JPS6167274A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6167274A
JPS6167274A JP18811584A JP18811584A JPS6167274A JP S6167274 A JPS6167274 A JP S6167274A JP 18811584 A JP18811584 A JP 18811584A JP 18811584 A JP18811584 A JP 18811584A JP S6167274 A JPS6167274 A JP S6167274A
Authority
JP
Japan
Prior art keywords
film
insulating film
substrate
films
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18811584A
Other languages
Japanese (ja)
Inventor
Akio Shimano
嶋野 彰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP18811584A priority Critical patent/JPS6167274A/en
Publication of JPS6167274A publication Critical patent/JPS6167274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable to manufacture an MESFET having a short gate length and a small gate capacity by coating part of an insulating film on a substrate with a thin film, removing the insulating film which is not coated, adhering other insulating film, removing the thin film and the insulator on the thin film, and then adhering metal to a gap of the insulators. CONSTITUTION:An N type GaAs layer 12 is epitaxially grown on the substrate 1, and a gold-germanium alloy 3 of an electrode is formed. Then, a silicon dioxide film 7 is grown in a vapor phase, and a photoresist film 5 is patterned. When the film 7 is then removed with a fluoric acid buffer solution, the end of the film 7 is disposed slightly inside from the end of the film 5 by the lateral etching effect. Then, when a silicon monoxide film 8 is adhered by a vacuum depositing method on the entire substrate, and dipped in a resist separating solution, the film 8 on the film 5 is simultaneously removed together with the film 5, and a gap is formed in the boundary between the films 7 and 8. Then, an aluminum is deposited on the overall surface, patterned, allowed to remain only on the boundary between the films 7 and 8 to form a gate electrode 6. Windows are eventually formed on the films 7 and 8 on the alloy 3 to lead source and drain electrodes.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超高周波増幅回路などに用いられる半導体装置
の製造方法に関するもので、ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device used in an ultra-high frequency amplifier circuit or the like.

(従来列の構成とその問題点) 近年超高局波を用いた通信電送が盛んに行なわれ、家庭
のテレビジョンもUHFやSHFの電波を受信するよう
になってきた。それに伴い微弱な超周波の電波を低雑音
で増幅する素子として砒化ガリウムショットキーダート
電界効果トランジスタ(以下GaAs MESFETと
略す)が多く使われるようになってきた。第1図は従来
のGaAs MESFETの製造工程を示すものである
。同図において1は比抵抗の高い半絶縁性砒化ガリウム
基板、2は半絶縁性砒化ガリウム基板1上に設けたn型
砒化ガリウム層、3はn型砒化ガリウム層2とオーミッ
ク接触となる金属、4はn型砒化ガリウム層2とショッ
トキー接触となる金属、5は金属3および金属4を形成
するために用いられるフォトレノストである。
(Conventional array configuration and its problems) In recent years, communication transmission using ultra-high frequency waves has become popular, and home televisions have come to receive UHF and SHF radio waves. Along with this, gallium arsenide Schottky dart field effect transistors (hereinafter abbreviated as GaAs MESFETs) have come to be widely used as elements for amplifying weak ultra-frequency radio waves with low noise. FIG. 1 shows the manufacturing process of a conventional GaAs MESFET. In the figure, 1 is a semi-insulating gallium arsenide substrate with high resistivity, 2 is an n-type gallium arsenide layer provided on the semi-insulating gallium arsenide substrate 1, and 3 is a metal that makes ohmic contact with the n-type gallium arsenide layer 2. 4 is a metal that makes Schottky contact with the n-type gallium arsenide layer 2, and 5 is a photorenost used to form metal 3 and metal 4.

以上のように構成されたGaAs MESFETの製造
工程について説明する。
The manufacturing process of the GaAs MESFET configured as above will be explained.

まず半絶縁性砒化ガリウム基板1上にエビタキ/ヤル成
長させたn型砒化ガリウム層2に7オトレノスト膜5を
塗布し、第1図(a)に示すようにソース・ト°レイン
電極となる領域を/’Pターニングする。つぎに第1図
(b)に示すように砒化ガリウム層2とオーミック接触
となる金属3を基板1全面に真空蒸着し、レジスト剥離
液中に浸漬すれば、フォトレノストは溶解しフォトレジ
スト膜の金属3も同時に除去され、第1図(c)に示す
ように7オトレノストのない部分だけ金属3が残る。つ
ぎに再びフォトレノストを塗布し、第1図(d)に示す
ように金属3にはさまれた部分にフォトレノストを開孔
する。同じようにn型砒化ガリウム層2とショットキー
接触となる金属4を基板全面に蒸着しく第1図(e))
レノスト剥離液中に浸漬すれば、第1図(f)に示すよ
うに金属6が2つの金属3の間に形成される。これによ
って2つの金属3をソース電極およびドレイン電極、金
属6をケ゛−ト電極とするGaAa MESFETが完
成する。
First, a 7-Otrenost film 5 is applied to an n-type gallium arsenide layer 2 grown by epitaxy/dialysis on a semi-insulating gallium arsenide substrate 1, and as shown in FIG. Turn /'P. Next, as shown in FIG. 1(b), a metal 3 that makes ohmic contact with the gallium arsenide layer 2 is vacuum-deposited on the entire surface of the substrate 1, and is immersed in a resist stripping solution, so that the photorenost is dissolved and the metal of the photoresist film is 3 is also removed at the same time, and as shown in FIG. 1(c), metal 3 remains only in the area where 7 othrenost is not present. Next, photorenost is applied again, and holes are made with photorenost in the portions sandwiched between the metal parts 3, as shown in FIG. 1(d). Similarly, a metal 4 that forms Schottky contact with the n-type gallium arsenide layer 2 is deposited on the entire surface of the substrate (Fig. 1(e)).
When immersed in the Lenost stripping solution, a metal 6 is formed between the two metals 3 as shown in FIG. 1(f). As a result, a GaAa MESFET is completed in which the two metals 3 are used as the source and drain electrodes, and the metal 6 is used as the gate electrode.

このGaAs MESFETの性能はダート電極6の形
状に大きく依存し、素子の低雑音化やスイッチング時間
の短縮にはダート容量を減らすためケ゛−ト長を短縮し
ながらダート抵抗を上げないようにするためダート金属
の厚さを厚くする必要がある。
The performance of this GaAs MESFET largely depends on the shape of the dart electrode 6, and in order to reduce the noise of the device and shorten the switching time, it is necessary to reduce the dart capacitance and shorten the gate length while not increasing the dart resistance. It is necessary to increase the thickness of the dart metal.

しかし、上記のような従来の製造方法では光露光法の場
合ケ゛−ト長は1ミクロンが限界であシ、1ミクロン以
下のr−)長をうるには電子ビーム露光法など特殊な手
段を必要とする。またy−ト金属の高さはレジスト以上
高くすることはできず、たとえダート長を短縮してもダ
ート抵抗が増大し、必ずしもよい結果は得られていなか
った。したがって簡単な方法で1ミクロン以下のダート
長でかつダート抵抗の低いダート電極形成法の開発が望
まれていた。
However, in the conventional manufacturing method described above, the gate length is limited to 1 micron using light exposure, and special means such as electron beam exposure are required to obtain an r-) length of less than 1 micron. I need. Further, the height of the Y-t metal cannot be made higher than the resist, and even if the dart length is shortened, the dart resistance increases, and good results have not always been obtained. Therefore, it has been desired to develop a simple method for forming dart electrodes with dart lengths of 1 micron or less and low dart resistance.

(発明の目的) 本発明の目的は、従来の欠点を解消し、通常の光露光法
を用いて1ミクロン以下のr−ト長が容易に達成され、
かつダート抵抗を低くおさえることのできる半導体装置
の製造方法を提供することである。
(Object of the Invention) The object of the present invention is to overcome the conventional drawbacks, and to easily achieve an r-total length of 1 micron or less using a conventional light exposure method.
Moreover, it is an object of the present invention to provide a method for manufacturing a semiconductor device that can suppress dart resistance to a low level.

(発明の構成) 本発明の半導体装置の製造方法は、半導体基板の表面に
第1の絶縁膜を付着させる工程と、この第1の絶縁膜の
一部を薄膜で覆い、この薄膜で覆われていない第1の絶
縁膜を除去する工程と、前記半導体基板の上に第2の絶
縁膜を付着させる工程と、前記薄膜および薄膜上の第2
の絶縁膜を除去する工程と、前記第1の絶縁膜と第2の
絶縁膜の境界に金属を付着させる工程とを備えたもので
ある。
(Structure of the Invention) The method for manufacturing a semiconductor device of the present invention includes the steps of attaching a first insulating film to the surface of a semiconductor substrate, covering a part of the first insulating film with a thin film, and covering the first insulating film with a thin film. a step of removing a first insulating film that has not been removed; a step of attaching a second insulating film on the semiconductor substrate; and a step of removing the first insulating film that has not been
and a step of attaching metal to the boundary between the first insulating film and the second insulating film.

(実施ダjの説明) 本発明の一実施例を第2図に基づいて説明する。(Explanation of implementation) An embodiment of the present invention will be described based on FIG. 2.

第2図は本発明による半導体装置の製造方法を示すもの
で、1は半絶縁性砒化ガリウム基板、2はn型砒化ガリ
ウム層、3はn型砒化ガリウム層2とオーミック接触と
なる金属、4はn型砒化ガリウム層2と7ヨソトキー接
触となる金属、5はフォトレノスト膜で、以上は第1図
の構成と同じで6る。7は第1の絶縁膜としての二酸化
シリコン膜、8は第2の絶縁膜としての一酸化シリコン
膜である。
FIG. 2 shows a method for manufacturing a semiconductor device according to the present invention, in which 1 is a semi-insulating gallium arsenide substrate, 2 is an n-type gallium arsenide layer, 3 is a metal that makes ohmic contact with the n-type gallium arsenide layer 2, and 4 is a semi-insulating gallium arsenide substrate. 7 is a metal that makes a horizontal contact with the n-type gallium arsenide layer 2, 5 is a photorenost film, and 6 is the same as the structure shown in FIG. 1. 7 is a silicon dioxide film as a first insulating film, and 8 is a silicon monoxide film as a second insulating film.

以上のように構成されたGaAs MESFETの製造
工程を説明する。比抵抗1O70口の半絶縁性砒化ガリ
ウム基板1上に不純物濃度2 X 10” CWI−3
、厚さ0.3μmのn型砒化ガリウム層2をエピタキシ
ャル成長させ、第2図(a)に示すように電極である金
ケ゛ルマニウム合金3を形成するまでは第1図に示した
従来列と同じである つぎにシランの熱分解によって厚
さ0.6μmの二酸化シリコン膜7を気相成長させ第2
図(b)に示すようにフォトレジスト膜5を・ぐターニ
ングする。その後弗酸緩衝液で二酸化シリコン膜7を除
去すると横方向エツチング効果によシ第2図(c)に示
すように二酸化シリコン膜の端部はわずかに7オトレジ
スト膜5の端部よシ内側となる。つぎに、第2図(d)
に示すように基板表面全面に一酸化シリコン膜8を真空
蒸着法で付着させる。この基板をレジスト剥離液に浸漬
すれば、フォトレジスト膜5が溶解するとともにフォト
レジスト膜5上の一酸化シリコン膜8も同時に除去され
る。このとき二酸化シリコン膜7と−酸化シ11コン膜
8の境界部分には二酸化シリコン膜7を除去したとき二
酸化シリコン膜7の端部がフォトレノストの内側に入り
込んだ分だけの間隙を生じ、この間隙は二酸化シリコン
膜の厚さ程度の微小なものである。つぎに、酒石酸/過
酸化水素水系の液中で砒化ガリウム層表面を清浄化した
のちアルミニウムを全面に真空蒸着し、フォトレジスト
でパターニングして二酸化シリコン膜7と一酸化シリコ
ン膜8の境界部分だけアルミニウムを残し、第2図(e
)に示すようなy−上電極6を形成する。
The manufacturing process of the GaAs MESFET configured as above will be explained. Impurity concentration 2 x 10" CWI-3 on semi-insulating gallium arsenide substrate 1 with specific resistance 1O70
The process is the same as the conventional column shown in FIG. 1 until epitaxial growth of an n-type gallium arsenide layer 2 with a thickness of 0.3 μm and formation of a gold-aluminum alloy 3 as an electrode, as shown in FIG. 2(a). Next, a silicon dioxide film 7 with a thickness of 0.6 μm is grown in a vapor phase by thermal decomposition of silane.
As shown in Figure (b), the photoresist film 5 is turned. After that, when the silicon dioxide film 7 is removed with a hydrofluoric acid buffer solution, the lateral etching effect is activated, and as shown in FIG. Become. Next, Figure 2(d)
As shown in FIG. 2, a silicon monoxide film 8 is deposited on the entire surface of the substrate by vacuum evaporation. When this substrate is immersed in a resist stripping solution, the photoresist film 5 is dissolved and the silicon monoxide film 8 on the photoresist film 5 is also removed at the same time. At this time, a gap is created at the boundary between the silicon dioxide film 7 and the -silicon oxide film 8 by the amount that the end of the silicon dioxide film 7 enters inside the photorenost when the silicon dioxide film 7 is removed. is as small as the thickness of a silicon dioxide film. Next, after cleaning the surface of the gallium arsenide layer in a tartaric acid/hydrogen peroxide solution, aluminum is vacuum-deposited on the entire surface, and patterned with photoresist to remove only the boundary between the silicon dioxide film 7 and silicon monoxide film 8. Leaving the aluminum, Figure 2 (e
) A y-upper electrode 6 as shown in FIG.

最後に第2図(f)に示すように金デルマニウム合金3
上の二酸化シリコン膜7および一酸化シリコン膜8に窓
あけを行ないそれぞれソース電極、ドレイン電極として
取り出せるようにGaAs MESFETを完成する。
Finally, as shown in Figure 2(f), gold-dermanium alloy 3
A GaAs MESFET is completed by making windows in the upper silicon dioxide film 7 and silicon monoxide film 8 so that they can be taken out as a source electrode and a drain electrode, respectively.

光露光法でケ゛−ト電極を形成した従来のGaAaME
SFETと本発明の一実施例のGaAs MESFET
の特性の比較を表に示す。表に示すように本実施列によ
れば第1の絶縁膜の横方向エツチング効果を利用して微
小な絶縁膜間の間隙を形成し、ここにゲート金属を埋め
こむことによシ同じ光露光法を用いながらr−ト長で1
/3、ケ9−ト・ソース間容量で1/2、しかもr−)
抵抗はほとんど変らない高鴫波に適した電界効果トラン
ジスタを得ることができる。
Conventional GaAaME with gate electrode formed using light exposure method
SFET and GaAs MESFET of one embodiment of the present invention
A comparison of the characteristics is shown in the table. As shown in the table, according to this embodiment, the lateral etching effect of the first insulating film is used to form a minute gap between the insulating films, and by burying the gate metal there, the same light exposure is achieved. 1 with r-t length using the method
/3, 1/2 the capacitance between the gate and the source, and r-)
A field effect transistor suitable for high voltage waves with almost no change in resistance can be obtained.

表 (発明の効果) 本発明によれば、半導体基板上の絶縁膜の一部を7オト
レジストなどの薄膜で覆い、覆われていない絶縁物を除
去し、他の絶縁物を付着させて薄膜および薄膜上の絶縁
物を除去し、絶縁物間の間隙に金属を付着させることに
よシ、ケ°−ト抵抗を増加させないでf−)長が短かく
ダート容量の小さい電界効果トランジスタを製作するこ
とができ、その実用的効果は犬である。
Table (Effects of the Invention) According to the present invention, a part of an insulating film on a semiconductor substrate is covered with a thin film such as 7-otoresist, the uncovered insulator is removed, and another insulator is attached to form a thin film and By removing the insulator on the thin film and depositing metal in the gap between the insulators, a field effect transistor with short length and small dart capacitance can be fabricated without increasing the gate resistance. Can and its practical effect is a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGaAs MESFETの製造工程を示
す断面図、第2図は本発明の一実施例におけるGaAs
 MESFETの製造工程を示す断面図である。 l・・・半絶縁性砒化ガリウム基板、2・・・n型砒化
ガリウム層、3・・・n型砒化ガリウム層とオーミック
接触となる金属、4・・・n型砒化ガリウム層とショッ
トキー接触となる金属、5・・・フォトレジスト膜、6
・・・ケ°−ト電極、7・・・二酸化シリコン膜、8・
・・−酸化ンリコン膜。 第1図 1a) λ1 (C) 一一−−−一−−−一一−−一−−一二き1第1図 (f) 第2図 (a) 一1 (C) 一一一一一一一一一一一一一一一二−I(e) (f) 〜1
FIG. 1 is a cross-sectional view showing the manufacturing process of a conventional GaAs MESFET, and FIG. 2 is a cross-sectional view showing the manufacturing process of a conventional GaAs MESFET.
It is a sectional view showing a manufacturing process of MESFET. l... Semi-insulating gallium arsenide substrate, 2... n-type gallium arsenide layer, 3... metal making ohmic contact with the n-type gallium arsenide layer, 4... Schottky contact with the n-type gallium arsenide layer Metal, 5... Photoresist film, 6
... Kate electrode, 7... Silicon dioxide film, 8.
... - oxidized silicon film. Figure 1 1a) λ1 (C) 11---1---11---1---12ki1 Figure 1(f) Figure 2(a) 11 (C) 1111 1111111112-I(e) (f) ~1

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の表面に第1の絶縁膜を付着させる工
程と、前記第1の絶縁膜の一部を薄膜で覆い、該薄膜で
覆われていない第1の絶縁膜を除去する工程と、前記半
導体基板の上に第2の絶縁膜を付着させる工程と、前記
薄膜および薄膜上の、前記第2の絶縁膜を除去する工程
と、前記第1の絶縁膜と第2の絶縁膜の境界に金属を付
着させる工程とを備えたことを特徴とする半導体装置の
製造方法。
(1) A step of attaching a first insulating film to the surface of a semiconductor substrate, a step of covering a part of the first insulating film with a thin film, and removing the first insulating film not covered with the thin film. , a step of attaching a second insulating film on the semiconductor substrate, a step of removing the thin film and the second insulating film on the thin film, and a step of removing the first insulating film and the second insulating film. A method for manufacturing a semiconductor device, comprising the step of attaching metal to a boundary.
(2)薄膜がフォトレジスト、第2の絶縁膜が一酸化シ
リコン膜であることを特徴とする特許請求の範囲第(1
)項記載の半導体装置の製造方法。
(2) Claim (1) characterized in that the thin film is a photoresist and the second insulating film is a silicon monoxide film.
) The method for manufacturing a semiconductor device according to item 2.
JP18811584A 1984-09-10 1984-09-10 Manufacture of semiconductor device Pending JPS6167274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18811584A JPS6167274A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18811584A JPS6167274A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6167274A true JPS6167274A (en) 1986-04-07

Family

ID=16217965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18811584A Pending JPS6167274A (en) 1984-09-10 1984-09-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6167274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824800A (en) * 1987-05-08 1989-04-25 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor devices
US5252843A (en) * 1989-09-01 1993-10-12 Fujitsu Limited Semiconductor device having overlapping conductor layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824800A (en) * 1987-05-08 1989-04-25 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor devices
US5252843A (en) * 1989-09-01 1993-10-12 Fujitsu Limited Semiconductor device having overlapping conductor layers

Similar Documents

Publication Publication Date Title
JPS5950567A (en) Manufacture of field effect transistor
JP3734586B2 (en) Semiconductor device and manufacturing method thereof
JPH0472381B2 (en)
JPS6167274A (en) Manufacture of semiconductor device
JP2664527B2 (en) Semiconductor device
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JPS6110280A (en) Junction type fet
JPS63124465A (en) Manufacture of bipolar transistor
JP3488833B2 (en) Method for forming field effect transistor
JPH10173036A (en) Semiconductor device and method of realizing high-resistance semiconductor
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JPS63208275A (en) Field effect transistor
JPH0320063B2 (en)
JPH1092846A (en) Semiconductor device and manufacture thereof
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH04324638A (en) Manufacture of heterojunction bipolar transistor
JPH0439941A (en) Field-effect transistor
JPH04212428A (en) Manufacture of semiconductor device
JPH03185843A (en) Manufacture of gaas field effect transistor
JPS62229854A (en) Manufacture of semicondector device
JPH02206134A (en) Manufacture of semiconductor device
JPS58116774A (en) Manufacture of semiconductor device
JPS62195146A (en) Manufacture of semiconductor device
JPH03203246A (en) Method of manufacturing semiconductor device
JPH0523496B2 (en)