JPH0475385A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0475385A
JPH0475385A JP18808190A JP18808190A JPH0475385A JP H0475385 A JPH0475385 A JP H0475385A JP 18808190 A JP18808190 A JP 18808190A JP 18808190 A JP18808190 A JP 18808190A JP H0475385 A JPH0475385 A JP H0475385A
Authority
JP
Japan
Prior art keywords
electrode
layer
semiconductor device
type
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18808190A
Other languages
Japanese (ja)
Other versions
JP3014125B2 (en
Inventor
Katsutoshi Saito
斉藤 勝利
Kazuhiro Ito
和弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2188081A priority Critical patent/JP3014125B2/en
Publication of JPH0475385A publication Critical patent/JPH0475385A/en
Application granted granted Critical
Publication of JP3014125B2 publication Critical patent/JP3014125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a semiconductor device wherein the thicknesses or the heights of both electric plates can be made accurately equal by using a metallic layer containing at least Ti or Cr as a electric charge material, depositing the layer on the surface of a crystal, and forming an electrode. CONSTITUTION:An InP layer 2, an In0.53Ga0.47As layer 3 and an InP layer 4 are formed on an InP substrate 1. Zn is diffused from a surface 4' of the layer 4, and a P-type region 5 is formed. Then, a hole 6 (depth is 6.5mum) is formed from the surface 4' by selective etching. An insulating film 9 is deposited on the side surface of a central mesa 7. Thereafter, electrode metals 10 and 10' are deposited. The compositions of the electrodes 10 and 10' are made to be Ti (0.1mum), Pt (0.3mum), Au (lmum) and Sn (0.5mum). The electrode 10 is formed only on the surface of the P-type region 5. The electrode 10' is formed along the side surfaces of mesas 8 and 8' connecting the surface 4' of the crystal layer 4 and the exposed part of the substrate 1 at the bottom surface of the hole 6. Then, the electrodes are bonded to a wiring board 14 by a face-down method. As a result, the semiconductor device characterized by excellent manufacturing yield rate and the excellent performance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、結晶組成がI nl−xGaxAs□−yP
yで示される化合物半導体装置およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides crystal compositions of Inl-xGaxAs□-yP
The present invention relates to a compound semiconductor device represented by y and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

半導体装置におけるオーミック電極は通常n型部とn型
部では材料が異なっており、その形成には各々、異なる
工程が必要である。このため、作製工程は複雑であり、
製造原価の低減と歩留の向上に障害となっていた。特に
、両部の電極の高さ、あるいは厚さが正確に一致する必
要がある装置では、その制御が困難である事から、著し
い歩留の低下原因となっていた。
In an ohmic electrode in a semiconductor device, the n-type part and the n-type part are usually made of different materials, and different steps are required to form each part. For this reason, the manufacturing process is complicated;
This was an obstacle to reducing manufacturing costs and improving yield. Particularly in devices where the height or thickness of the electrodes on both sides must be exactly the same, this is difficult to control, which causes a significant drop in yield.

結晶母材がGa□−zAQxAs系である場合、電極材
料としてAuGe系金属を用いると、n型部およびn型
部に対して良好なオーミック電極となり、1つの工程で
同時に電極を形成できる事が、特公昭54−13348
に示されている。しかしながら。
When the crystal base material is Ga□-zAQxAs-based, using AuGe-based metal as the electrode material makes a good ohmic electrode for the n-type part and the n-type part, and it is possible to form the electrodes simultaneously in one process. , Special Publication Showa 54-13348
is shown. however.

上記電極でオーミック特性を得るには、結晶母材と金属
層間で高度な制御により合金化反応を生じさせる事が必
要である。また、上記の合金化処理により、結晶母材に
は欠陥や応力を導入する事となり、電極形成部分の直近
にはpn接合等の活性領域を設けられない欠点があった
。また、同材料は禁止帯幅1.4eV以下のI n、−
xGaxAst−yPyにおいて、InPを多く含む系
には良好なオーミック性を示さない欠点があった。この
ため、上記結晶系では、n型部にはA u G e系、
p型部にはTi−Au等のTiを含む系等、別々の材料
を用いている。
In order to obtain ohmic characteristics with the above electrode, it is necessary to cause an alloying reaction between the crystal base material and the metal layer through sophisticated control. Furthermore, the above alloying treatment introduces defects and stress into the crystal base material, and there is a drawback that an active region such as a pn junction cannot be provided in the immediate vicinity of the electrode forming portion. In addition, the same material has a forbidden band width of 1.4 eV or less In, -
In xGaxAst-yPy, the system containing a large amount of InP had the drawback of not exhibiting good ohmic properties. Therefore, in the above crystal system, the n-type part contains A u G e system,
For the p-type part, different materials are used, such as Ti-containing systems such as Ti-Au.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術は、母材がI nl−xGaxAs、−yP
y(1≧x≧0,1≧y≧0)で、禁止帯幅1.4eV
以下であるpおよびn型の結晶に共用できるオーミック
電極材料は明らかにされていなかった。
In the conventional technology, the base material is I nl-xGaxAs, -yP
y (1≧x≧0, 1≧y≧0), forbidden band width 1.4eV
An ohmic electrode material that can be used commonly for the following p- and n-type crystals has not been disclosed.

本発明は、Pen両結晶にオーミック電極として共用で
きる材料を提供する事により、電極形成工程を簡単化し
、かつ、両型板の厚さ、また4i高さを正確に同一にで
きる方法と、その応用しこよる半導体装置を提供する事
にある。
The present invention provides a method that simplifies the electrode formation process by providing a material that can be used commonly as an ohmic electrode for both Pen crystals, and allows the thickness and 4i height of both templates to be exactly the same. Our goal is to provide semiconductor devices that can be used in a variety of applications.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明では電極材料として、
少なくとTiまたはCrを含む金属層、すなわち、Ti
、Au、TiPt、TiPd。
In order to achieve the above object, in the present invention, as an electrode material,
A metal layer containing at least Ti or Cr, i.e., Ti
, Au, TiPt, TiPd.

CrAu、CrPt、CrPdの層を用1)、結晶表面
に被着する事により電極を形成する6上記材料は従来、
P型部に対する材料として知られてb)たちのであるが
、n型部に対しても良好な特性を得られる事がわかった
。この結果、本材料を使用すれば、Pen両領域へのオ
ーミック電極力へ同一の工程で形成できる。
Conventionally, the above materials are
B) is known as a material for the P-type part, but it has been found that good characteristics can also be obtained for the N-type part. As a result, if this material is used, ohmic electrodes can be formed in both the Pen regions in the same process.

〔作用〕[Effect]

p、n型の面領域に対し、オーミック特性力1得られる
ので、電極の形成は同一の工程で行なえ、このため工程
が簡単となり、両部電極の厚さあるいは高さを同一にで
きる。
Since an ohmic characteristic force of 1 is obtained for the p- and n-type surface regions, the electrodes can be formed in the same process, which simplifies the process and allows both electrodes to have the same thickness or height.

[実施例] 実施例1 本発明の一実施例を第1図を用いて説明する。[Example] Example 1 An embodiment of the present invention will be described with reference to FIG.

同図(a)に示した結晶を用いた。図中、1はInPの
基板(4X 10”an−3: n型)、2〜4は気相
成長法で作製した層であり、2はInP(I X 10
”ai−’、 n型、2μm厚)、3はI n、、53
G a(、,47A s (I X 10”an−3,
n型。
The crystal shown in FIG. 4(a) was used. In the figure, 1 is an InP substrate (4X 10" an-3: n-type), 2 to 4 are layers fabricated by vapor phase epitaxy, and 2 is an InP (I
"ai-', n type, 2 μm thick), 3 is In, 53
G a(,,47A s (I X 10"an-3,
N type.

2μm厚)、4はI n P (I X 10”an−
3,n型。
2 μm thick), 4 is I n P (I x 10” an-
3, n-type.

2μm厚)である0層4の表面4′より、Znを拡散し
、p型領域5(深さ2.2μm、直径50μm)を作っ
た。
Zn was diffused from the surface 4' of the 0 layer 4, which had a thickness of 2 .mu.m) to form a p-type region 5 (depth 2.2 .mu.m, diameter 50 .mu.m).

次に、表面4′から1選択エツチングによって。Then by selective etching from surface 4'.

同図(b)に示す六6(深さ6.5μm)を形成した。66 (depth 6.5 μm) shown in FIG. 6(b) was formed.

ここで、7は直径30μmの中央部メサ、8および8′
は長さ200μm、幅50μmの長方形の周辺部メサで
あり、8と8′の間隔は100μmである1次に、中央
部メサ7の側面に絶縁膜9を被着後、電極用金属10お
よび10′を被着した。電極10および10’の組成は
、結晶に近い側より、 T i(0−1u m ) s
 P t (0−3p m ) −Au (1μm)、
5n(0,5μm)である。ここで、電極10はp型領
域5の表面にのみ形成、10′は結晶層4の表面4′と
六6の底面の基板1の露出部を結ぶメサ8,8′の側面
にかけて形成した。
Here, 7 is a central mesa with a diameter of 30 μm, 8 and 8'
is a rectangular peripheral mesa with a length of 200 μm and a width of 50 μm, and the interval between 8 and 8' is 100 μm.First, after depositing an insulating film 9 on the side surface of the central mesa 7, electrode metal 10 and 10' was applied. The composition of the electrodes 10 and 10' is T i (0-1 um) s from the side closer to the crystal.
Pt (0-3pm) -Au (1μm),
5n (0.5 μm). Here, the electrode 10 was formed only on the surface of the p-type region 5, and the electrode 10' was formed over the side surfaces of mesas 8, 8' connecting the surface 4' of the crystal layer 4 and the exposed portion of the substrate 1 on the bottom surface of the 66.

次に、同図(c)に示すように、配線基板14に上記電
極をフェースダウン法によりボンディングした。配線基
板14は半絶縁性InP13の表面に、絶縁膜12およ
び、Au層11および11’を配置したもので、Au層
11.11’は電極10および10′と形状が合致する
もので、他に、各部から他の回路、または配線用ボンデ
ィング部に連絡するリード部を持つ(図では省略)。フ
ェースダウンボンディング時の条件は温度360℃であ
る。
Next, as shown in FIG. 3(c), the electrodes were bonded to the wiring board 14 by a face-down method. The wiring board 14 has an insulating film 12 and Au layers 11 and 11' arranged on the surface of a semi-insulating InP 13. The Au layers 11 and 11' match the electrodes 10 and 10' in shape, and the other It also has lead parts that connect each part to other circuits or wiring bonding parts (not shown in the figure). The conditions for face-down bonding are a temperature of 360°C.

ボンディング後、配線基板14のリード部より、電圧を
印加し、特性を調べた。この結果、順方向の電圧−電流
特性より求めた電極の直列抵抗は2Ωであり、n型部に
対する電極10′は良好な事がわかった。また、逆方向
に印加した際、本装置は1.3μmの赤外光に対してL
A/Wの感度を持つ良好な受光装置として動作した。本
実施例における作製歩留は98%であった。同様の効果
はTiPt部の替りに、TiAu、TiPd、CrPt
After bonding, a voltage was applied from the lead portion of the wiring board 14, and the characteristics were examined. As a result, it was found that the series resistance of the electrode determined from the forward voltage-current characteristics was 2Ω, and that the electrode 10' with respect to the n-type portion was good. Also, when applied in the opposite direction, this device has a L value of 1.3 μm infrared light.
It operated as a good light receiving device with A/W sensitivity. The production yield in this example was 98%. Similar effects can be obtained by using TiAu, TiPd, CrPt instead of the TiPt part.
.

CuAu、CrPdでも得られた。従来の方法、すなわ
ち、n型領域5に対する電極10は上記と同じであるが
、n型領域に対する電極10′にAuGe−Ni−Au
−8nを使用した場合、作製歩留は55%であった。不
良の主な原因は、画電極の厚さに差を生じた事による配
線基板へのボンディング不良であった。
It was also obtained with CuAu and CrPd. Conventional method, ie, the electrode 10 for the n-type region 5 is the same as above, but the electrode 10' for the n-type region is AuGe-Ni-Au.
When -8n was used, the production yield was 55%. The main cause of the failure was poor bonding to the wiring board due to a difference in the thickness of the picture electrode.

実施例2 第2図は、本発明の他の実施例になる接合形FETの製
造工程を示す断面図である。同図(a)は半絶縁性In
P基板20上に、気相成長法を用いてn−InP能動層
(厚さ約0.5μm、不純物濃度I X 10”a++
−3)及びn−I n、、、3G a@、47A S0
*14P6h@6 (厚さ約0.3pm、不純物濃度I
 X 10”an−3)キャップ22を設けた。さらに
、結晶表面にS i O2膜23を厚さ約2000人被
着した。S i O,膜23には、選択的にZnを拡散
するための拡散マスク窓24(窓幅1μm)を、ホトレ
ジスト加工技術とドライエツチング技術を用いてSi○
2膜23に溝幅約0.7μmのストライプ状開口部24
を設けた。
Embodiment 2 FIG. 2 is a sectional view showing the manufacturing process of a junction type FET according to another embodiment of the present invention. In the same figure (a), semi-insulating In
On the P substrate 20, an n-InP active layer (thickness approximately 0.5 μm, impurity concentration I
-3) and n-I n, , 3G a@, 47A S0
*14P6h@6 (thickness approximately 0.3pm, impurity concentration I
A cap 22 (X 10"an-3) was provided. Furthermore, a SiO2 film 23 with a thickness of about 2,000 layers was deposited on the crystal surface. In order to selectively diffuse Zn, a SiO2 film 23 was deposited on the crystal surface. The diffusion mask window 24 (window width 1 μm) is made of Si○ using photoresist processing technology and dry etching technology.
2 film 23 has a striped opening 24 with a groove width of about 0.7 μm.
has been established.

ついで、Znをストライプ部分24に選択拡散して所望
の深さのp形層25を形成し、p形接合ゲートを構成し
た。
Next, Zn was selectively diffused into the striped portion 24 to form a p-type layer 25 of a desired depth, thereby forming a p-type junction gate.

次に、第2図(b)に示すようにホトレジスト加工技術
を用いて、ソース、ドレインにあたる部分の5in2膜
に開口部26.27を設けた。ついで、レジスト膜を除
去した後、蒸着金属がウェーハ表面に垂直に入射するよ
うに、基板温度300℃で、Cr(約200人)、Pt
(約2000人)。
Next, as shown in FIG. 2(b), openings 26 and 27 were formed in the 5in2 film in the portions corresponding to the source and drain using a photoresist processing technique. After removing the resist film, Cr (approximately 200 layers) and Pt were deposited at a substrate temperature of 300° C. so that the deposited metal was incident perpendicularly to the wafer surface.
(about 2000 people).

Au (約3000人)を順次真空蒸着した。Au (approximately 3,000 layers) was sequentially vacuum-deposited.

ついで、HF系のエツチング液を用いてSiO2膜23
エツチング・除去することにより、不要部分の金属(C
r −P t−A’u)をリフトオフして除去し、電極
(ソース、ドレイン)のパタニングを行なった。
Next, the SiO2 film 23 is etched using an HF-based etching solution.
By etching and removing unnecessary parts of metal (C
r-Pt-A'u) was lifted off and removed, and electrodes (source, drain) were patterned.

ついで、ウェーハを400℃で約1分間熱処理をし、ソ
ース、ゲート、ドレインの各電極のシンクをした。
Next, the wafer was heat-treated at 400° C. for about 1 minute to sink the source, gate, and drain electrodes.

最後に、第2図(c)に示すように、ソース電極31.
ゲート電極30.ドレイン電極32を含む素子部分の周
囲を、ホトレジスト加工技術を用いて、選択的に化学エ
ツチングして、アイソレーション用メサ33を形成した
Finally, as shown in FIG. 2(c), the source electrode 31.
Gate electrode 30. The periphery of the element portion including the drain electrode 32 was selectively chemically etched using a photoresist processing technique to form an isolation mesa 33.

本実施例に示す接合形FETでは同一の積層金属材料を
用いてソース、ゲート、ドレイン電極を各々構成するこ
とができ、製造工程の簡素化を図ることができる。また
、ソース、ゲート、ドレイン電極が完全に同一平面内に
あるので、マイクロ波プリント基板回路などへのフェー
スダウン実装が容易であり、すぐれた高周波特性を示す
In the junction FET shown in this embodiment, the source, gate, and drain electrodes can each be formed using the same laminated metal material, and the manufacturing process can be simplified. Furthermore, since the source, gate, and drain electrodes are completely on the same plane, face-down mounting on microwave printed circuit board circuits and the like is easy, and the device exhibits excellent high-frequency characteristics.

さらに1本実施例では、微細な接合ゲート層25へのオ
ーミック電極を自己整合的に形成できるので、微細なゲ
ート用オーミック電極30を極めて容易に製作すること
ができる。
Furthermore, in this embodiment, since the fine ohmic electrode to the junction gate layer 25 can be formed in a self-aligned manner, the fine ohmic electrode 30 for gate can be manufactured extremely easily.

本実施例では、電極の金属材料として、Cr−Pt−A
uを用いた例を説明したが、Cr−Au。
In this example, Cr-Pt-A is used as the metal material of the electrode.
Although the example using u was explained, Cr-Au.

Cr−Pd−Auなども使用できる。Cr-Pd-Au etc. can also be used.

〔発明の効果〕〔Effect of the invention〕

以上、実施例の説明からも明らかなように、本発明によ
れば、電極形成とボンディングに係る従来技術の難点を
克服することができ、製造歩留り良く、性能の良い半導
体装置を製造することが可能となる。
As is clear from the description of the embodiments above, according to the present invention, it is possible to overcome the difficulties of the conventional techniques related to electrode formation and bonding, and it is possible to manufacture semiconductor devices with high manufacturing yield and high performance. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例の半導体装置の製造工
程を示す断面図である。 1− n −I n P基板、5 ・p形Zn拡散層、
20・・・半絶縁性InP基板、30・・・ゲート電極
、31・・・ソース電極、32・・・ドレイン電極。 ・( 代理人 弁理士 小川勝馬(、= ″( 第 ■ 図 (!り
FIGS. 1 and 2 are cross-sectional views showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. 1- n -I n P substrate, 5 ・p-type Zn diffusion layer,
20... Semi-insulating InP substrate, 30... Gate electrode, 31... Source electrode, 32... Drain electrode.・( Agent Patent Attorney Katsuma Ogawa (, = ″( Figure ■ (!ri

Claims (1)

【特許請求の範囲】 1、主組成がIn_1_−_xGaxAs_1_−_y
P_y(1≧x≧0、1≧y≧0)で、禁止帯幅1.4
eV以下であるp型およびn型の2領域の各々の表面に
、TiまたはCrを含む金属層を形成してなることを特
徴とする半導体装置。 2、金属層は、少なくともTi−Au、Ti−Pt、T
i−Pd、Cr−Au、Cr−Pt、Cr−Pdのいず
れかを成分とする積層、または合金からなることを特徴
とする請求項1記載の半導体装置。 3、TiまたはCrを含む金属層の形成が、p型および
n型のIn_1_−_xGaxAs_1_−_yP_y
領域上に同時に形成されたことを特徴とする請求項1記
載の半導体装置。 4、TiまたはCrを含む金属層が形成された表面の少
なくとも一部は、不純物濃度が10^1^8cm^−^
3以上であることを特徴とする請求項1記載の半導体装
置。
[Claims] 1. Main composition is In_1_-_xGaxAs_1_-_y
P_y (1≧x≧0, 1≧y≧0), forbidden band width 1.4
1. A semiconductor device comprising a metal layer containing Ti or Cr formed on the surface of each of two p-type and n-type regions having a voltage of eV or less. 2. The metal layer is at least Ti-Au, Ti-Pt, T
2. The semiconductor device according to claim 1, comprising a stacked layer or an alloy containing any one of i-Pd, Cr-Au, Cr-Pt, and Cr-Pd. 3. Formation of a metal layer containing Ti or Cr is performed using p-type and n-type In_1_-_xGaxAs_1_-_yP_y
2. The semiconductor device according to claim 1, wherein the semiconductor device is formed on the regions at the same time. 4. At least part of the surface on which the metal layer containing Ti or Cr is formed has an impurity concentration of 10^1^8 cm^-^
2. The semiconductor device according to claim 1, wherein the number is 3 or more.
JP2188081A 1990-07-18 1990-07-18 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3014125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2188081A JP3014125B2 (en) 1990-07-18 1990-07-18 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2188081A JP3014125B2 (en) 1990-07-18 1990-07-18 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0475385A true JPH0475385A (en) 1992-03-10
JP3014125B2 JP3014125B2 (en) 2000-02-28

Family

ID=16217372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2188081A Expired - Lifetime JP3014125B2 (en) 1990-07-18 1990-07-18 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3014125B2 (en)

Also Published As

Publication number Publication date
JP3014125B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
JP3210657B2 (en) Heterojunction bipolar transistor
US5770489A (en) Method of making a compound semiconductor field-effect transistor
JPH0475385A (en) Semiconductor device
JPS63164477A (en) Manufacture of field effect transistor with self-aligning gate
JPS59112654A (en) Gallium arsenide semiconductor device
JP2792421B2 (en) Method for manufacturing semiconductor device
JPS5830170A (en) Compound semiconductor element and forming method of its electrode
JPS605572A (en) Manufacture of high speed semiconductor device
KR930006725B1 (en) Electrode structure and manufacturing method of semiconductor device
JPH02199825A (en) Manufacture of electrode
JPH07273316A (en) Semiconductor device
JPS6167274A (en) Manufacture of semiconductor device
JPS58215088A (en) Manufacture of semiconductor laser device
JPH03222436A (en) Manufacture of compound semiconductor device
JPS6240770A (en) Manufacture of semiconductor device
JPH0897461A (en) Semiconductor light receiving element and manufacturing method therefor
JPH02211622A (en) Semiconductor device and manufacture thereof
JPS5987889A (en) Manufacture of semiconductor element
JPS62102566A (en) Compound semiconductor device
JPS6329593A (en) Superconducting transistor and manufacture thereof
JPH03225823A (en) Compound semiconductor device
DE10064479A1 (en) Process for the production of a microelectronic component
JPS63152128A (en) Formation of contact hole
JPS6077474A (en) Manufacture of hall element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11