JPS58116774A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58116774A
JPS58116774A JP21369481A JP21369481A JPS58116774A JP S58116774 A JPS58116774 A JP S58116774A JP 21369481 A JP21369481 A JP 21369481A JP 21369481 A JP21369481 A JP 21369481A JP S58116774 A JPS58116774 A JP S58116774A
Authority
JP
Japan
Prior art keywords
layer
etching
single crystal
gallium arsenide
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21369481A
Other languages
Japanese (ja)
Inventor
Minoru Matsumoto
稔 松本
Satoru Shibata
悟 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21369481A priority Critical patent/JPS58116774A/en
Publication of JPS58116774A publication Critical patent/JPS58116774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To improve the high frequency characteristic of a semiconductor device by constructing to have non-vertical property and hence a slope on the side surface of a mesa layer, thereby narrowing the gate length. CONSTITUTION:A channel layer 3 is formed on an arsenided gallium (GaAs) substrate 1, and a photoresist film 4 is coated on the layer 3, thereby forming a mask layer. When it is then etched with an etchant which contains 1-2% of hydrogen peroxide in aqueous solution having 2-8% of potassium hydroxide, the lateral etching distance becomes 3-4mum to the etching distance of longitudinal direction of 1mum, and the mesa layer 3' becomes oblique surface. After the film 4 is then removed, a gold-germanium layer 5 is formed on the source and drain regions. Thereafter, it is heat treated, thereby forming an alloying region 6 and completing a source and a drain.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体装置の製造方法に関する。特に、砒化ガ
リエウム(GaAs)よりなる電界効果トランジスタの
製造方法の改良に関する0 (2)技術の背景 砒化ガリλウム(eaム−)はシリコン(81)に比し
電子や正孔の移動度が大きいため、高周波用としてまた
高スイツチング速度用として有利〒ある0また、砒化ガ
リ鼻つム(GaAs )はこれにクローム(or)II
Iを含有させると半絶縁性となるため、かかる半絶縁性
基板上にn!l!の砒化ガリエウム(GaAs)単結晶
層を形成し、この単結晶層を素子形成領域上に残し、及
び素子分離領域から除去してメサ状になすと、素子分離
の点から極めて有利である0そのとき、浮遊容量が増大
することを防ぐためにゲート電極用−ンデイングパツP
は半絶縁性基板上に設けられることが望ましいの11か
かる砒化ガリ1ウム(GaAa)よりなる電界効果トラ
ンジスタは、半絶縁性基板上にメサ状に形成されたn型
単結晶階上にゲート・ソース・ドレインを形成し、ゲー
ト電極はとのメサ段差部をまたがって半絶縁層にま1及
ぶように比較的長く形成されることが一般フある。そし
て、nll1単結晶層は、結晶整合の目的と基板中に含
有される不純物の上方向拡散を防止する目的のために、
79277層を介して基板上に形成されることが望まし
い。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, 0 (2) Background of the technology Gallium arsenide (EA) has a higher mobility of electrons and holes than silicon (81). Because of its large size, it is advantageous for high frequencies and high switching speeds.Also, arsenide GaAs is used for chromium(or)II.
When I is included, it becomes semi-insulating, so n! l! Forming a single crystal layer of gallium arsenide (GaAs), leaving this single crystal layer on the device formation region, and removing it from the device isolation region to form a mesa shape is extremely advantageous from the point of view of device isolation. In order to prevent stray capacitance from increasing when
It is preferable that the field effect transistor is formed on a semi-insulating substrate.11 A field effect transistor made of gallium arsenide (GaAa) has a gate and a gate on an n-type single crystal layer formed in a mesa shape on a semi-insulating substrate. Generally, a source and drain are formed, and a gate electrode is formed relatively long so as to straddle the mesa step portion and extend to the semi-insulating layer. The nll1 single crystal layer is formed for the purpose of crystal matching and for the purpose of preventing upward diffusion of impurities contained in the substrate.
It is desirable to form the 79277 layer on the substrate.

n型単結晶層の厚さはaooo X程W〒あり、リーク
電流の発生を防止するためにはバッファ層をz000ム
程度エッチする必要があるから、上記のメサ状層の厚さ
は7,0OOX程変必要となる。
The thickness of the n-type single crystal layer is about aooo 0OOX is required.

(3)  従来技術と問題点 砒化ガリエウム(Gats)よりなる電界効果トランジ
スタの利点はその高速性にあるのであるから、ソース・
ドレイン間の距離、特に、ゲート長は極力短いことが望
ましい。ところが、従来技術においては、上記のとおり
、ゲート電極は高さ7.000ス程変のメサな越えて形
成されねばならない。一方、一般にエツチング技術は垂
直性エツチング法は発達しているが非垂直性エツチング
法は発達しておらないから、従来技術におけるエツチン
グ法を使用するか「す、上記のメサ状層の側面はおよそ
垂直になり、この段差部フ、ゲート電極が不連続になり
やすい。この断線を防ぐためにゲート電極の高さを極力
高< L、 1.2μm程変8しているが、又、段差部
〒ゲート電極窓が切れて、その結果、所望のピンチオフ
電圧が得られないためゲート長もあまり狭くすることが
できず、従来2μ!ll&度以上必要であった。この欠
点を解消するために、段差部を2段構造としておよそ7
,0OOXの段差を半減させる試みがなされているが、
顕著な効果を認めず、ゲート長の短縮にはあまり有効〒
はなく、従来ゲート長は2μm程度以上必要なことはや
むをえないことと考えられていた。このことは、砒化ガ
リエウム(Ga口)電界効果トランジスタの利点を十分
利用していないことを意味し、ゲート長をより狭くする
ことができ、高周波特性を向上しうる砒化ガリュウム(
oaAs)電界効果トランジスタの開発が望まれていた
(3) Prior art and problems The advantage of field effect transistors made of gallium arsenide (Gats) is their high speed;
It is desirable that the distance between drains, especially the gate length, be as short as possible. However, in the prior art, as described above, the gate electrode must be formed over a mesa with a height of about 7,000 square meters. On the other hand, in general, as for etching technology, the vertical etching method has been developed, but the non-vertical etching method has not. The gate electrode tends to become discontinuous at this stepped portion.In order to prevent this disconnection, the height of the gate electrode is changed as high as possible by 1.2 μm8, but the stepped portion Since the gate electrode window is cut and as a result, the desired pinch-off voltage cannot be obtained, the gate length cannot be made very narrow, and conventionally it required a length of 2μ! Approximately 7 parts with a two-tiered structure
, attempts have been made to halve the height difference between 0OOX and
No significant effect was observed, and it is not very effective in reducing gate length.
Conventionally, it was thought that it was unavoidable that a gate length of about 2 μm or more was required. This means that the advantages of gallium arsenide (Ga) field effect transistors are not fully exploited, and the advantages of gallium arsenide (Ga) field effect transistors are not fully exploited.
oaAs) field effect transistors have been desired to be developed.

(4)発明の目的 本発明の目的は、この′g!請にこたえるもの1あり、
ゲート長を狭くすることができ、高周波性能が良好でス
イツテンダ速度の速い砒化ガリュウム(GaAs)電界
効果トランジスタを製造する方法を提供することにある
(4) Purpose of the invention The purpose of the present invention is this 'g! There is one thing that answers your request.
An object of the present invention is to provide a method for manufacturing a gallium arsenide (GaAs) field effect transistor that can have a narrow gate length, have good high frequency performance, and have a high switch tendering speed.

(5)発明の構成 本発明は、メサ状層の側面を非垂直性に、すなわち、傾
斜を有するようになすことによって、上記の目的を達成
するもの1あり、本発明の構成は、(イ)クローム(O
r)等を含有して中絶縁性の砒化ガリーウム(GaAs
)よりなる基板上に好ましくはi型の砒化ガリ龜つム(
GaAs)単結晶よりなる79277層を形成し、(ロ
)上記の基板またはノ7ツ7ア層上にn型の砒化ガリ凰
つム(GaAs)単結晶よりなるチャンネル層を形成し
、(ハ)上記のチャンネル層上にフォトレジスト等のマ
スク材を塗布・乾燥してマスク層を形成した後、リソグ
ラフィー法を使用してこのマスク層を素子形成領域以外
から除去してチャンネル層の素子形成領域にエツチング
用マスクを形成し、に)!〜8−の範囲に水酸化カリニ
ウム(KOH)を含有する水溶液に1〜2−の範囲に過
酸化水素(H,O,)を含有する溶液を使用して、上r
のエツチング用マスクによって優われでいない領域にお
ける上記のチャンネル層に対して化学エツチングを実施
して、上記のチャンネル層と79277層または基板の
上層部とを素子形成領域に側面が傾斜状をなすメサ状に
残留してそれ以外の領域から除去し、(ホ)上記のメサ
状層のソース・ドレイン電極形成領域に金・ゲルマニー
ラム/金(ムu−Go /ムU)等の金属層を選択的に
形成した後熱処理を施してこの領域を合金化してソース
・ドレインを形成し、(へ)上記のソース・ドレインに
挾すれたゲート電極形成領域に、アルミニユウム(^t
)等の金属層を選択的に形成してゲートを形成する工程
を含むことにある。
(5) Structure of the Invention The present invention achieves the above object by making the side surfaces of the mesa-like layer non-vertical, that is, inclined. ) Chrome (O
Gallium arsenide (GaAs), which has medium insulating properties, contains
), preferably an i-type arsenide gallium atom (
Form a 79277 layer made of single crystal (GaAs), (b) form a channel layer made of n-type gallium arsenide (GaAs) single crystal on the above substrate or layer 7, and ) After forming a mask layer by coating and drying a masking material such as a photoresist on the above channel layer, this mask layer is removed from areas other than the element formation area using a lithography method to form the element formation area of the channel layer. To form a mask for etching, to )! The above r
Chemical etching is performed on the channel layer in the region not etched by the etching mask, and the channel layer and the 79277 layer or the upper layer of the substrate are formed into a mesa with sloped sides in the device formation region. (e) Selectively apply a metal layer such as gold/germanylum/gold (Mu-Go/Mu-U) to the source/drain electrode formation region of the mesa-like layer. After formation, heat treatment is performed to alloy this region to form a source/drain, and (to) aluminum (^t
), etc., to form a gate.

なお、前記水酸化カリニウムの濃度が2優未満1あると
十分なエツチング連関が得られず、また8%を越えると
マスクとなるフォトレジストの変質を招いてしまう。一
方過酸化水素が1%未満1あると十分なエツチング速f
が得られずしかもエッテングノ?ターンの不均一を招い
てしまう。艷に過酸化水素が2%を越えると緩やかな傾
斜のチー・ぞ−を得ることが困難である。
If the concentration of potassium hydroxide is less than 2%, sufficient etching correlation will not be obtained, and if it exceeds 8%, the quality of the photoresist serving as a mask will be deteriorated. On the other hand, if hydrogen peroxide is less than 1%1, the etching speed is sufficient.
I can't get it and it's not possible? This will lead to uneven turns. If the hydrogen peroxide in the vessel exceeds 2%, it is difficult to obtain a gently sloped slope.

上記の構成における特徴は、上記の組成を有するエツチ
ング溶液を使用するとエツチング速度は2.000′A
/分以下であり必ずしも速くないが、エツチング面が傾
斜して、メサ状のチャンネル層側面が垂直にならず傾斜
状となること〒ある。上記の組成は従来技術において通
常使用されているエツチング液の組成(およそ25チ過
酸化水素(H,Oりを含有)と比較して、過酸化水素(
HsOs)の含有量が少ないが、過酸化水素(Hz○り
含有量を更に減少させて1%以下にするとエツチング面
の傾斜が極めて緩徐(二なるとともに傾斜角が不均一と
なり工業的に利用しえないことが確認されている。
The feature of the above structure is that when an etching solution having the above composition is used, the etching rate is 2.000'A.
Although it is not necessarily fast as it is less than /min, there are cases where the etching surface is inclined and the side surfaces of the mesa-shaped channel layer are not vertical but inclined. The above composition is compared to the composition of etching solutions commonly used in the prior art (approximately 25% hydrogen peroxide (contains H, O)).
Although the content of hydrogen peroxide (HsOs) is small, if the content of hydrogen peroxide (HsOs) is further reduced to 1% or less, the slope of the etched surface becomes extremely slow (as the slope becomes less uniform, the slope angle becomes uneven, making it difficult to use industrially). It has been confirmed that this is not possible.

なお、上記の従来技術において9常使用されるエツチン
グ溶液の場合のエツチング速度はa、ooo XZ分!
あるが、工業的に利用可能な最低エツチング速度は50
0ム/分!ある。
In addition, in the case of the etching solution commonly used in the above-mentioned conventional technology, the etching speed is a, ooo XZ minutes!
However, the lowest etching speed that can be used industrially is 50
0m/min! be.

この現象から推定して、本発明に係るエツチング溶液の
場合は、フォトレジストよりなるエツチングマスクとチ
ャンネル層との界面に滲入したエツチング溶液(:よる
エツチング効果が大きく作用しているものと推定される
Inferred from this phenomenon, in the case of the etching solution according to the present invention, it is presumed that the etching effect due to the etching solution seeping into the interface between the etching mask made of photoresist and the channel layer has a large effect. .

(6)発明の実施例 以下、図面を参照しつつ、本発明の一実施例に係る生導
体装置特に砒化ガリエウム(GaAa)電界効果トラン
ジスタの製造方法について説明し、本発明の構成と特有
の効果とを明らかにする。
(6) Embodiments of the Invention Hereinafter, with reference to the drawings, a method for manufacturing a live conductor device, particularly a gallium arsenide (GaAa) field effect transistor, according to an embodiment of the present invention will be explained, and the structure and unique effects of the present invention will be explained. to clarify.

第1図参照 りa−ム(Or)をto” 〜1017/cR”N&に
含有する中絶縁性の砒化ガリエウム(GaAa)基板l
上に、Ga+^θ013+ Htsを反応系とする気相
エピタキシャル成長法を使用して、1型砒化ガリエウム
(Game)単結晶層を厚さ3〜5μm程度に形成して
79ソファ層とし、つづいて、n型不純物1ある硫黄(
8)を8 X 10”乃至3 x 1017/−程度に
含有する砒化ガIJ &ラム(GaAs)単結晶層を厚
さ0.2〜1μm程度に形成してチャンネル層3とする
Refer to Fig. 1. Medium insulating gallium arsenide (GaAa) substrate containing a-m (Or) to'' ~ 1017/cR''N&l
On top, using a vapor phase epitaxial growth method using Ga+^θ013+ Hts as a reaction system, a type 1 gallium arsenide (Game) single crystal layer is formed to a thickness of about 3 to 5 μm to form a 79 sofa layer, and then, Sulfur with n-type impurity 1 (
A channel layer 3 is formed by forming an arsenide IJ & Lamb (GaAs) single crystal layer having a thickness of about 0.2 to 1 .mu.m containing 8.times.10" to 3.times.10.sup.17/- of GaAs.

第2図参照 フォトレジスト例えば東京応化社製OMR83を全面に
塗布し、(資)℃で(資)分間なされるプリ ベークを
なしてフォトレジスト膜4を形成した彼、7オトリソ/
ラフイー法を使用してこれを票子形成領琥上以外から除
去し、145℃″ts(9)分間なされるボストベーク
をなしてエツチング用マスクとスル。
Referring to Figure 2, he applied a photoresist such as OMR83 manufactured by Tokyo Ohka Co., Ltd. to the entire surface and pre-baked it at (400°C) for (400 minutes) to form a photoresist film 4.
This was removed from areas other than the area on which the stamp was formed using the roughy method, and a post bake was performed at 145° C. for 9 minutes to form an etching mask.

第3図参照 水酸化カリ為つム(KOH)を5重量嗟含有する水溶液
に過酸化水素(H,Oり 1.51を含有する溶液をエ
ツチング液として深さ7.oooX程度に化学エツチン
グを行なう。この場合、エツチング速度は1、ooo〜
11500X/分であり、従来技術において使用される
15%過酸化水素(H!Oりを含有する水溶液の場合に
おける3、0OOA/分よりはるかに遅いが、縦方向l
声mのエツチング距離に対し横方向エツチング距離は3
〜4μmとなり、メサ状層3′の側面は図示の如く緩徐
な傾斜を有する斜面となる。本実施例においてはおよそ
16°〕ある。
Refer to Figure 3. Chemical etching is carried out to a depth of about 7.00X using an aqueous solution containing 5 parts by weight of potassium hydroxide (KOH) and a solution containing 1.51 parts by weight of hydrogen peroxide (H,O) as an etching solution. In this case, the etching speed is 1, ooo~
11500X/min, which is much slower than the 3,000 OOA/min in the case of aqueous solutions containing 15% hydrogen peroxide (H!O) used in the prior art;
The horizontal etching distance is 3 for the etching distance of voice m.
4 μm, and the side surface of the mesa layer 3' becomes a slope with a gentle slope as shown in the figure. In this embodiment, the angle is approximately 16°.

第4(a)図、第4(b)図参照 エツチング用マスク4を溶解除去した後、いわゆるり7
トオ7法を使用して、ソース・ドレイン領域上に選択的
に金・ゲルマニエウム/金(Au−Gs/Au)層5を
およそ4000 A程度に形成する。その彼、450℃
程度″1%2分間熱処理して合金化領域6を形成し、ソ
ース・ドレインを完成する。
4(a) and 4(b) After dissolving and removing the etching mask 4, a so-called etching process 7 is performed.
A gold-germanium/gold (Au-Gs/Au) layer 5 with a thickness of about 4000 A is selectively formed on the source/drain regions using the TO7 method. That guy, 450℃
Heat treatment is performed for 2 minutes to a degree of 1% to form an alloyed region 6 and complete the source/drain.

第5(a)図、M 5 (1:+)図参照いわゆるリフ
トオフ法を使用してゲート領域上に選択的に幅1μm程
度のアルミニュウム(^t)層7をおよそ7,0OOA
の高さに形成して、ゲート電極とする。
Refer to FIG. 5(a), M 5 (1:+) diagram. Using the so-called lift-off method, an aluminum (^t) layer 7 with a width of about 1 μm is selectively deposited on the gate region at a thickness of about 7,000 OOA.
The gate electrode is formed at a height of .

このとき、上記のとおり、メサ状3の側面の傾斜は16
°程変であるから、1μm程度の狭い幅であっても断線
が発生することはない。なお、ソース・ゲート間、ゲー
ト・ドレイン間の距離は1.5μm程度以上必要1ある
が、これは主として位置合わせ糖質の限界によって決定
される要因である。
At this time, as mentioned above, the slope of the side surface of the mesa 3 is 16
Since the width varies by degrees, disconnection will not occur even if the width is as narrow as 1 μm. Note that the distances between the source and the gate and between the gate and the drain must be approximately 1.5 μm or more, but this is a factor mainly determined by the limit of alignment carbohydrates.

(7)発明の効果 以上説明せるとおり、本発明によれば、ゲート長を狭く
することが1き、高周波特性が良好〒、スイッチング速
度の速い砒化ガリエウム(GaAa)電界効果トランジ
スタを製造する方法を提供することができる。
(7) Effects of the Invention As explained above, according to the present invention, a method for manufacturing a gallium arsenide (GaAa) field effect transistor with a narrow gate length, good high frequency characteristics, and high switching speed is provided. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2.3.4(a)、4(b)、5(a)、5(b
)図は、本発明の一実施例に係る砒化ガIJ zウム電
界効果トランジスタの製造方法の主要工程完了稜の断面
図又は平面図である。 1・・・中絶縁性基板、2・・・79277層、3・・
・n[砒化ガリ具つム層(チャンネル層)、3′・・・
メサ状層、4・・・エッチンク用マスク、5・・・金・
ゲルマニエウム/金層(ソース・ドレイン電1k)、6
・・・合金化領塚、7・・・アルオニ瓢ウム層(ゲート
電極)。
Section 1.2.3.4(a), 4(b), 5(a), 5(b)
) is a cross-sectional view or a plan view of the main steps of the method for manufacturing an arsenide IJzium field effect transistor according to an embodiment of the present invention. 1... Medium insulating substrate, 2... 79277 layers, 3...
・n [arsenide gallium layer (channel layer), 3'...
Mesa layer, 4... Etching mask, 5... Gold.
Germanium/gold layer (source/drain current 1k), 6
... Alloyed region, 7... Alionium gourd layer (gate electrode).

Claims (1)

【特許請求の範囲】[Claims] 半絶縁一基板上に砒化ガリーウム単結晶層を形成し、該
砒化ガリエウム単結晶層上の素子形成領域にエツチング
用マスクを形成し、291乃至896の範囲に水酸化カ
リ瓢つムを含有する水溶液にl−乃至2−の範囲に過酸
化水素を含有する溶液を使用して、前記エツチング用マ
スクによって覆われていない領域における前記砒化ガI
J &ラム単結晶層に対し化学エツチングをなしてエツ
チング部と非エツチング部と?−わたって傾斜をつけ、
しかる後前記砒化ガリ凰つム単結晶層から半絶縁性基板
上に延在して金属層を形成する工程を含む、ことを特徴
とする半導体装置の製造方法。
A gallium arsenide single crystal layer is formed on a semi-insulating substrate, an etching mask is formed in the element formation region on the gallium arsenide single crystal layer, and an aqueous solution containing potassium hydroxide in the range of 291 to 896 is used. The arsenide film I in the areas not covered by the etching mask is removed using a solution containing hydrogen peroxide in the range of 1 to 2.
J & Lam Chemically etching the single crystal layer to create etched and non-etched areas? - slope across;
A method of manufacturing a semiconductor device, comprising the step of thereafter forming a metal layer extending from the gallium arsenide single crystal layer onto a semi-insulating substrate.
JP21369481A 1981-12-29 1981-12-29 Manufacture of semiconductor device Pending JPS58116774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21369481A JPS58116774A (en) 1981-12-29 1981-12-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21369481A JPS58116774A (en) 1981-12-29 1981-12-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58116774A true JPS58116774A (en) 1983-07-12

Family

ID=16643436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21369481A Pending JPS58116774A (en) 1981-12-29 1981-12-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58116774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504791B2 (en) 2012-04-06 2022-11-22 Illinois Tool Works Inc. Welding torch with a temperature measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504791B2 (en) 2012-04-06 2022-11-22 Illinois Tool Works Inc. Welding torch with a temperature measurement device

Similar Documents

Publication Publication Date Title
JP3734586B2 (en) Semiconductor device and manufacturing method thereof
JPH0472381B2 (en)
JPS58116774A (en) Manufacture of semiconductor device
JPH0320063B2 (en)
JPS6424466A (en) Manufacture of semiconductor device
JPH01274477A (en) Manufacture of semiconductor device
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JPH02180032A (en) Manufacture of gaas mesfet
JPS6167274A (en) Manufacture of semiconductor device
JP2558766B2 (en) Method for manufacturing semiconductor device
JPS58135667A (en) Semiconductor device
JPS59229875A (en) Manufacture of schottky gate type field effect transistor
JPS6226598B2 (en)
JPS6290979A (en) Manufacture of semiconductor device
JPH1092846A (en) Semiconductor device and manufacture thereof
JPS6039875A (en) Manufacture of semiconductor device
JPS6392062A (en) Manufacture of field effect transistor
JPS6315417A (en) Manufacture of semiconductor device
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPS594173A (en) Manufacture of semiconductor device
JPH04332136A (en) Manufacture of semiconductor device
JPS58114462A (en) Manufacture of semiconductor device
KR940016952A (en) Method for manufacturing gallium arsenide field effect transistor
JPS62195146A (en) Manufacture of semiconductor device
JPS59224178A (en) Manufacture of field effect transistor