JPH0312769B2 - - Google Patents

Info

Publication number
JPH0312769B2
JPH0312769B2 JP59000523A JP52384A JPH0312769B2 JP H0312769 B2 JPH0312769 B2 JP H0312769B2 JP 59000523 A JP59000523 A JP 59000523A JP 52384 A JP52384 A JP 52384A JP H0312769 B2 JPH0312769 B2 JP H0312769B2
Authority
JP
Japan
Prior art keywords
layer
inas
alxga
asysb
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59000523A
Other languages
Japanese (ja)
Other versions
JPS60144979A (en
Inventor
Hideki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59000523A priority Critical patent/JPS60144979A/en
Publication of JPS60144979A publication Critical patent/JPS60144979A/en
Publication of JPH0312769B2 publication Critical patent/JPH0312769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明はヘテロ接合半導体デバイスに関し、特
にInAs/AlxGa1-xAsySb1-y(y=0.067x+0.09)
系のヘテロ接合を用いた半導体デバイスに関す
る。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a heterojunction semiconductor device, particularly InAs/AlxGa 1-x AsySb 1-y (y=0.067x+0.09)
This invention relates to a semiconductor device using a heterojunction system.

〔背景技術〕[Background technology]

2つの異種半導体の接合(ヘテロ接合)は、導
電帯の底の不連続性によりヘテロ界面の低い導電
帯側に電子蓄積層を形成したりキヤリヤを閉じ込
める作用があり、高速デバイスや半導体レーザ等
に利用されている。ヘテロ接合の特性は、接合す
る2種の半導体のエネルギ・バンド構造(エネル
ギ・バンド・ギヤツプ、電子親和度)により著し
く異なる。
A junction between two dissimilar semiconductors (heterojunction) has the effect of forming an electron storage layer or confining carriers on the lower conductive band side of the hetero interface due to the discontinuity at the bottom of the conductive band, making it useful for high-speed devices, semiconductor lasers, etc. It's being used. The characteristics of a heterojunction differ significantly depending on the energy band structure (energy band gap, electron affinity) of the two semiconductors to be joined.

従来、高速デバイスに用いられてきた代表的な
ヘテロ接合はGaAs/AlGaAs系であり、GaAs
MESFET以上の高速動作を与えるが、動作層の
GaAs内でキヤリヤがP谷(主バンド)からL谷
(サブバンド)へ遷移しやすいため、負性微分移
動度を伴う谷間散乱が起こり、バリステイツクデ
バイスや高移動度能動デバイスを実現する上で問
題があつた。
Conventionally, the typical heterojunction used for high-speed devices is GaAs/AlGaAs system, and GaAs
It provides high-speed operation than MESFET, but the operation layer
Because the carrier easily transitions from the P valley (main band) to the L valley (subband) in GaAs, valley scattering with negative differential mobility occurs, which is important for realizing varistic devices and high-mobility active devices. There was a problem.

〔発明の開示〕[Disclosure of the invention]

したがつて、本発明の目的はGaAs/AlGaAs
系およびInGaAs系ヘテロ接合デバイスの問題点
を解決した高速デバイスを提供することにあり、
この目的は、本発明においてInAsとAlxGa1-x
AsySb1-yとのヘテロ接合を用いた半導体デバイ
スによつて解決される。
Therefore, the object of the present invention is to
Our goal is to provide high-speed devices that solve the problems of InGaAs-based and InGaAs-based heterojunction devices.
This purpose is achieved in the present invention by combining InAs and AlxGa 1-x
The problem is solved by a semiconductor device using a heterojunction with AsySb 1-y .

本発明は、GaAsの代わりにInAsを用いる。第
1図の電界強度と電子のドリフト速度との関係に
示されているように、InAsはGaAsに比べ電子の
低電界移動度が大きいこと、ピーク速度が大きい
こと、電子速度のオーバーシユートが大きいこと
などの利点がある。このため高速動作する電子輸
送デバイスの動作層としてはGaAsより適してい
る。
The present invention uses InAs instead of GaAs. As shown in the relationship between electric field strength and electron drift velocity in Figure 1, InAs has a higher low-field mobility of electrons, a higher peak velocity, and a lower electron velocity overshoot than GaAs. It has advantages such as being large. For this reason, it is more suitable than GaAs for the active layer of an electron transport device that operates at high speed.

さて、InAsを動作層、すなわち実際にキヤリ
ヤが走行する層として用いるためには、InAsと
接合する他方の半導体が電子親和度はInAsより
小さいが禁制帯幅はInAsより大きくかつInAsに
格子整合したものでなければならない。本発明に
よる4元混晶AlxGa1-xAsySb1-y(y=0.067x+
0.09)はこれらの条件を満足した材料である。即
ち、AlxGa1-xAsySb1-y(y=0.067x+0.09)のエ
ネルギ・バンドギヤツプは、第2図に示すように
0.75eV〜1.6eVであり(InAsは0.36eV)、格子定
数はIsAsに等しい6.058Åである。またAlSb,
GaAs,InAsの電子親和度はそれぞれ3.64eV,
4.05eV,4.03eV,4.54eVであるので、AlxGa1-x
AsySb1-y(y=0.067x+0.09)とInAsの電子親和
度は、InAsの方が、約0.5eV〜0.9eV大きいと考
えられる。
Now, in order to use InAs as the active layer, that is, the layer in which the carrier actually runs, the other semiconductor to be bonded to InAs must have an electron affinity smaller than InAs, but a forbidden band width larger than InAs, and a lattice match to InAs. It has to be something. Quaternary mixed crystal AlxGa 1-x AsySb 1-y (y=0.067x+
0.09) is a material that satisfies these conditions. In other words, the energy bandgap of AlxGa 1-x AsySb 1-y (y=0.067x+0.09) is as shown in Figure 2.
It is 0.75 eV to 1.6 eV (0.36 eV for InAs), and the lattice constant is 6.058 Å, which is equal to IsAs. Also, AlSb,
The electron affinity of GaAs and InAs is 3.64eV, respectively.
4.05eV, 4.03eV, 4.54eV, so AlxGa 1-x
It is thought that the electron affinity between AsySb 1-y (y=0.067x+0.09) and InAs is larger for InAs by about 0.5 eV to 0.9 eV.

以下添付図面を参照して本発明の具体的な実施
例を述べる。
Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

第3図に本発明による変調ドーピングシヨツト
キゲート電界効果トランジスタの実施例の断面構
造を示す。第3図において、半絶縁性InP基板1
1上に、1μmのアンドープIn0.53Ga0.47As層12、
各2000ÅのアンドープIn0.65Ga0.35As層13、
In.0.77Ga0.23As層14、In0.88Ga0.12As層15、
1μmのAlAs0.16Sb0.84層16、1000Åのアンドー
プInAs層17、0〜200ÅのアンドープAl0.5
Ga0.5As0.12Sb0.88層18、Siドープによる厚さ500
〜1000Åの1×10181/cm3のn+型Al0.5Ga0.5As0.12
Sb0.88層19を例えば分子線エピタキシヤル法に
より順次成長させ、このn+型Al0.5Ga0.5As0.12
Sb0.8819上にAlのシヨツトキゲート電極20と
ゲート電極20の両側にAuGeNiのオーミツク電
極21,22とを設けた構造である。第4図に示
すように、InAsとAl0.5Ga0.5As0.12Sb0.88との導電
帯の底の不連続性のためにヘテロ界面のInAs側
に電子の蓄積が起こる。すなわち、InAsの電子
親和度が大きいためn+型Al0.5Ga0.5As0.12Sb0.88
内のドナにより供給された電子がInAs側に引き
つけられて電子蓄積層が形成される。この電子蓄
積層がソース・ドレイン間の電気伝導に寄与する
わけであるが、InAs層には不純物をドープして
いないためにイオン化不純物散乱が少なくなり、
特にイオン化不純物散乱が支配的になる低温でこ
の効果は大きく高電子移動度が得られる。これと
同様の原理、即ちキヤリアが発生するドープ領域
と実際にキヤリヤが動き回るアンドープ領域とを
空間的に分散したFETとしては、従来GaAs/
AlGaAsヘテロ接合を用いたものが知られてい
る。本発明では動作層としてGaAsのかわりに
InAsを用いているため前述したようにInAsの電
子速度がGaAsのそれより大きいことにより高速
動作が可能となる。またIn0.52Al0.98As/In0.53
Ga0.47Alテロ界面を用いたFETも最近提案されて
いるが、In0.53Ga0.47As混晶中での合金散乱の影
響のため高電子移動度が得られていないのが実状
である。本発明によるFETでは、動作層にInAs
を用いているため合金散乱の問題はなく、高速動
作のFETが実現できる。なお本発明によるFET
では、基板に半絶縁性のInPを用い、また
InxGa1-xAsの組成がステツプ状に異なるバツフ
ア層を用いている。これはInAsに格子整合する
良質な半絶縁性基板がないために、基板としては
InPを用い、また少しずつ格子定数の異なつたバ
ツフア層を用いている。このInxGa1-xAsバツフ
ア層は界面で0.8%の格子不整が存在するが、こ
のバツフア層上に成長させたInAs層は良質の結
晶になつていることが第5図に示すX線回折実験
の結果より判明している。
FIG. 3 shows a cross-sectional structure of an embodiment of a modulation doped shot gate field effect transistor according to the present invention. In Fig. 3, semi-insulating InP substrate 1
1, a 1 μm undoped In 0.53 Ga 0.47 As layer 12,
Undoped In 0.65 Ga 0.35 As layer 13 of 2000 Å each,
In. 0.77 Ga 0.23 As layer 14, In 0.88 Ga 0.12 As layer 15,
1 μm AlAs 0.16 Sb 0.84 layer 16, 1000 Å undoped InAs layer 17, 0-200 Å undoped Al 0.5
Ga 0.5 As 0.12 Sb 0.88 layer 18, thickness 500 with Si doping
~1000Å 1×10 18 1/cm 3 n + type Al 0.5 Ga 0.5 As 0.12
Sb 0.88 layer 19 is grown sequentially by, for example, molecular beam epitaxial method, and this n + type Al 0.5 Ga 0.5 As 0.12
It has a structure in which a shot gate electrode 20 of Al is provided on the Sb 0.88 19, and ohmic electrodes 21 and 22 of AuGeNi are provided on both sides of the gate electrode 20. As shown in FIG. 4, electrons accumulate on the InAs side of the heterointerface due to the discontinuity at the bottom of the conductive band between InAs and Al 0.5 Ga 0.5 As 0.12 Sb 0.88 . That is, since InAs has a large electron affinity, electrons supplied by donors in the n + type Al 0.5 Ga 0.5 As 0.12 Sb 0.88 layer are attracted to the InAs side, forming an electron storage layer. This electron storage layer contributes to electrical conduction between the source and drain, but since the InAs layer is not doped with impurities, ionized impurity scattering is reduced.
This effect is particularly large at low temperatures where ionized impurity scattering becomes dominant, resulting in high electron mobility. Conventional FETs based on a similar principle, that is, a doped region where carriers are generated and an undoped region where the carriers actually move, have been developed using GaAs/
A device using an AlGaAs heterojunction is known. In the present invention, instead of GaAs as the active layer,
Since InAs is used, high-speed operation is possible because the electron velocity of InAs is higher than that of GaAs, as mentioned above. Also In 0.52 Al 0.98 As/In 0.53
FETs using Ga 0.47 Al telo-interfaces have recently been proposed, but high electron mobility has not been achieved due to the influence of alloy scattering in the In 0.53 Ga 0.47 As mixed crystal. In the FET according to the present invention, InAs is used in the active layer.
Since this method uses alloy scattering, there is no problem with alloy scattering, and a high-speed operation FET can be realized. Note that the FET according to the present invention
In this case, semi-insulating InP is used as the substrate, and
Buffer layers with stepwise different compositions of InxGa 1-x As are used. This is because there is no high-quality semi-insulating substrate that can lattice match InAs.
It uses InP and buffer layers with slightly different lattice constants. This InxGa 1-x As buffer layer has a lattice mismatch of 0.8% at the interface, but the X-ray diffraction experiment shown in Figure 5 shows that the InAs layer grown on this buffer layer has a good quality crystal. This is clear from the results.

このバツフア層は本実施例で述べたものに限ら
ず、格子定数の異なる半導体層間を無理なく結び
つけるものであれば、どのようなものでも良い。
This buffer layer is not limited to the one described in this embodiment, but may be of any type as long as it connects semiconductor layers having different lattice constants without difficulty.

第6図には本発明による実空間遷移型半導体素
子の実施例の断面構造を示す。第6図において、
半絶縁性InP基板31上に、1μmのアンドープ
In0.53Ga0.47As層32、各2000Åのアンドープ
In0.65Ga0.35As層33、In0.77Ga0.23As層34、
In0.88Ga0.12As層35、1μmのAlAs0.16Sb0.84層3
6を成長させ、その上にAl0.5Ga0.5As0.12Sb0.88
37、とInAs層38とを交互に積層成長させる。
この実施例ではダブルヘテロ接合を繰り返した多
重積構造であるが、単一ヘテロ接合の単一積層構
造でも良い。39,40はこの積層構造にほぼ垂
直に設けられたオーミツク電極である。前述と同
様に各ヘテロ界面のInAs側に電子蓄積層が形成
される。オーミツク電極39,40間に電界を印
加すると、InAs中の電子は加速されてホツトエ
レクトロンとなるが、InAs中の上の谷(L谷)
に遷移する前にAl0.5Ga0.5As0.12Sb0.88層中に散乱
される。Al0.5Ga0.5As0.12Sb0.88中では電子の移動
度はInAs中よりも小さいために負性微分抵抗が
生じる。電子の遷移時間は横方向の長さで決まる
ため、ガンダイオードより高周波での動作が期待
できる。従来この型の半導体素子としては、
GaAs−AlGaAsへテロ界面を用いたものが知ら
れている。ところがGaAsではP谷とL谷間のエ
ネルギー差△EPLが0.31eVと比較的小さいため、
ホツトエレクトロンがAlxGa1-xAs中に散乱する
前にL谷に遷移しやすい。したがつて、負性微分
抵抗は得られてもそれはガン効果によるものであ
り、純粋な実空間遷移による負性微分性抵抗とい
う現象は実現し難かつた。これに比で本発明によ
るInAs/AlxGa1-xAsySb1-y(y=0.067x+0.09)
へテロ接合を用いたものではInAsの△EPL
0.7eVと大きいため、InAs中のホツトエレクトロ
ンがAlxGa1-xAsySb1-y(y=0.067x+0.09)中に
散乱する前にL谷へ遷移するという現象が起こり
にくく、高電界で純粋な実空間遷移による負性微
分抵抗が得られる。なお変調ドピング法によりア
ンドープInAs層38とn+型Al0.5Ga0.5As0.12Sb0.88
層37とを形成してInAs中の電子移動度を高め
てもよい。
FIG. 6 shows a cross-sectional structure of an embodiment of a real space transition type semiconductor device according to the present invention. In Figure 6,
1 μm undoped on semi-insulating InP substrate 31
In 0.53 Ga 0.47 As layer 32, each 2000 Å undoped
In 0.65 Ga 0.35 As layer 33, In 0.77 Ga 0.23 As layer 34,
In 0.88 Ga 0.12 As layer 35, 1 μm AlAs 0.16 Sb 0.84 layer 3
6, and Al 0.5 Ga 0.5 As 0.12 Sb 0.88 layers 37 and InAs layers 38 are alternately grown thereon.
Although this embodiment has a multi-layered structure in which double heterojunctions are repeated, a single-layered structure with a single heterojunction may also be used. 39 and 40 are ohmic electrodes provided substantially perpendicular to this laminated structure. As described above, an electron storage layer is formed on the InAs side of each heterointerface. When an electric field is applied between the ohmic electrodes 39 and 40, the electrons in InAs are accelerated and become hot electrons, but the upper valley (L valley) in InAs
It is scattered into the Al 0.5 Ga 0.5 As 0.12 Sb 0.88 layer before transitioning to . Since the electron mobility in Al 0.5 Ga 0.5 As 0.12 Sb 0.88 is smaller than in InAs, negative differential resistance occurs. Since the electron transition time is determined by the lateral length, it is expected to operate at higher frequencies than Gunn diodes. Conventionally, this type of semiconductor device is
A device using a GaAs-AlGaAs heterointerface is known. However, in GaAs, the energy difference △E PL between the P valley and the L valley is relatively small at 0.31 eV, so
Hot electrons tend to transition to the L valley before being scattered into AlxGa 1-x As. Therefore, even if negative differential resistance was obtained, it was due to the Gunn effect, and it was difficult to realize the phenomenon of negative differential resistance due to pure real space transition. Compared to this, InAs/AlxGa 1-x AsySb 1-y (y=0.067x+0.09) according to the present invention
In the case of using a heterojunction, the △E PL of InAs is
Because it is as large as 0.7eV, it is difficult for the hot electrons in InAs to transition to the L valley before being scattered in AlxGa 1-x AsySb 1-y (y = 0.067x + 0.09), making it possible to obtain pure Negative differential resistance due to real space transition is obtained. Note that the undoped InAs layer 38 and n + type Al 0.5 Ga 0.5 As 0.12 Sb 0.88 are formed using the modulation doping method.
A layer 37 may be formed to increase electron mobility in InAs.

第7図は本発明によるバイポーラヘテロ接合ト
ランジスタの実施例を示す。第7図においてP+
型InAs基板(n=2×10181/cm3)41上に
0.5μm厚のP-型InAsコレクタ層(1×10161/cm3
42、500Å厚のn+型(1×10191/cm3)InAsベ
ース層43、0.2μm厚のP型(2×10171/cm3
Al0.5Ga0.5As0.12Sb0.88エミツタ層44、0.2μm厚
のP+型(1×10191/cm3)InAsキヤツプ層45を
備えた構造である。この構造のトランジスタは、
ベース、コレクタの動作層で大きな電流密度が得
られ、gmが大きいこと、フアンアウト依存性が
小さいこと、動作振幅が小さいことなどの利点が
ある。またベース層の厚さをサブ・ミクロンまで
縮小できるとバリステイツク動作又は電子速度の
オーバーシユート効果が可能である。
FIG. 7 shows an embodiment of a bipolar heterojunction transistor according to the invention. In Figure 7, P +
type InAs substrate (n=2×10 18 1/cm 3 ) on 41
0.5 μm thick P - type InAs collector layer (1×10 16 1/cm 3 )
42, 500 Å thick n + type (1×10 19 1/cm 3 ) InAs base layer 43, 0.2 μm thick P type (2×10 17 1/cm 3 )
The structure includes an Al 0.5 Ga 0.5 As 0.12 Sb 0.88 emitter layer 44 and a 0.2 μm thick P + type (1×10 19 1/cm 3 ) InAs cap layer 45. A transistor with this structure is
It has advantages such as large current density in the active layers of the base and collector, large gm, small fan-out dependence, and small operating amplitude. Also, if the thickness of the base layer can be reduced to sub-microns, varistic operation or electron velocity overshoot effects are possible.

従来知られているGaAs/AlxGa1-xAs系のバ
イポーラ・ヘテロ接合トランジスタではベース層
にGaAsを用いているため前述したようにP谷と
L谷間のエネルギー差△EPLが比較的小さく、帯
間フオノン散乱が生起しやすい。これに比べ本発
明によるトランジスタではInAsを動作層として
用いており△EPLが大きいので、ベース領域で帯
間フオノン散乱されずにバリステイツク動作また
は電子速度のオーバーシユート動作が起こりやす
い。このため超高速のトランジスタが実現でき
る。
Conventionally known GaAs/AlxGa 1-x As bipolar heterojunction transistors use GaAs for the base layer, so as mentioned above, the energy difference △E PL between the P valley and the L valley is relatively small, and the band Phonon scattering is likely to occur. In comparison, the transistor according to the present invention uses InAs as the active layer and has a large ΔE PL , so that interband phonon scattering does not occur in the base region and varistic operation or electron velocity overshoot operation is likely to occur. This makes it possible to create ultra-high-speed transistors.

〔産業上の利用可能性〕[Industrial applicability]

以上のように、本発明によるInAs/AlxGa1-x
AsySb1-y(y=0.067x+0.09)ヘテロ接合を用い
た種々のデバイスは、従来のデバイスに比べて動
作速度が高いため、現在FET、ICガンダイオー
ド等が用いられている。あらゆる分野に用いるこ
とができ、その産業上の利用価値は極めて大きく
特に高速処理が必要な分野、例えば計算機の
CPU、メモリ、画像処理等での利用が期待でき
る。
As described above, InAs/AlxGa 1-x according to the present invention
Various devices using AsySb 1-y (y=0.067x+0.09) heterojunctions have higher operating speeds than conventional devices, so FETs, IC Gunn diodes, etc. are currently used. It can be used in all fields, and its industrial value is extremely high, especially in fields that require high-speed processing, such as computers.
It is expected to be used for CPU, memory, image processing, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、GaAs、InAsの電子速度の電界強度
依存性を示す図である。第2図は、−V族化合
物半導体のエネルギーバンドギヤツプと格子定数
との関係を示す図である。第3図は、本発明によ
るInAs/AlxGa1-xAsySb1-y(y=0.067x+0.09)
の界面を用いた変調ドープ電界効果トランジスタ
の断面図である。第4図は、InAs/Al0.5Ga0.5
As0.12Sb0.88ヘテロ界面でのエネルギーバンド図
である。第5図は、InP基板上にInxGa1-xAs多
層バツフア層を介して成長させたInAsのX線ロ
ツキング・カーブである。第6図は、本発明によ
るInAs/AlxGa1-xAsySb1-y(y=0.067x+0.09)
ヘテロ界面を用いた実空間遷移型半導体素子の断
面構造図である。第7図は、ベース層にInAs、
エミツタ層にAlxGa1-xAsySb1-y(y=0.067x+
0.09)を用いた本発明によるバイポーラ・ヘテロ
接合トランジスタの断面構造図である。 11,31は半絶縁性InP基板、12,32は
In0.53Ga0.47As層、13,33はIn0.65Ga0.35As層、
14,34はIn0.77Ga0.23As層、15,35は
In0.88Ga0.12As層、16,36はAlAs0.16Sb0.84層、
17はアンドープInAs層、18はアンドープ
Al0.5Ga0.5As0.12Sb0.88層、19はn+型Al0.5Ga0.5
As0.12Sb0.88層、20はシヨツトキ電極、21,
22はオーミツク電極、37はAl0.5Ga0.5As0.12
Sb0.88層、38はInAs層、39,40はオーミツ
ク電極、41はP+型InAs基板、42はP-型InAs
コレクタ層、43はn+型InAsベース層、44は
P型AlxGa1-xAsySb1-y(y=0.067x+0.09)層、
45はP+型InAsキヤツプ層。
FIG. 1 is a diagram showing the electric field strength dependence of electron velocity in GaAs and InAs. FIG. 2 is a diagram showing the relationship between the energy band gap and lattice constant of a -V group compound semiconductor. Figure 3 shows InAs/AlxGa 1-x AsySb 1-y (y=0.067x+0.09) according to the present invention.
FIG. 2 is a cross-sectional view of a modulation doped field effect transistor using an interface of FIG. Figure 4 shows InAs/Al 0.5 Ga 0.5
It is an energy band diagram at the As 0.12 Sb 0.88 hetero interface. FIG. 5 is an X-ray rocking curve of InAs grown on an InP substrate via an InxGa 1-x As multilayer buffer layer. Figure 6 shows InAs/AlxGa 1-x AsySb 1-y (y=0.067x+0.09) according to the present invention.
FIG. 2 is a cross-sectional structural diagram of a real space transition type semiconductor device using a heterointerface. Figure 7 shows InAs in the base layer.
AlxGa 1-x AsySb 1-y (y=0.067x+
0.09) according to the present invention; FIG. 11, 31 are semi-insulating InP substrates, 12, 32 are semi-insulating InP substrates,
In 0.53 Ga 0.47 As layer, 13 and 33 are In 0.65 Ga 0.35 As layer,
14 and 34 are In 0.77 Ga 0.23 As layers, 15 and 35 are
In 0.88 Ga 0.12 As layer, 16 and 36 are AlAs 0.16 Sb 0.84 layer,
17 is undoped InAs layer, 18 is undoped
Al 0.5 Ga 0.5 As 0.12 Sb 0.88 layer, 19 is n + type Al 0.5 Ga 0.5
As 0.12 Sb 0.88 layer, 20 is a shot electrode, 21,
22 is an ohmic electrode, 37 is Al 0.5 Ga 0.5 As 0.12
Sb 0.88 layer, 38 is InAs layer, 39 and 40 are ohmic electrodes, 41 is P + type InAs substrate, 42 is P - type InAs
Collector layer, 43 is n + type InAs base layer, 44 is P type AlxGa 1-x AsySb 1-y (y = 0.067x + 0.09) layer,
45 is a P + type InAs cap layer.

Claims (1)

【特許請求の範囲】 1 InAsとAlxGa1-xAsySb1-y(y=0.067x+
0.090)とのヘテロ接合を用いたことを特徴とす
る半導体デバイス。 2 半絶縁性InP基板上のアンドープIn0.53Ga0.47
As層と、該In0.53Ga0.47As層上のステツプ状に組
成を変えたInxGa1-xAs多層バツフア層と、該バ
ツフア層上のアンドープAlxGa1-xAsySb1-y(y
=0.067x+0.09)層と、該AlxGa1-xAsySb1-y
上のアンドープInAs層と、該InAs層上のアンド
ープAlxGa1-xAsySb1-y(y=0.067x+0.09)層
と、該AlxGa1-xAsySb1-y層上のn+型AlxGa1-x
AsySb1-y(y=0.067x+0.09)とを備え、前記n+
型AlxGa1-xAsySb1-y層の離隔した2領域にソー
スおよびドレイン用のオーミツク電極をそれぞれ
設け、これらの電極間にゲート用のシヨツトキ電
極を設けた電界効果トランジスタであることを特
徴とする特許請求の範囲第1項記載の半導体デバ
イス。 3 半絶縁性InP基板上のアンドープIn0.53Ga0.47
As層と、該In0.53Ga0.47As層上のステツプ状に組
成を変えたInxGa1-xAs多層バツフア層と、該バ
ツフア層上のアンドープAlxGa1-xAsySb1-y(y
=0.067x+0.09)層と、該AlxGa1-xAsySb1-y
上にInAsとAlxGa1-xAsySb1-yの単一または多重
の積層を有し、該積層部の両側面にオーミツク電
極を設けた半導体素子であることを特徴とする特
許請求の範囲第1項記載の半導体デバイス。 4 p型InAs基板上にp-型InAsコレクタ層、n+
型InAsベース層、該ベース層上にp型AlxGa1-x
AsySb1-y(y=0.067x+0.09)エミツタ層を備え
たバイポーラヘテロ接合トランジスタであること
を特徴とする特許請求の範囲第1項記載の半導体
デバイス。
[Claims] 1 InAs and AlxGa 1-x AsySb 1-y (y=0.067x+
A semiconductor device characterized by using a heterojunction with 0.090). 2 Undoped In 0.53 Ga 0.47 on semi-insulating InP substrate
an As layer, an InxGa 1-x As multilayer buffer layer with a stepwise composition on the In 0.53 Ga 0.47 As layer, and an undoped AlxGa 1-x AsySb 1-y (y
=0.067x+0.09) layer, an undoped InAs layer on the AlxGa 1-x AsySb 1-y layer, and an undoped AlxGa 1-x AsySb 1-y (y=0.067x+0.09) layer on the InAs layer. , the n + type AlxGa 1- x on the AlxGa 1-x AsySb 1-y layer
AsySb 1-y (y=0.067x+0.09), and the above n +
The field effect transistor is characterized in that ohmic electrodes for the source and drain are provided in two separated regions of the type AlxGa 1-x AsySb 1-y layer, and a shot electrode for the gate is provided between these electrodes. A semiconductor device according to claim 1. 3 Undoped In 0.53 Ga 0.47 on semi-insulating InP substrate
an As layer, an InxGa 1-x As multilayer buffer layer with a stepwise composition on the In 0.53 Ga 0.47 As layer, and an undoped AlxGa 1-x AsySb 1-y (y
= 0.067x + 0.09) layer, and a single or multiple stack of InAs and AlxGa 1-x AsySb 1-y on the AlxGa 1-x AsySb 1-y layer, with ohmics on both sides of the stack. The semiconductor device according to claim 1, which is a semiconductor element provided with an electrode. 4 p - type InAs collector layer, n + on p type InAs substrate
type InAs base layer, p-type AlxGa 1-x on the base layer
2. The semiconductor device according to claim 1, wherein the semiconductor device is a bipolar heterojunction transistor having an AsySb 1-y (y=0.067x+0.09) emitter layer.
JP59000523A 1984-01-07 1984-01-07 Semiconductor device Granted JPS60144979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000523A JPS60144979A (en) 1984-01-07 1984-01-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000523A JPS60144979A (en) 1984-01-07 1984-01-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60144979A JPS60144979A (en) 1985-07-31
JPH0312769B2 true JPH0312769B2 (en) 1991-02-21

Family

ID=11476125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000523A Granted JPS60144979A (en) 1984-01-07 1984-01-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60144979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014530A1 (en) 2020-07-13 2022-01-20 日油株式会社 Wireless detonation system, relay device for wireless detonation system, and wireless detonation method using wireless detonation system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827320A (en) * 1986-09-19 1989-05-02 University Of Illinois Semiconductor device with strained InGaAs layer
US4987462A (en) * 1987-01-06 1991-01-22 Texas Instruments Incorporated Power MISFET
US5091759A (en) * 1989-10-30 1992-02-25 Texas Instruments Incorporated Heterostructure field effect transistor
JP2539268B2 (en) * 1989-07-12 1996-10-02 富士通株式会社 Semiconductor device
JP2822547B2 (en) * 1990-03-06 1998-11-11 富士通株式会社 High electron mobility transistor
WO1992017908A1 (en) * 1991-03-28 1992-10-15 Asahi Kasei Kogyo Kabushiki Kaisha Field effect transistor
JP3173080B2 (en) * 1991-12-05 2001-06-04 日本電気株式会社 Field effect transistor
JP3224437B2 (en) * 1992-11-30 2001-10-29 富士通株式会社 III-V compound semiconductor device
CN103137477B (en) * 2013-02-27 2016-01-13 中国科学院半导体研究所 Si base is prepared the method for InP-base HEMT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014530A1 (en) 2020-07-13 2022-01-20 日油株式会社 Wireless detonation system, relay device for wireless detonation system, and wireless detonation method using wireless detonation system

Also Published As

Publication number Publication date
JPS60144979A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
JP2537852B2 (en) High mobility semiconductor device
JP2676442B2 (en) Heterojunction field effect transistor and manufacturing method thereof
US5831296A (en) Semiconductor device
JPH05110086A (en) Tunnel transistor
JPH024140B2 (en)
JPH0312769B2 (en)
JPH0354854B2 (en)
JPH084138B2 (en) Semiconductor device
EP0136108B1 (en) Heterojunction semiconductor device
JPS61156773A (en) Heterojunction semiconductor device
JP3141838B2 (en) Field effect transistor
JP3094500B2 (en) Field effect transistor
JP2796113B2 (en) Semiconductor device
JPS61152081A (en) Modulation d0ping transistor
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
JPS6214105B2 (en)
JPS61268069A (en) Semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JPS61276269A (en) Hetero-junction type field-effect transistor
JPH0468775B2 (en)
JPH035059B2 (en)
JPH07118540B2 (en) Semiconductor device
JPS62276882A (en) Semiconductor device
JPH07118539B2 (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term