JPS605572A - Manufacture of high speed semiconductor device - Google Patents

Manufacture of high speed semiconductor device

Info

Publication number
JPS605572A
JPS605572A JP11287683A JP11287683A JPS605572A JP S605572 A JPS605572 A JP S605572A JP 11287683 A JP11287683 A JP 11287683A JP 11287683 A JP11287683 A JP 11287683A JP S605572 A JPS605572 A JP S605572A
Authority
JP
Japan
Prior art keywords
layer
grown
gasb
inas
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11287683A
Other languages
Japanese (ja)
Other versions
JPH0261150B2 (en
Inventor
Hideki Hayashi
秀樹 林
Yuichi Matsui
松居 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11287683A priority Critical patent/JPS605572A/en
Publication of JPS605572A publication Critical patent/JPS605572A/en
Publication of JPH0261150B2 publication Critical patent/JPH0261150B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable to manufacture a semiconductor device using an InAs having large electron mobility without alloy scattering as an operating layer by crystal growing GaSb in 2mum or more on a semi-insulating GaAs substrate, and growing a multilayer crystals of single or multilayers having equal lattice constant to that of the GaSb on the GaSb layer. CONSTITUTION:GaAs 2 is grown in 2mum or more by a molecule beam epitaxial growing method on a semi-insulating GaAs substrate 1. Then, an AlSb layer 3 is grown in 0.5mum, an InAs layer 4 undoped with am impurity is grown in 1mum, an AlSb layer 3 is grown in 0.5mum, an InAs layer 4 undoped with an impurity is grown in 1mum, an AlSb layer 5 is grown in 0.5mum, and an Al film 6 is grown in 0.4mum on the GaSb 2. Then, the film 6 is removed by photoetching except one region 7, and a gate electrode 7 is formed. Then, two regions disposed at opposite side to the electrode 7 are etched until reaching the layer 4, and Au ohmic electrodes 8, 9 are eventually formed on the two regions.

Description

【発明の詳細な説明】 (技術分野) 本発明は、高速動作をする化合物半導体デバイスに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a compound semiconductor device that operates at high speed.

(従来技術とその問題点) GaAs を用いたデバイスはその電子移動度が大きい
こと、半絶縁性GaAs 基板が得られることにより、
Si を用いたデバイスに比べ、高速動作が得られてい
る。GaAs よりさらに高電子移動度を得るためにI
nx Ga l−X As (x = 0.53 ) 
を用いたデノ々イスが報告されているが、あまり大きな
電子移動度は得られていない。これはInx Ga 1
−X As混晶中での合金散乱のためだと考えられる。
(Prior art and its problems) Devices using GaAs have high electron mobility, and semi-insulating GaAs substrates can be obtained.
High-speed operation is achieved compared to devices using Si. In order to obtain even higher electron mobility than GaAs, I
nx Gal-X As (x = 0.53)
A denoise method has been reported using , but very high electron mobility has not been obtained. This is Inx Ga 1
-X This is thought to be due to alloy scattering in the As mixed crystal.

また、2元化合物半導体のI nAs は、合金散乱が
なく、高電子移動度が期待できるが、この I nAs
に格子整合した良質の半絶縁性基板が得られない全散乱
がなく、電子移動度が大きいI nAs を動作層とし
て用いた半導体デバイスの製造方法を与えるものである
In addition, the binary compound semiconductor InAs has no alloy scattering and can be expected to have high electron mobility;
The present invention provides a method for manufacturing a semiconductor device using InAs as an active layer, which is free from total scattering and has high electron mobility, which would result in a high-quality semi-insulating substrate with lattice matching.

以下、実施例により、詳細に説明する。Hereinafter, it will be explained in detail using Examples.

まず第1図(a)に示すように半絶縁性GaAs 基板
1上にGaSb 2 を分子線エピタキシャル法で2μ
m以上成長させる。
First, as shown in FIG. 1(a), GaSb 2 was deposited on a semi-insulating GaAs substrate 1 at a thickness of 2 μm using the molecular beam epitaxial method.
grow more than m.

次にこのGaSb 2上にAlSb層3を0.5μm、
不純物ドープしていないI nAs 層4を1μ7F+
、AlSb層5を0.1. ttm 、 Al膜6を0
.4.μtn成長させる(第1図(b))。つぎに第1
図(c)に示すように一つの領域7を除きAl 膜6を
フォトエツチングで除去し、ゲート電極゛7を形成する
。次にゲート電極7に関して互いに反対側にある2領域
をI nAs 層4・に到達するまでエツチングしく第
1図(d))、最後にこの2領域にAu のオーミック
電極8.9を形成する(第1図(e))。
Next, on this GaSb 2, an AlSb layer 3 with a thickness of 0.5 μm is formed.
InAs layer 4 not doped with impurities is 1μ7F+
, the AlSb layer 5 is 0.1. ttm, Al film 6 is 0
.. 4. μtn is grown (FIG. 1(b)). Next, the first
As shown in Figure (c), the Al film 6 except for one region 7 is removed by photo-etching to form a gate electrode 7. Next, two regions on opposite sides of the gate electrode 7 are etched until reaching the InAs layer 4 (FIG. 1(d)), and finally, Au ohmic electrodes 8.9 are formed in these two regions (Fig. 1(d)). Figure 1(e)).

このようにして目的の高速半導体デバイスが得られる。In this way, the desired high-speed semiconductor device is obtained.

第1図(a)において、Ga Sb 層2は2μ以上に
し’ Xz出している。第2図はGaSb の膜厚に対
する移ている。
In FIG. 1(a), the Ga Sb layer 2 is made to have a thickness of 2μ or more and is exposed to 'Xz. FIG. 2 shows the relationship between the film thickness of GaSb.

第1図(b)において、超高真空チェインバ内で、Al
Sb 層に引き続きAI! 膜6を成長させているのは
、AlSb )漢が非常に酸化し易く、大気中ではすぐ
に表面に酸化膜が形成されてしまうためである。
In Fig. 1(b), Al
AI continues from the Sb layer! The reason why the film 6 is grown is that AlSb (AlSb) is very easily oxidized and an oxide film is quickly formed on the surface in the atmosphere.

次に、本発明で製造した電界効果I・ランジスタ高速動
作性について説明する。
Next, the high-speed operability of the field effect I transistor manufactured according to the present invention will be explained.

第3図は、AlSbとI nAsとのへテロ界面でのエ
ネルギー・バンド図であり、(a)は外部電界がないと
き、(b)はAJSb 側に正電圧を印加したとき、(
C)はAlSb 側に負電圧を印加したときのそれぞれ
のエネルギー・バンド図である。
Figure 3 is an energy band diagram at the heterointerface between AlSb and InAs, (a) when there is no external electric field, and (b) when a positive voltage is applied to the AJSb side.
C) is an energy band diagram when a negative voltage is applied to the AlSb side.

本実施例による電界効果トランジスタでは、AI!Sb
とI nAs とのバンド構造の相違から第3図(、)
に示すヱうにI nAsとGaSbとの界面のInAs
 側に電子が蓄積し、これが電気伝導に寄与している。
In the field effect transistor according to this embodiment, AI! Sb
From the difference in band structure between and InAs, Figure 3 (,)
InAs shown at the interface between InAs and GaSb
Electrons accumulate on the sides, which contribute to electrical conduction.

そしてゲート電極7に電圧を加えることにより、バンド
図は第8図(b)(c)に示すように変わり、オーミッ
ク電極8.9間に流れる電流が変調される。この半導体
デバイスより動作速度の速い化合物半導体デバイスの製
造方法を与えるものである。
By applying a voltage to the gate electrode 7, the band diagram changes as shown in FIGS. 8(b) and 8(c), and the current flowing between the ohmic electrodes 8 and 9 is modulated. The present invention provides a method for manufacturing a compound semiconductor device that operates faster than this semiconductor device.

現在トランジスタ、ICが用いられているあらゆる分野
に用いることができ、その産業上の利用分野は極めて大
きく、特に高速処理が必要な分野、例えば計算機のCP
U、メモリ画像処理等での利用が期待できる。
It can be used in all fields where transistors and ICs are currently used, and its industrial applications are extremely wide, especially in fields that require high-speed processing, such as computer CPUs.
It can be expected to be used in memory image processing, etc.

本発明は、本実施例の構造の素子に限るものではなく、
GaSb と格子定数のほぼ等しい材料の組み合わせを
用いたデバイスにはすべて適用でき、半絶縁性GaAs
 基板を用いたこれらの素子が実現できる。
The present invention is not limited to the element having the structure of this example.
It can be applied to all devices using a combination of materials with approximately the same lattice constant as GaSb, and semi-insulating GaAs
These devices can be realized using a substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例である電界効果トランジス
タの製造方法の説明図であり、プロセスの各段階での素
子の断面構造を示すものである。 第2図は、GaAs 基板上に結晶成長させたGa S
bの相対移動度の層厚依存性を示す図である。 第3図は、Al5bとInAsとのへテロ界面でのエネ
ルギー・バンド図であり、(a)は外部電界がないとき
、(b)は正電圧(AlSb側が正)印加したとき、(
c)2はGaSb層 3.5はAlSb 層 4はI nAs層 6はAl膜 7はゲート電極 8.9はオーミック電極である。 特許出願人 工業技術院長 川田裕部 (a) (d) (b) (e) 第2図
FIG. 1 is an explanatory diagram of a method for manufacturing a field effect transistor, which is an embodiment of the present invention, and shows the cross-sectional structure of the device at each stage of the process. Figure 2 shows GaS crystal grown on a GaAs substrate.
It is a figure which shows the layer thickness dependence of the relative mobility of b. Figure 3 is an energy band diagram at the heterointerface between Al5b and InAs, (a) when there is no external electric field, (b) when a positive voltage (positive on the AlSb side) is applied, (
c) 2 is a GaSb layer 3.5 is an AlSb layer 4 is an InAs layer 6 is an Al film 7 is a gate electrode 8.9 is an ohmic electrode. Patent applicant Hirobe Kawada, Director of the Agency of Industrial Science and Technology (a) (d) (b) (e) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)半絶縁性GaAs基板上にGarbを2μm以上
結晶成長させる工程と、該Ga Sb層上にGaSbと
ほぼ格子定数の等しい単層または多層の結晶を成長させ
る工程とを含む高速半導体デバイスの製造方法。 層の一部まで除去し、最後に除去後残った I nAs
層上にオーミック電極を設けることを特徴とする特許請
求の範囲第1項に記載の高速半導体デバイスの製造方法
(1) A high-speed semiconductor device comprising the steps of growing a Garb crystal of 2 μm or more on a semi-insulating GaAs substrate, and growing a single-layer or multi-layer crystal having a lattice constant almost equal to that of GaSb on the GaSb layer. Production method. Part of the layer was removed, and finally the I nAs remaining after removal was removed.
A method of manufacturing a high-speed semiconductor device according to claim 1, characterized in that an ohmic electrode is provided on the layer.
JP11287683A 1983-06-24 1983-06-24 Manufacture of high speed semiconductor device Granted JPS605572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11287683A JPS605572A (en) 1983-06-24 1983-06-24 Manufacture of high speed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11287683A JPS605572A (en) 1983-06-24 1983-06-24 Manufacture of high speed semiconductor device

Publications (2)

Publication Number Publication Date
JPS605572A true JPS605572A (en) 1985-01-12
JPH0261150B2 JPH0261150B2 (en) 1990-12-19

Family

ID=14597740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11287683A Granted JPS605572A (en) 1983-06-24 1983-06-24 Manufacture of high speed semiconductor device

Country Status (1)

Country Link
JP (1) JPS605572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246342A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Semiconductor device
US5430310A (en) * 1991-03-28 1995-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246342A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Semiconductor device
US5430310A (en) * 1991-03-28 1995-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Field effect transistor

Also Published As

Publication number Publication date
JPH0261150B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
JP2773474B2 (en) Semiconductor device
EP0228516B1 (en) Modulation-doped field-effect transistor
US6753593B1 (en) Quantum wire field-effect transistor and method of making the same
US5770489A (en) Method of making a compound semiconductor field-effect transistor
JPH0312769B2 (en)
JPS605572A (en) Manufacture of high speed semiconductor device
JP3097673B2 (en) Field effect transistor and method for manufacturing the same
JPS61199666A (en) Field-effect transistor
JPH0194676A (en) Semiconductor device and manufacture thereof
JPS6115375A (en) Hetero junction fet
JPS609174A (en) Semiconductor device
JPS6330788B2 (en)
JPH02189978A (en) Fine wiring field effect transistor and manufacture thereof
JPH02192737A (en) Field effect transistor
JPS59181673A (en) Semiconductor device
JPS58107677A (en) Semiconductor device
JPH01158779A (en) Semiconductor device
JPH03165576A (en) Quantum fine line semiconductor device and manufacture thereof
JPS63281474A (en) Semiconductor device
JPH02229438A (en) Field-effect transistor
JPH03148183A (en) Semiconductor device and its manufacture
JPS63188972A (en) Field-effect transistor
JPS6293989A (en) Hall element
JPH0475385A (en) Semiconductor device
JPH0325035B2 (en)