JPH02199825A - Manufacture of electrode - Google Patents

Manufacture of electrode

Info

Publication number
JPH02199825A
JPH02199825A JP1914489A JP1914489A JPH02199825A JP H02199825 A JPH02199825 A JP H02199825A JP 1914489 A JP1914489 A JP 1914489A JP 1914489 A JP1914489 A JP 1914489A JP H02199825 A JPH02199825 A JP H02199825A
Authority
JP
Japan
Prior art keywords
electrode
film
layer
photoresist
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1914489A
Other languages
Japanese (ja)
Inventor
Yasushi Shiraishi
靖 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1914489A priority Critical patent/JPH02199825A/en
Publication of JPH02199825A publication Critical patent/JPH02199825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a contact resistance from being increased by a method wherein a multilayer-film electrode including a Ti layer is covered with a material which is resistant to hydrofluoric acid. CONSTITUTION:An n-type GaAs active layer 2 is formed on a GaAs substrate 1; an inclined composition layer 3 in which a composition ratio (x) of In in n-type InxGa1-xAs has been increased from 0 to 1 is formed on it; an n-type InAs layer 4 is formed on it. Then, an SiO2 film 5 is deposited on the whole surface; the film is coated with a photoresist 6; an electrode pattern is formed. In addition, the SiO2 film 5 is etched; after that, Ti 7, Pt 8 and Au 9 are deposited one after another. In addition, the photoresist 6 is removed; a Ti/Pt/Au electrode is formed. Then, a TiN film 10 is deposited on the whole surface; the TiN film 10 is etched, by an anisotropic etching method, until an ohmic electrode and the SiO2 film 5 are exposed on the surface by leaving a gap part. Then, the SiO2 film 5 is removed by using a hydrofluoric-acid- based etching liquid. Then, a photoresist 11 is coated; a pattern is formed; after that, the layer 4 and the inclined composition layer 3 are etched by using a phosphoric-acid- based etching liquid; a source electrode and a drain electrode are formed; the photoresist 11 is removed. Thereby, the electrode including the Ti layer can be formed while a contact resistance is not increased and a film is not stripped off.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法に係り、特にTi層を含
む多層膜電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a multilayer electrode including a Ti layer.

(従来の技術) 化合物半導体デバイスの電極においては、チタンl白金
l金(Ti/Pt/Au)多層膜がよく用いられている
[例えば、TAKUMI NITTONOet al、
JapaneseJournal of Applie
d Physics Vol、 25. L、 865
(1986)]。
(Prior art) Titanium/platinum/gold (Ti/Pt/Au) multilayer films are often used in electrodes of compound semiconductor devices [for example, TAKUMI NITTONO et al.
Japanese Journal of Applie
d Physics Vol, 25. L, 865
(1986)].

そしてその電極のパタン形成には二酸化珪素(S102
)膜を用いたリフトオフ法がよく用いられている。
Silicon dioxide (S102) is used to form the electrode pattern.
) The lift-off method using a membrane is often used.

その方法としては、まずSiO2膜をフォトレジストと
基板の間にはさみ、フォトレジストをマスクとしてSi
O□膜ををアンダーカット形状にエツチングする。次に
その上に電極金属を堆積し、フォトレジストを有機溶剤
で溶かし不要な金属膜を除去する。このようにして電極
のパタンが形成される【例えば、5HINICHIRO
TAKATANI et al、 JapaneseJ
ournalofAppliedPhysicsVol
、26.L、1770(1987月。
The method is to first sandwich a SiO2 film between the photoresist and the substrate, and use the photoresist as a mask to
Etch the O□ film into an undercut shape. Next, an electrode metal is deposited on top of the photoresist, and the unnecessary metal film is removed by dissolving the photoresist with an organic solvent. In this way, an electrode pattern is formed [for example, 5HINICHIRO
TAKATANI et al, JapaneseJ
ournalofAppliedPhysicsVol
, 26. L, 1770 (1987.

このようなりフトオフ法の特徴は、適当な厚さの5tO
2膜を用いることにより、電極金属の厚さが変わっても
端部の形状の良好な電極を形成できることである。また
電極形成部の基板表面がプロセス中にフォトレジストで
覆われることがないため、フォトレジストの残留物の影
響を受けることなく電極を形成できる。
The characteristic of this type of lift-off method is that the 5tO
By using two films, it is possible to form an electrode with a good end shape even if the thickness of the electrode metal changes. Furthermore, since the substrate surface of the electrode forming portion is not covered with photoresist during the process, electrodes can be formed without being affected by photoresist residue.

(発明が解決しようとする問題点) このような従来の製造方法で形成されたTi層を含む多
層膜電極では、Ti層の側面が電極側面に露出しており
、電極形成後に8102膜を除去する工程において、弗
酸系エツチング液によってTi層が電極の側面からエツ
チングされるという欠点があった。
(Problems to be Solved by the Invention) In a multilayer electrode including a Ti layer formed by such a conventional manufacturing method, the side surface of the Ti layer is exposed on the side surface of the electrode, and the 8102 film must be removed after electrode formation. In this step, there was a drawback that the Ti layer was etched from the side surface of the electrode by the hydrofluoric acid etching solution.

そのためオーム性電極の場合接触抵抗が増大するという
問題が生じた。また微細な電極の場合には膜剥がれが生
じてしまうこともあった。
Therefore, in the case of ohmic electrodes, a problem arises in that contact resistance increases. Furthermore, in the case of fine electrodes, film peeling may occur.

本発明の目的は、弗酸系エツチング液によって電極中の
Ti層がエツチングされることのない電極の製造方法を
提供することにある。
An object of the present invention is to provide a method for manufacturing an electrode in which the Ti layer in the electrode is not etched by a hydrofluoric acid etching solution.

(問題点を解決するための手段) 本発明の電極の製造方法は、半導体基板上に絶縁膜を堆
積する工程と、前記絶縁膜上にフォトレジストから成る
所望のパタンを形成する工程と、前記絶縁膜をエツチン
グする工程と、前記フォトレジスト上及び前記半導体基
板上全面に少なくともチタン(Ti)層を含む金属多層
膜を形成し前記フォトレジストを有機溶剤で溶かし少な
くともTi層を含む多層膜電極を形成する工程と、前記
多層膜電極と前記絶縁膜の隙間を埋めるように前記多層
膜電極上及び前記絶縁膜上に耐弗酸性材料を堆積する工
程と、前記多層膜電極と前記絶縁膜の隙間に堆積した部
分を残して前記耐弗酸性材料をエツチングする工程と、
前記絶縁膜を弗酸により除去する工程とを含んで構成さ
れる。
(Means for Solving the Problems) The electrode manufacturing method of the present invention includes the steps of: depositing an insulating film on a semiconductor substrate; forming a desired pattern made of photoresist on the insulating film; A step of etching an insulating film, forming a metal multilayer film containing at least a titanium (Ti) layer on the entire surface of the photoresist and the semiconductor substrate, and dissolving the photoresist with an organic solvent to form a multilayer film electrode containing at least a Ti layer. a step of depositing a hydrofluoric acid-resistant material on the multilayer electrode and the insulating film so as to fill the gap between the multilayer electrode and the insulating film; etching the hydrofluoric acid-resistant material leaving the portion deposited on it;
The method includes a step of removing the insulating film with hydrofluoric acid.

(作用) 本発明によれば、Ti層を含む多層膜電極の側面は耐弗
酸性材料により被覆される。このため絶縁膜を弗酸で除
去する工程を行ってもTiMは弗酸によりエツチングさ
れない。
(Function) According to the present invention, the side surfaces of the multilayer electrode including the Ti layer are coated with a hydrofluoric acid-resistant material. Therefore, even if the step of removing the insulating film with hydrofluoric acid is performed, TiM is not etched by the hydrofluoric acid.

(実施例) 次に本発明の実施例について図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(i)は本発明の一実施例として、n型
GaAs能動層上にn型InGaAs層を設けその上に
電極を設けた構造のノンアロイオーム性電極を有する、
GaAs MESFETのソース電極及びドレイン電極
の製造方法を示す工程断面図である。
FIGS. 1(a) to 1(i) show, as an embodiment of the present invention, a non-alloy ohmic electrode having a structure in which an n-type InGaAs layer is provided on an n-type GaAs active layer and an electrode is provided thereon.
FIG. 3 is a process cross-sectional view showing a method for manufacturing source and drain electrodes of a GaAs MESFET.

まず第1図(a)に示すように、半絶縁性GaAs基板
1上にn型GaAs能動層2を設け、n型GaAs能動
層2上にn型InxGa1−xAsのIn組成比Xを下
部から表面に向けて徐々にOから1へ増加させたn型I
nGaAs傾斜組成層3を設け、n型InGaAs傾斜
組成層3上にn型InAs層4を設ける。次にn型In
As層4上に5102膜5を化学的気相成長法により全
面に300nmの厚さに堆積し、SiO2膜5上に第一
のフォトレジスト6を塗布して所望の電極パタンを形成
する。
First, as shown in FIG. 1(a), an n-type GaAs active layer 2 is provided on a semi-insulating GaAs substrate 1, and an In composition ratio X of n-type InxGa1-xAs is applied from the bottom onto the n-type GaAs active layer 2. n-type I gradually increased from O to 1 toward the surface
An nGaAs gradient composition layer 3 is provided, and an n-type InAs layer 4 is provided on the n-type InGaAs gradient composition layer 3. Next, n-type In
A 5102 film 5 is deposited on the entire surface of the As layer 4 to a thickness of 300 nm by chemical vapor deposition, and a first photoresist 6 is applied on the SiO2 film 5 to form a desired electrode pattern.

さらに第1図(b)に示すように、弗酸系エツチング液
により、5102膜5を、アンダーカット形状になるま
でエツチングする。
Further, as shown in FIG. 1(b), the 5102 film 5 is etched using a hydrofluoric acid etching solution until it has an undercut shape.

次に、第1図(c)に示すように、真空蒸着法によりT
i7を20nm、 Pt8を20nm、Au9を200
nmの厚さに順次堆積する。
Next, as shown in FIG. 1(c), T
20 nm of i7, 20 nm of Pt8, 200 nm of Au9
Sequentially deposited to a thickness of nm.

さらに第1図(d)に示すように、フォトレジストを有
機溶剤で溶かし不要な金属膜を除去することにより、S
iO□膜5のエツチングされた部分にTi/Pt/Au
電極が形成される。そして5102膜部分と電極部分と
の間には隙間が存在する。
Furthermore, as shown in Figure 1(d), by dissolving the photoresist with an organic solvent and removing unnecessary metal films, S
Ti/Pt/Au is applied to the etched portion of the iO□ film 5.
Electrodes are formed. A gap exists between the 5102 membrane portion and the electrode portion.

次に第1図(e)に示すように耐弗酸性材料である窒化
チタン膜(TiN)40を反応性バイアススパッタリン
グ法により、全面に50kmの厚さに堆積する。
Next, as shown in FIG. 1(e), a titanium nitride (TiN) film 40, which is a hydrofluoric acid-resistant material, is deposited over the entire surface to a thickness of 50 km by reactive bias sputtering.

さらに第1図(0に示すようにCF4ガスを用いた異方
性ドライエツチング法により、TiN膜10を前記隙間
部分を残し、前記オーム性電極及びSiO□膜5が表面
に露出するまでエツチングする。このことによリ、前記
オーム性電極の側面にTiNの側壁部が形成される。
Further, as shown in FIG. 1 (0), the TiN film 10 is etched by an anisotropic dry etching method using CF4 gas until the ohmic electrode and the SiO□ film 5 are exposed on the surface, leaving the gap. As a result, a TiN side wall portion is formed on the side surface of the ohmic electrode.

次に第1図(g)に示すように、弗酸系エツチング液を
用いて、Sio2膜5を除去する。電極中のTi層は、
弗酸に対して耐性のあるTiNで覆われているため弗酸
によりエツチングされることはない。
Next, as shown in FIG. 1(g), the Sio2 film 5 is removed using a hydrofluoric acid etching solution. The Ti layer in the electrode is
Since it is covered with TiN which is resistant to hydrofluoric acid, it will not be etched by hydrofluoric acid.

次に第1図(h)に示すように第二のフォトレジスト1
1を塗布し、ソース電極及びドレイン電極形成のための
パタンを形成する。
Next, as shown in FIG. 1(h), a second photoresist 1 is applied.
1 to form a pattern for forming a source electrode and a drain electrode.

さらに第1図(i)に示すように、燐酸系エツチング液
によりn型1nAs層4及びn型InGaAs傾斜組成
層3をエツチングすることにより、ソース電極及びドレ
イン電極を形成する。最後に第二のフォトレジスト11
を有機溶剤により除去する。
Further, as shown in FIG. 1(i), the n-type 1nAs layer 4 and the n-type InGaAs graded composition layer 3 are etched using a phosphoric acid-based etching solution to form a source electrode and a drain electrode. Finally, the second photoresist 11
is removed using an organic solvent.

以上説明した製造工程により、弗酸系エツチング液によ
り電極中のπ層がエツチングされることなく、本発明の
実施例であるGaAs MESFETのソース電極及び
ドレイン電極を製造することができる。
Through the manufacturing process described above, the source electrode and drain electrode of the GaAs MESFET according to the embodiment of the present invention can be manufactured without etching the π layer in the electrode by the hydrofluoric acid etching solution.

ここでTiN 1.t InGaAs及び電極中のAu
及びptとは反応しない。そのため電極の側面にTiN
側壁部が残ることによるFET特性の変化は生じない。
Here, TiN1. t InGaAs and Au in the electrode
and does not react with pt. Therefore, TiN on the side of the electrode
The remaining sidewall portion does not cause any change in FET characteristics.

また耐弗酸性材料としては、InGaAs、 Au、 
Ptと反応しない材料ならTiN以外のもの例えばWN
xなどでもかまわない。また、Ti層を含む多層膜電極
としては、Ti/Pt/Au以外の組み合せ例えばTi
/Auなどであっても良い。
In addition, examples of hydrofluoric acid-resistant materials include InGaAs, Au,
If it is a material that does not react with Pt, other than TiN, such as WN.
It may be x, etc. In addition, as a multilayer film electrode containing a Ti layer, combinations other than Ti/Pt/Au, such as Ti
/Au etc. may be used.

また本実施例では、本発明をGaAs MESFETの
ソース電極及びドレイン電極に適用したが、本発明の電
極の製造方法は、高電子移動度トランジスタ(High
 Electron Mobility Transi
stor)やヘテロ接合バイポーラトランジスタ(He
tero−junction BipolarTran
sistor)など他の構造の半導体装置の電極の製造
にも適用できる。
Further, in this example, the present invention was applied to the source electrode and drain electrode of a GaAs MESFET, but the electrode manufacturing method of the present invention is applicable to a high electron mobility transistor (High
Electron Mobility Transi
stor) and heterojunction bipolar transistor (He
tero-junction Bipolar Tran
The present invention can also be applied to manufacturing electrodes of semiconductor devices with other structures such as SISTOR.

(発明の効果) 以上説明したように、本発明の電極の製造方法において
は、Ti層を含む多層膜電極の側面が耐弗酸性材料によ
って覆われているため、弗酸系エツチング液によって電
極中のTi層が側面からエツチングされることはない、
従って、接触抵抗の増大や膜剥がれが生じることなくT
i層を含む電極を製造できる。
(Effects of the Invention) As explained above, in the electrode manufacturing method of the present invention, since the side surfaces of the multilayer electrode including the Ti layer are covered with a hydrofluoric acid-resistant material, the electrode is etched with a hydrofluoric acid-based etching solution. The Ti layer is not etched from the side.
Therefore, T without increasing contact resistance or film peeling occurs.
An electrode including an i-layer can be manufactured.

また、電極形成後のプロセスにおいても、弗酸系エツチ
ング液を用いることが可能であり、プロセスの自由度を
広げることができる。
Moreover, in the process after electrode formation, it is possible to use a hydrofluoric acid etching solution, and the degree of freedom in the process can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(i)は、本発明の一実施例を説明する
ための、n型GaAs能動層上にn型InGaA4を設
けその上に電極を設けた構造のノンアロイオーム性電極
を有する、GaAs MESFETのソース電極及びド
レイン電極の製造方法を示す工程断面図である。 1・・・半絶縁性GaAs基板、2・・・n型GaAs
能動層、3=・n型InGaAs傾斜組成層、4−n型
InAs層、511.Sio2膜、61.・第一のフォ
トレジスト、7・・・Ti、8・・・pt、9・・−A
u、 10・・・TiN膜、11・・・第二のフォトレ
ジスト。
1(a) to (i) show a non-alloy ohmic electrode having a structure in which n-type InGaA4 is provided on an n-type GaAs active layer and an electrode is provided thereon, for explaining one embodiment of the present invention. FIG. 2 is a process cross-sectional view showing a method for manufacturing source and drain electrodes of a GaAs MESFET. 1... Semi-insulating GaAs substrate, 2... N-type GaAs
Active layer, 3=.n-type InGaAs graded composition layer, 4-n-type InAs layer, 511. Sio2 membrane, 61.・First photoresist, 7...Ti, 8...pt, 9...-A
u, 10... TiN film, 11... second photoresist.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に絶縁膜を堆積する工程と、前記絶縁膜上
にフォトレジストの所望のパタンを形成する工程と、前
記フォトレジストをマスクに絶縁膜をエッチングする工
程と、前記フォトレジスト上及び前記半導体基板上全面
に少なくともチタン(Ti)層を含む金属多層膜を形成
し前記フォトレジストを除去することにより、フォトレ
ジスト上の金属多層膜を取り除きTiを含む金属多層膜
より成る多層膜電極を形成する工程と、前記多層膜電極
と前記絶縁膜の隙間を埋めるように前記多層膜電極上及
び前記絶縁膜上に耐弗酸性材料を堆積する工程と、前記
多層膜電極と前記絶縁膜の隙間に堆積した部分を残して
前記耐弗酸性材料をエッチングする工程と、前記絶縁膜
を弗酸により除去する工程とを備えてなることを特徴と
する電極の製造方法。
a step of depositing an insulating film on a semiconductor substrate; a step of forming a desired pattern of photoresist on the insulating film; a step of etching the insulating film using the photoresist as a mask; and a step of etching the insulating film on the photoresist and the semiconductor. By forming a metal multilayer film containing at least a titanium (Ti) layer on the entire surface of the substrate and removing the photoresist, the metal multilayer film on the photoresist is removed to form a multilayer film electrode made of a metal multilayer film containing Ti. a step of depositing a hydrofluoric acid-resistant material on the multilayer electrode and the insulating film so as to fill the gap between the multilayer electrode and the insulating film; and depositing a hydrofluoric acid-resistant material in the gap between the multilayer electrode and the insulating film. 1. A method for manufacturing an electrode, comprising the steps of: etching the hydrofluoric acid-resistant material while leaving the removed portion; and removing the insulating film with hydrofluoric acid.
JP1914489A 1989-01-27 1989-01-27 Manufacture of electrode Pending JPH02199825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1914489A JPH02199825A (en) 1989-01-27 1989-01-27 Manufacture of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1914489A JPH02199825A (en) 1989-01-27 1989-01-27 Manufacture of electrode

Publications (1)

Publication Number Publication Date
JPH02199825A true JPH02199825A (en) 1990-08-08

Family

ID=11991254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1914489A Pending JPH02199825A (en) 1989-01-27 1989-01-27 Manufacture of electrode

Country Status (1)

Country Link
JP (1) JPH02199825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270228A (en) * 1991-02-14 1993-12-14 Mitsubishi Denki Kabushiki Kaisha Method of fabricating gate electrode in recess
JPH0715026A (en) * 1991-02-19 1995-01-17 Hikari Keisoku Gijutsu Kaihatsu Kk Semiconductor element
US5459331A (en) * 1993-05-10 1995-10-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, heterojunction bipolar transistor, and high electron mobility transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270228A (en) * 1991-02-14 1993-12-14 Mitsubishi Denki Kabushiki Kaisha Method of fabricating gate electrode in recess
JPH0715026A (en) * 1991-02-19 1995-01-17 Hikari Keisoku Gijutsu Kaihatsu Kk Semiconductor element
US5459331A (en) * 1993-05-10 1995-10-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, heterojunction bipolar transistor, and high electron mobility transistor

Similar Documents

Publication Publication Date Title
US4337115A (en) Method of forming electrodes on the surface of a semiconductor substrate
US4839304A (en) Method of making a field effect transistor with overlay gate structure
US5464500A (en) Method for taper etching metal
JP3210657B2 (en) Heterojunction bipolar transistor
US4843024A (en) Method of producing a Schottky gate field effect transistor
US5362658A (en) Method for producing semiconductor device
JPH02199825A (en) Manufacture of electrode
JPH0351095B2 (en)
KR960005662A (en) Field emission cold cathode and its manufacturing method
JPH0228333A (en) Manufacture of semiconductor device
KR940006710B1 (en) Manufacturing method of mes fet
JP2002517091A (en) Method for manufacturing a schottky diode
JPS6323669B2 (en)
JP2658884B2 (en) Method for manufacturing semiconductor device
JP4072248B2 (en) Manufacturing method of semiconductor device
JPH0358433A (en) Manufacture of field effect transistor
JPS6340323A (en) Formation of fine pattern
KR930024106A (en) Contact Forming Method of Semiconductor Device
JPS60254733A (en) Pattern forming method
JPS61154177A (en) Manufacture of semiconductor device
JPS60167326A (en) Manufacture of semiconductor device
JPS58135667A (en) Semiconductor device
JPS6154620A (en) Manufacture of semiconductor device
JPS60182747A (en) Manufacture of semiconductor device
JPH04307936A (en) Manufacture of semiconductor device