JPS6115375A - Hetero junction fet - Google Patents

Hetero junction fet

Info

Publication number
JPS6115375A
JPS6115375A JP13676484A JP13676484A JPS6115375A JP S6115375 A JPS6115375 A JP S6115375A JP 13676484 A JP13676484 A JP 13676484A JP 13676484 A JP13676484 A JP 13676484A JP S6115375 A JPS6115375 A JP S6115375A
Authority
JP
Japan
Prior art keywords
layer
source
drain
gaas
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13676484A
Other languages
Japanese (ja)
Inventor
Kunikazu Oota
太田 邦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13676484A priority Critical patent/JPS6115375A/en
Publication of JPS6115375A publication Critical patent/JPS6115375A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices

Abstract

PURPOSE:To improve the characteristic by reducing the resisrance of a source- drain layer by forming an eutectic layer of high conductivity on the surface of a source-drain region. CONSTITUTION:An N type GaAs layer 22 is epitaxially grown on a semiconductor substrate 21 doped with Cr, and an AlXGa1-XAs layer 23 and a W layer 24 are formed thereon, and then etched by using a resist layer 25 as a mask; further, Si is ion-implanted to the source-drain region 26. An Si oxide film 27 is formed after removal of the mask, and a side wall 28 of oxide film is formed at the gate region by reactive ion etching. Pt is evaporated over the whole surface, and an intermetallic compound layer of Pt/GaAs is formed by annealing at about 400 deg.C and then oxidized. Thereafter, etching is carried out by using this layer as a mask, when intermetallic layers 291 and 292 of Pt/GaAs are formed to the source-drain, and electrodes 211, 211, and 213 are formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はヘテロ接合電界効果トランジスタの構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a heterojunction field effect transistor.

(従来技術とその問題点) ヘテロ構造電界効果トランジスタ(ト”ET)は高速の
素子として有望である。
(Prior art and its problems) Heterostructure field effect transistors (ETs) are promising as high-speed devices.

第1図に学会に発表されている2つのヘテロ接合FET
Q例を示す。第1図(alでは例えばOrをトープした
半絶縁性のGaAs−A1.板1の上にn型のG a 
A s層2を成長し、更にn型AlXGa 、、As 
N3を成長させる。Xとしては進當0゜3位の値が飲ば
れる。次にn型Oa A s層4を形成し、ゲート′碩
域のn型Oa A s層4をエツチング後、ゲートは(
V5を形成する。四にソース・ドレーン電極6,7を、
n型Oa A s基板2に対してオーミック接触するよ
うに形成する。
Figure 1 shows two heterojunction FETs presented at an academic conference.
A Q example is shown. Figure 1 (Al is semi-insulating GaAs-A1 doped with Or, for example.
Grow As layer 2, and further grow n-type AlXGa, As
Grow N3. As for X, the value of Shinto 0°3 is taken. Next, an n-type OaAs layer 4 is formed, and after etching the n-type OaAs layer 4 in the gate area, the gate is etched (
Form V5. 4. Source/drain electrodes 6, 7,
It is formed to make ohmic contact with the n-type OaAs substrate 2.

第1図(b)の例では、AAixGa 1.As N 
3 Iこはノンドープ層を用いている。次にゲート領域
5にタミーの酸化膜パターンを形成し、これをマスクに
して、ソース8.ドレイン9をイオン注入で形成する。
In the example of FIG. 1(b), AAixGa1. AsN
3 A non-doped layer is used here. Next, a Tammy oxide film pattern is formed on the gate region 5, and using this as a mask, the source 8. Drain 9 is formed by ion implantation.

しかる後、ゲート電極5.ソース電@6゜ドレーン領域
極7を形成する。
After that, the gate electrode 5. A source electrode @6° drain region pole 7 is formed.

これらの例では、いずれも、ソース・ドレーンの抵抗が
大きくなり、素子の特性が低下すると−う問題がある。
In all of these examples, there is a problem in that the source/drain resistance increases and the characteristics of the device deteriorate.

(発明の目的) 本発明の目的は、これらの問題点を解決し、ソース・ド
レぽンの抵抗が低いヘテロ接合電界効果トランジスタを
提供することにある。
(Object of the Invention) An object of the present invention is to solve these problems and provide a heterojunction field effect transistor with low source-drain resistance.

(第1の実施例) 第2図(a)〜(e)は本発明の第1の実施例を説明す
るための断面図である。例えばOrをドープした牛絶縁
性基板21の上に、n型G a A s層22(例えば
Siを5×1015cIrL−3ドープ、厚さ0.2μ
m)をエピタキシアル成長する。その上にノンドープ又
はS i ヲドープ(例えばIQ” crn−3) (
、たAJ’GaX     1−X AsMiI23(例えば、x = o、 3 、厚さ8
00 A )をエピタキシアル成長する。次に例えばW
層24を形成し、ゲート領域をレジストJii25をマ
スクにしてエツチングする。更にこれらをマスクとして
、ソース・ドレーン領域26にSiをイオン注入する。
(First Embodiment) FIGS. 2(a) to 2(e) are sectional views for explaining the first embodiment of the present invention. For example, on an insulating substrate 21 doped with Or, an n-type GaAs layer 22 (for example, Si doped with 5 x 1015 cIrL-3, thickness 0.2μ) is formed.
m) is epitaxially grown. On top of that, non-doped or Si-doped (e.g. IQ" crn-3) (
, AJ'GaX 1-X AsMiI23 (e.g. x = o, 3, thickness 8
00A) is epitaxially grown. Next, for example, W
A layer 24 is formed, and the gate region is etched using the resist Jii 25 as a mask. Furthermore, using these as a mask, Si ions are implanted into the source/drain regions 26.

(以上第2図(a)) 次にシリコン酸化膜27を気相成長法で成長する。(See Figure 2 (a) above) Next, a silicon oxide film 27 is grown by vapor phase growth.

(第2図(b)) 次に反応性イオンエツチングによって酸化膜27をドラ
イエツチングし、ゲート領域に酸化膜の側壁あを形成す
る。(第2図(C)) 次にPLを全面蒸着し、約400℃でアニールして、P
 t /GaA sの金属間化合物層を形成する。しか
る後、ウェーハを酸化すると、金属間化合物の表面層に
薄いGa、 0.層が形成される。それをマスクにして
60℃〜100℃のKON液でptをエツチングする、
するとソース・ドレインにP’t/UaAsの金属間化
合物層291 、292のみが残る。(第2図(d)) 次に全面にシリコン酸化膜210を形成し、そのあとソ
ース・ドレーン、ゲーrにコンタクトを開口し、AI配
線によって、ゲート211.ソース212゜ドレーン2
13の各電極を形IIx、Tる。(第2圀(e))この
トランジスタの構造では、ソース及びドレーンの共晶層
291 、291によって、ソース及びドレーンの抵抗
が小さく、大きなゲインのトランジスタに対しても、直
列抵抗は無視出来る位に小さい、本構造は、Ni 、 
T−i 、W、Mo  等についても適当なプロセス変
更によって笑現出来る。特にWF。
(FIG. 2(b)) Next, the oxide film 27 is dry etched by reactive ion etching to form side walls of the oxide film in the gate region. (Figure 2 (C)) Next, PL was deposited on the entire surface, annealed at about 400°C, and PL
An intermetallic compound layer of t/GaAs is formed. After that, the wafer is oxidized, and the surface layer of the intermetallic compound has a thin layer of Ga, 0. A layer is formed. Using it as a mask, etch the PT with KON solution at 60°C to 100°C.
Then, only the P't/UaAs intermetallic compound layers 291 and 292 remain on the source and drain. (FIG. 2(d)) Next, a silicon oxide film 210 is formed on the entire surface, and then contacts are opened to the source/drain and gate r, and gates 211. Source 212° Drain 2
Each of the 13 electrodes is of the form IIx,T. (Second panel (e)) In this transistor structure, the resistance of the source and drain is small due to the eutectic layers 291 and 291 of the source and drain, and even for a transistor with a large gain, the series resistance is negligible. This structure is small, Ni,
Ti, W, Mo, etc. can also be realized by appropriate process changes. Especially WF.

+3H2→W +6HF(200〜700℃)の還元反
応はWが酸化膜上に成長せす牛導体、金属に選択的に成
長するので利用できる。
+3H2→W The reduction reaction of +6HF (200 to 700°C) can be used because W selectively grows on the conductor and metal grown on the oxide film.

(第2の実施例) 第3図(at 、 (b)は本発明の第2の実施例を説
明する断面図である。この実施例ではゲート電極31に
高ドープのn型G a A sを使用している。ドーパ
ントとして81を例えばI XIOlBcm−3トープ
し、ゲート電極31の厚さを0.5μmとすればよい。
(Second Embodiment) FIGS. 3(at) and 3(b) are cross-sectional views illustrating a second embodiment of the present invention. In this embodiment, the gate electrode 31 is made of highly doped n-type GaAs. For example, the gate electrode 31 may be doped with IXIOlBcm-3 as a dopant, and the thickness of the gate electrode 31 may be set to 0.5 μm.

1XGa1.As層%はノンドープでもへイドープでも
よい。(第3図(a)) 次に第2図(b)〜第2図(d)と同様の工程で第3図
(b)の構造を形成する。但し、第3図(b)ではG 
a A sゲート31にも共晶層32を形成する。最後
に第2図(e)と同様の構造に仕上げる。
1XGa1. The As layer % may be non-doped or heavily doped. (FIG. 3(a)) Next, the structure shown in FIG. 3(b) is formed in the same steps as in FIGS. 2(b) to 2(d). However, in Figure 3(b), G
A eutectic layer 32 is also formed in the a As gate 31 . Finally, create a structure similar to that shown in Figure 2(e).

(第3の実施例) 第4図は本発明の第3の実施例を説明する断面図である
。本実施例では側壁酸化膜を使用しない。
(Third Embodiment) FIG. 4 is a sectional view illustrating a third embodiment of the present invention. In this embodiment, no sidewall oxide film is used.

n型G a A s層31の上にAltfIR4】を形
成し、スバ。
AltfIR4] is formed on the n-type GaAs layer 31 and then removed.

夕法で5i01膜42を厚さ0.5μm位成長する。次
にレジスト43ヲマスクにして、ゲート領域を、酸化膜
、kl*n−GaAs 、AlXGa 1.As膜まで
エツチングする。レジス計膜43を除去し、そのあとソ
ース及びドレーン層26を8iのイオン注入で形成する
。次に、Pt/、Geの薄膜を成長する。
A 5i01 film 42 is grown to a thickness of about 0.5 μm using the evening method. Next, using the resist 43 as a mask, the gate region is covered with an oxide film, kl*n-GaAs, AlXGa 1. Etch down to the As film. The resist film 43 is removed, and then the source and drain layers 26 are formed by 8i ion implantation. Next, a thin film of Pt/Ge is grown.

(第4図(a))、熱処理によって共晶層を形成後共晶
になっていないL’t/Geをエツチングし、酸化膜を
エツチングする。最後化第2図(e)と同様の構造に仕
上げる。(・第4図Φン) (別の実施例) なお本発明はA J x G a 0.cA s /G
 a A s 糸のFgTを実施例と(7て述べたが、
その他の多くのヘテロ接合の材料の組合せ、或は超格子
構造を含むFBTについても同様に成立するものとする
。又ソース・ドレーン、ゲートを極の材料も、G a 
A s或は他の基板半導体とオーミックで共晶層を作る
ものであればよい。又共晶層のエツチングに対しては、
共晶層をエツチングせずに残し、電極金属のみをエツチ
ングするものであれば何んでも良い、又ドライエッチン
クでもウェットエツチングでもよい、ヘテロ接合の組合
せとしては上記実施例の他にIn AlAs/InP 
(x:0.5 ) 、 I n、Ga 、、AsX  
   1−X / InP (x”:Z O,5) 、 AAxIn 
、、P/GaAs (x:o、5 )A ji’ 1 
n  P/ I n y Ga I、A s (xご0
.5.y、:o、s)。
(FIG. 4(a)), after forming a eutectic layer by heat treatment, the L't/Ge that has not become eutectic is etched, and the oxide film is etched. Finalization Create a structure similar to that shown in Figure 2(e). (・Fig. 4 Φn) (Another embodiment) The present invention is based on A J x Ga 0. cA s /G
a A s The FgT of the yarn was described in Examples and (7),
The same holds true for many other combinations of heterojunction materials or for FBTs containing superlattice structures. Also, the material of the source/drain and gate electrodes is Ga
Any material that forms an ohmic eutectic layer with As or other substrate semiconductors may be used. Also, regarding etching of the eutectic layer,
Any method may be used as long as the eutectic layer is left unetched and only the electrode metal is etched, and dry etching or wet etching may be used. In addition to the above embodiments, the combination of heterojunctions is InAlAs/ InP
(x:0.5), In, Ga,, AsX
1-X/InP (x”:ZO,5), AAxIn
,,P/GaAs (x:o,5)A ji' 1
n P/ I n y Ga I, A s (xgo 0
.. 5. y,:o,s).

X    1−X GaxI n 1.CP/GaAs I、 x二0.5
)等が考えられる。
X 1-X GaxI n 1. CP/GaAs I, x20.5
) etc. are possible.

これらは、バンド不連続が大きく本発明の電界効果トラ
ンジスタとして優れた特性が得られる。又、広いバンド
ギャップの半導体とゲート電極の間に絶縁膜をはさむ構
造も考えられる。
These have large band discontinuity and can provide excellent characteristics as the field effect transistor of the present invention. Furthermore, a structure in which an insulating film is sandwiched between a wide bandgap semiconductor and a gate electrode is also considered.

又以上の実施例はNチャネルの電界効果トランジスタに
ついて述べたが、Pチメ1ル電界効果についても同様の
構造が適用出来る。
Further, although the above embodiments have been described with respect to an N-channel field effect transistor, a similar structure can also be applied to a P-thickness field effect transistor.

又ゲート電極に半導体の導電型はチャンネル伝導と同じ
型としたが、逆の場合にも本構造は適用出来る。
Furthermore, although the conductivity type of the semiconductor for the gate electrode is the same as that of the channel conduction type, the present structure can also be applied to the opposite case.

(発明の効果) 以上本発明に示したように共晶層を形成することでソー
ス・ビレ4フ層の抵抗を下げることができ、ヘテロ接合
電界効果トランジスタの特性を向上させることができる
(Effects of the Invention) By forming the eutectic layer as described above in the present invention, the resistance of the source filler layer can be lowered, and the characteristics of the heterojunction field effect transistor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は従来のトランジスタ構造を
示す断面図。 第2図(a)〜(e)は第1の実施例を説明する断面図
。 第3図(,1) 、 (b)は第2の実施例を説明する
断面図。 第4図(a) 、 (b)は第3の実施例を説明する断
面図。 1.21−− GaAs基板、2.4.22−− G 
a A s層、3.23・・・・・・A#GaAs層、
6,7・・・・・・ソース・ビレ4ン電極、291 、
292・・・・・・共晶層亭 1  図 1こ1 2QI         2q2 第3、図
FIGS. 1(a) and 1(b) are cross-sectional views showing a conventional transistor structure. FIGS. 2(a) to 2(e) are cross-sectional views illustrating the first embodiment. FIGS. 3(, 1) and 3(b) are cross-sectional views illustrating the second embodiment. FIGS. 4(a) and 4(b) are sectional views explaining the third embodiment. 1.21--GaAs substrate, 2.4.22--G
a As layer, 3.23...A#GaAs layer,
6, 7... Source/fin 4 electrode, 291,
292...Eutectic layer 1 Figure 1 1 2QI 2q2 3rd, Figure

Claims (3)

【特許請求の範囲】[Claims] (1)ヘテロ接合界面の伝導度変調を利用し、しかもソ
ースドレーン不純物層がゲート電極と重なるように形成
されている電界効果トランジスタにおいてソース・ドレ
ーン領域の表面に、高伝導度共晶層を有するヘテロ接合
電界効果トランジスタ。
(1) A field effect transistor that utilizes conductivity modulation at the heterojunction interface and is formed so that the source/drain impurity layer overlaps the gate electrode has a highly conductive eutectic layer on the surface of the source/drain region. Heterojunction field effect transistor.
(2)ゲート電極として高不純物濃度の半導体層を用い
しかもその表面に高伝導度の共晶層が形成されている特
許請求の範囲第1項記載のヘテロ接合電界効果トランジ
スタ。
(2) The heterojunction field effect transistor according to claim 1, wherein a semiconductor layer with a high impurity concentration is used as the gate electrode, and a highly conductive eutectic layer is formed on the surface of the semiconductor layer.
(3)ゲート電極側面に絶縁膜が形成されている特許請
求の範囲第1項または第2項記載のヘテロ接合電界効果
トランジスタ。
(3) The heterojunction field effect transistor according to claim 1 or 2, wherein an insulating film is formed on the side surface of the gate electrode.
JP13676484A 1984-07-02 1984-07-02 Hetero junction fet Pending JPS6115375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13676484A JPS6115375A (en) 1984-07-02 1984-07-02 Hetero junction fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13676484A JPS6115375A (en) 1984-07-02 1984-07-02 Hetero junction fet

Publications (1)

Publication Number Publication Date
JPS6115375A true JPS6115375A (en) 1986-01-23

Family

ID=15182958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13676484A Pending JPS6115375A (en) 1984-07-02 1984-07-02 Hetero junction fet

Country Status (1)

Country Link
JP (1) JPS6115375A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275185A (en) * 1987-05-06 1988-11-11 Nec Corp Field effect transistor
JPS6482569A (en) * 1987-09-25 1989-03-28 Sumitomo Electric Industries Field-effect transistor and manufacture thereof
JPH01161874A (en) * 1987-12-18 1989-06-26 Hitachi Ltd Semiconductor device and its manufacture
US5177026A (en) * 1989-05-29 1993-01-05 Mitsubishi Denki Kabushiki Kaisha Method for producing a compound semiconductor MIS FET

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275185A (en) * 1987-05-06 1988-11-11 Nec Corp Field effect transistor
JPS6482569A (en) * 1987-09-25 1989-03-28 Sumitomo Electric Industries Field-effect transistor and manufacture thereof
JPH01161874A (en) * 1987-12-18 1989-06-26 Hitachi Ltd Semiconductor device and its manufacture
US5177026A (en) * 1989-05-29 1993-01-05 Mitsubishi Denki Kabushiki Kaisha Method for producing a compound semiconductor MIS FET

Similar Documents

Publication Publication Date Title
EP0283278B1 (en) Compound semiconductor device having nonalloyed ohmic contacts
JP3086748B2 (en) High electron mobility transistor
US5770489A (en) Method of making a compound semiconductor field-effect transistor
JPH0324782B2 (en)
JP3119248B2 (en) Field effect transistor and method of manufacturing the same
US5231040A (en) Method of making a field effect transistor
JPS6115375A (en) Hetero junction fet
JPH03145139A (en) Field-effect transistor and manufacture thereof
KR940010557B1 (en) Semiconductor device
JPH0750781B2 (en) Compound semiconductor integrated circuit device
JP2787589B2 (en) Semiconductor device
JP3505884B2 (en) Field effect transistor and method of manufacturing the same
JPS60251671A (en) Field-effect type transistor and manufacture thereof
JP2616634B2 (en) Field effect transistor
JPS63228762A (en) Manufacture of semiconductor device
JPH04291732A (en) Manufacture of field-effect transistor
JPH02189978A (en) Fine wiring field effect transistor and manufacture thereof
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPS62200771A (en) Semiconductor device and manufacture thereof
JPH0951091A (en) Field effect transistor
JPS62204578A (en) Manufacture of field-effect transistor
JPS60136380A (en) Semiconductor device
JPH06163602A (en) High-electron-mobility transistor and its manufacture
JPH06232168A (en) Field effect transistor and its manufacture
JPH05291306A (en) Element isolation of heterojunction field-effect transistor