publication of JPH036844A publication Critical patent/JPH036844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To narrow a width of an active region by restraining transverse diffusion of a channel stopper region below an element isolation region and to reduce a resistance of a substrate by providing a inversely inclined well below the active region. CONSTITUTION:A field insulating film 2 and a photoresist film 3 are laminated on a surface of a P-type semiconductor substrate 1. A semiconductor substrate in an active region 4 is exposed through photoetching method. Then, boron ions are implanted at an accelerating voltage which maximizes an impurity distribution near a bottom of the field insulating film 2. Boron ions are implanted deep also into the active region 4. After the photoresist film 3 is removed, heat treatment is carried out to activate implanted boron ions. A channel stopper region 5 is formed below the field insulating film 2, and a well region 6 whose impurity concentration distribution is inversely inclined is formed below the active region 4 simultaneously. According to this method, transverse diffusion can be restrained because heat treatment is not applied to the channel stopper region 5 for many hours.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高集積化に適した半導体集積回路の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor integrated circuit suitable for high integration.

従来の技術 MXS型集積回路は、素子を形成するいわゆる活性領域
と、活性領域間を電気的に分離するいわゆる分離領域と
からなっている。集積回路の高集積化にともない、分離
領域の幅は微細化される傾向にあり、分離領域への空乏
層のひろがりを抑制するために分離領域の不純物濃度を
高くする必要が有る。
Conventional MXS type integrated circuits consist of so-called active regions that form elements and so-called isolation regions that electrically isolate the active regions. As integrated circuits become more highly integrated, the width of the isolation region tends to become smaller, and it is necessary to increase the impurity concentration of the isolation region in order to suppress the spread of a depletion layer into the isolation region.

従来、分離領域の不純物濃度を高くするための半導体集
積回路の製造方法は以下に述べるようなものであった。
Conventionally, the method of manufacturing a semiconductor integrated circuit for increasing the impurity concentration in the isolation region has been as described below.

第3図(a)〜(C)は従来例の半導体集積回路の製造
方法の工程順断面図を表しており、この図面を参照して
説明する。
FIGS. 3A to 3C show step-by-step cross-sectional views of a conventional method for manufacturing a semiconductor integrated circuit, and description will be made with reference to these drawings.

まず、第3図(a)に示すように、P型半導体基板11
の上にシリコン酸化膜12.シリコン窒化膜13を順次
積層して形成する。
First, as shown in FIG. 3(a), a P-type semiconductor substrate 11
Silicon oxide film 12. Silicon nitride films 13 are formed by sequentially stacking them.

次に、第3図(b)に示すように、活性領域となる部分
のみをフォトレジスト膜14で覆い、シリコン窒化膜1
3を選択的にエツチング除去し、さらにフォトレジスト
膜14をマスクとしてボロンイオンを注入する。
Next, as shown in FIG. 3(b), only the portion that will become the active region is covered with a photoresist film 14, and the silicon nitride film 14 is covered with a photoresist film 14.
3 is selectively etched away, and boron ions are implanted using the photoresist film 14 as a mask.

ついで、第3図(C)に示すように、フォトレジスト膜
14を除去した後、基板全体を酸化雰囲気中で熱処理し
てフィールド酸化膜15を形成する。
Next, as shown in FIG. 3C, after removing the photoresist film 14, the entire substrate is heat-treated in an oxidizing atmosphere to form a field oxide film 15.

この熱処理により注入されたボロンイオンは不純物とし
て活性化され、また基板11中に拡散して基板11より
も高濃度のチャネルストッパ領域16が形成される。シ
リコン窒化!1113に覆われた領域が活性領域17と
なる。
By this heat treatment, the implanted boron ions are activated as impurities and diffused into the substrate 11 to form a channel stopper region 16 having a higher concentration than the substrate 11. Silicon nitride! The region covered by 1113 becomes the active region 17.

この後、通常の半導体集積回路の製造方法に従ってトラ
ンジスタ等の素子を形成する。
Thereafter, elements such as transistors are formed according to a normal semiconductor integrated circuit manufacturing method.

発明が解決しようとする課題 上記のような従来例の半導体集積回路の製造方法におい
て高集積化のために分離領域すなわちフィールド酸化膜
15の幅を小さくしようとすればチャネルストッパ領域
16の不純物濃度を高くする必要が有るが、そうすると
フィールド酸化膜15の形成時にチャネルストッパ領域
16が熱拡散により横方向にも拡散し、活性領域17に
も入りこんで、結果として活性領域17の実効的な幅が
狭くなり素子の特性が変化する。このため、結局活性領
域17の幅があまり小さ(できず、高集積化が困難であ
るという課題が有る。
Problems to be Solved by the Invention In the conventional semiconductor integrated circuit manufacturing method as described above, if the width of the isolation region, that is, the field oxide film 15 is to be reduced in order to achieve high integration, the impurity concentration of the channel stopper region 16 must be reduced. However, in this case, when the field oxide film 15 is formed, the channel stopper region 16 will be diffused laterally due to thermal diffusion and will also enter the active region 17, resulting in a narrower effective width of the active region 17. As a result, the characteristics of the element change. For this reason, there is a problem that the width of the active region 17 is not very small after all, making it difficult to achieve high integration.

チャネルストッパ領域16の横方向拡散を抑制するため
に酸化温度を低くすると、シリコン酸化膜の粘性が低下
するためフィールド酸化膜15の端部において機械的応
力が発生し、基板11中に結晶欠陥が生じて漏れ電流等
の発生の原因となる。
When the oxidation temperature is lowered to suppress the lateral diffusion of the channel stopper region 16, the viscosity of the silicon oxide film decreases, causing mechanical stress at the edge of the field oxide film 15, causing crystal defects in the substrate 11. This may cause leakage current, etc.

課題を解決するための手段 上記のような課題を解決するため本発明の半導体集積回
路の製造方法は、半導体基板の表面を活性領域と分離領
域とに画定し、同分離領域上にフィールド絶縁膜および
マスク薄膜を順次8i層して形成する工程と、前記フィ
ールド絶縁膜の底部付近において不純物の濃度が最大と
なる加速電圧で前記活性領域および分離領域に不純物イ
オンを注入する工程および前記マスク1膜をエツチング
除去する工程とからなるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a semiconductor integrated circuit of the present invention defines the surface of a semiconductor substrate into an active region and an isolation region, and forms a field insulating film on the isolation region. and a step of sequentially forming 8i layers of mask thin films, a step of implanting impurity ions into the active region and isolation region at an acceleration voltage that maximizes the impurity concentration near the bottom of the field insulating film, and the mask 1 film. This process consists of a step of etching away.

作用 本発明の半導体集積回路の製造方法によれば、分離領域
の不純物が活性領域に広がらないため、活性領域および
分離領域の両者ともを微細化することができる。
According to the method for manufacturing a semiconductor integrated circuit of the present invention, since impurities in the isolation region do not spread to the active region, both the active region and the isolation region can be miniaturized.

実施例 本発明の実施例を第1図(a)〜(d)に示した工程断
面図を参照して説明する。
Embodiment An embodiment of the present invention will be described with reference to process cross-sectional views shown in FIGS. 1(a) to 1(d).

まず、第1図(a)に示すように、P型半導体基板1の
表面上に厚さが200〜300nmのフィールド絶縁膜
2およびフォトレジスト膜3を積層して形成し、周知の
フォトエツチング法により活性領域4の半導体基板を露
出させる。
First, as shown in FIG. 1(a), a field insulating film 2 and a photoresist film 3 having a thickness of 200 to 300 nm are laminated on the surface of a P-type semiconductor substrate 1, and then a well-known photoetching method is used. The semiconductor substrate in the active region 4 is exposed.

次に、第1図(b)に示すように、フィールド絶縁膜2
の底部付近で不純物分布が最大となるような加速電圧で
ボロンイオンを注入する。この時、活性領域4中にもボ
ロンイオンが深(注入される。
Next, as shown in FIG. 1(b), the field insulating film 2
Boron ions are implanted at an acceleration voltage that maximizes the impurity distribution near the bottom of the ion. At this time, boron ions are also deeply implanted into the active region 4.

ついで、第1図(C)に示すように、フォトレジスト膜
3を除去した後、注入されたボロンイオンを活性化する
ための熱処理を行ない、フィールド絶縁膜2の下にはチ
ャネルストッパ領域5を、また活11領域4の下には不
純千カ濃度分4丁が逆傾γIのウェル領域6を同時に形
成Jる。
Next, as shown in FIG. 1C, after removing the photoresist film 3, heat treatment is performed to activate the implanted boron ions, and a channel stopper region 5 is formed under the field insulating film 2. Further, under the active region 4, four well regions 6 having an inverse slope γI are formed at the same time by four impurity concentrations.

この時点での不純物の深さ方向分布を第2図に示す。図
中示すように活性領域下の不純物分布は深い所で最大と
なっており、表面では十分低いので後の工程において調
整することが容易である。
The depth distribution of impurities at this point is shown in FIG. As shown in the figure, the impurity distribution under the active region is maximum in the deep part, and is sufficiently low at the surface, so that it is easy to adjust it in a later process.

この後、通常の半導体集積回路の製造方法にしたがって
トランジスタ等の素子を形成すればよい。
Thereafter, elements such as transistors may be formed according to a normal semiconductor integrated circuit manufacturing method.

この半導体集積回路の製造方法によれば、チャネルスト
ッパ領域5は高温長時間の熱処理を受けないため横方向
拡散が抑制できる。また活性領域4においてはイオンが
十分深く注入されるため表面近傍の不純物濃度に与える
影響は小さい。さらに逆傾斜ウェル領域6の存在により
基板1の抵抗が下がるため相補型MIS集積回路におい
ては、いわゆるラッチアップが抑制される。
According to this method of manufacturing a semiconductor integrated circuit, channel stopper region 5 is not subjected to high-temperature, long-term heat treatment, so that lateral diffusion can be suppressed. Furthermore, since the ions are implanted sufficiently deeply in the active region 4, the influence on the impurity concentration near the surface is small. Furthermore, the existence of the reversely inclined well region 6 lowers the resistance of the substrate 1, so that so-called latch-up is suppressed in the complementary MIS integrated circuit.

フィールド絶縁膜2の膜厚はフォトレジスト膜3の膜厚
を調整することによりイオン注入の加速電圧とは無関係
に選択できる。
The thickness of the field insulating film 2 can be selected by adjusting the thickness of the photoresist film 3 regardless of the acceleration voltage of ion implantation.

なお、第1図の実施例ではフィールド絶縁膜2の上の膜
としてフォトレジストI]ii3を用いているが、これ
に限られたわけでなく、フィールド絶縁膜3に比して十
分大きなエツチング速度を有する膜であればよい。
In the embodiment shown in FIG. 1, the photoresist I]ii3 is used as the film on the field insulating film 2, but the photoresist I]ii3 is not limited to this. Any film having the above-mentioned properties may be used.

また活性化の熱処理はトランジスタ等の素子を形成する
ための熱処理と兼ねて行なっても良い。
Further, the activation heat treatment may be performed concurrently with the heat treatment for forming elements such as transistors.

さらに、実施例においては説明の都合上、P型半導体基
板を用いていたが、N型半導体基板についてもイオン種
や注入加速電圧の選択により同様の方法か適用できる。
Further, in the embodiment, a P-type semiconductor substrate is used for convenience of explanation, but the same method can be applied to an N-type semiconductor substrate by selecting the ion species and the implantation acceleration voltage.

膜厚等についても実施例に従う必要はない。There is no need to follow the examples regarding film thickness, etc.

発明の効果 本発明の半導体集積回路の製造方法によれば、素子分子
i!領域下のチャネルストッパ領域の横方向拡散が抑制
できるため、活性@域の幅を狭くすることができる。ま
た、活性領域下に逆傾斜ウェルが形成されるため、基板
の抵抗を下げることができる。
Effects of the Invention According to the method for manufacturing a semiconductor integrated circuit of the present invention, the element molecule i! Since lateral diffusion of the channel stopper region below the region can be suppressed, the width of the active @ region can be narrowed. Furthermore, since a reversely inclined well is formed under the active region, the resistance of the substrate can be lowered.

この結果として高集積の半導体集積回路を製造すること
ができる。
As a result, highly integrated semiconductor integrated circuits can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体集積回路の製造方法の実施例を
示す断面図、第2図は本発明の半導体集積回路の製造方
法の実施例による深さ方向の不純物分布を示す図、第3
図は従来例の半導体集積回路の製造方法を示す断面図で
ある。 1・・・・・・P型半導体基板、2・・・・・・フィー
ルド絶縁板、3・・・・・・フォトレジスト膜、4・・
・・・・活性領域、5・・・・・・チャネルストッパ領
域、6・・・・・・逆傾斜ウェル領域。
FIG. 1 is a cross-sectional view showing an embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention, FIG.
The figure is a cross-sectional view showing a conventional method for manufacturing a semiconductor integrated circuit. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... Field insulating board, 3... Photoresist film, 4...
. . . Active region, 5 . . . Channel stopper region, 6 . . . Reverse inclined well region.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の表面を活性領域と分離領域とに画定し、
同分離領域上にフィールド絶縁膜およびマスク薄膜を順
次積層して形成する工程と、前記フィールド絶縁膜の底
部付近において不純物の濃度が最大となる加速電圧で前
記活性領域および分離領域に不純物イオンを注入する工
程および前記マスク薄膜をエッチング除去する工程とか
らなることを特徴とする半導体集積回路の製造方法。
defining a surface of the semiconductor substrate into an active region and an isolation region;
A step of sequentially stacking a field insulating film and a mask thin film on the isolation region, and implanting impurity ions into the active region and the isolation region using an accelerating voltage that maximizes the impurity concentration near the bottom of the field insulating film. A method for manufacturing a semiconductor integrated circuit, comprising the steps of: etching away the mask thin film.
JP1142533A 1989-06-05 1989-06-05 Manufacture of semiconductor integrated circuit Pending JPH036844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142533A JPH036844A (en) 1989-06-05 1989-06-05 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142533A JPH036844A (en) 1989-06-05 1989-06-05 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH036844A true JPH036844A (en) 1991-01-14

Family

ID=15317568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142533A Pending JPH036844A (en) 1989-06-05 1989-06-05 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH036844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855906A (en) * 1994-07-28 1996-02-27 Lg Semicon Co Ltd Isolating method for semiconductor device
US6038135A (en) * 1995-06-30 2000-03-14 Fujitsu Limited Wiring board and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855906A (en) * 1994-07-28 1996-02-27 Lg Semicon Co Ltd Isolating method for semiconductor device
US6038135A (en) * 1995-06-30 2000-03-14 Fujitsu Limited Wiring board and semiconductor device

Similar Documents

Publication Publication Date Title
KR930010121B1 (en) Process for forming high and low voltage cmos transistors on a single integrated circuit chip
US4382827A (en) Silicon nitride S/D ion implant mask in CMOS device fabrication
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
USRE31652E (en) Method of producing a semiconductor device
JPH0521706A (en) Semiconductor device and its manufacture
US5242849A (en) Method for the fabrication of MOS devices
JPH0794503A (en) Oxidizing method for silicon substrate
JP2730535B2 (en) Method for manufacturing semiconductor device
JPH036844A (en) Manufacture of semiconductor integrated circuit
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JPH02309653A (en) Manufacture of semiconductor integrated circuit
JPH06188259A (en) Manufacture of semiconductor device
JPH0555204A (en) Manufacture of semiconductor device
JPH0582784A (en) Manufacture of mis-type semiconductor device
JP3297102B2 (en) Method of manufacturing MOSFET
JPH05243249A (en) Manufacture of bipolar transistor
JPH02218164A (en) Mis type field-effect transistor
JPH04346263A (en) Manufacture of bi-cmos semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH01297837A (en) Manufacture of semiconductor device
JPH053199A (en) Manufacture of semiconductor device
JPH01189159A (en) Manufacture of semiconductor integrated circuit device
JPH05182958A (en) Semiconductor device and method of manufacture that
JPH0358471A (en) Manufacture of semiconductor device
JPS63215061A (en) Manufacture of semiconductor integrated circuit