JPS6039875A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6039875A
JPS6039875A JP14844083A JP14844083A JPS6039875A JP S6039875 A JPS6039875 A JP S6039875A JP 14844083 A JP14844083 A JP 14844083A JP 14844083 A JP14844083 A JP 14844083A JP S6039875 A JPS6039875 A JP S6039875A
Authority
JP
Japan
Prior art keywords
films
film
etching
insulating film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14844083A
Other languages
Japanese (ja)
Inventor
Satoru Shibata
悟 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14844083A priority Critical patent/JPS6039875A/en
Publication of JPS6039875A publication Critical patent/JPS6039875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To form a space between electrodes with high accuracy by side-etching fringe sections under resist films formed on a substrate coated with a first insulating film, applying electrode films, applying second insulating films and etching exposed substrate surfaces through etching and lift-off. CONSTITUTION:A first insulating film 12 is applied on a substrate 11, and resist films 13 are patterned on the insulating film 12. The film 12 is removed through etching, and the films 12 of fringe sections under the resist films 13 are side- etched. Ohmic electrodes 14 are applied on the upper surfaces of the films 13 and second insulating films 15 on the electrodes 14. The resist films 13, the films 15 and the electrodes 14 are removed through a dipping in acetone and an ultrasonic washing. The exposed films 12 are removed through etching. The substrate 11 is etched while using the second insulating films 15 as masks to form recessed section regions 16. Lastly, the films 15 are removed through dry etching.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置の製造方法のうら、特にセルファラ
インによって近接した電極間に他の電極領域を高精度に
形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming another electrode region between adjacent electrodes using a self-alignment line with high precision.

(bl 従来技術と問題点 半導体装置はその高集積化のため、ソース、ゲート、ド
レインの各電極が近接して設けられている。例えばGa
As F E Tはマイクロ波帯における高利得、高出
力のショットキ障壁型電界効果トランジスタ(SB−F
ET)として知られているが、間隔数μmのソース電極
とドレイン電極との間に幅1〜2μmのゲート電極が設
けられた構造となる。
(bl) Prior Art and Problems Due to the high integration of semiconductor devices, the source, gate, and drain electrodes are provided close to each other.For example, Ga
As FET is a high gain, high output Schottky barrier field effect transistor (SB-F) in the microwave band.
ET), it has a structure in which a gate electrode with a width of 1 to 2 μm is provided between a source electrode and a drain electrode with an interval of several μm.

このようなFETにおいて、更に高利得化、高出力化を
目指したリセス型と呼ばれる構造があり、第1図にその
実体図を示している。図示の様に、GaAs基板1」二
にソース電極、ドレイン領域2とゲート電極3が設けら
れ、ゲート電極は半導体基板の凹部領域4に形成された
構造である。且つ、ゲート電極3とソース電極、ドレイ
ン電極2とは異なる材質からなり、GaAsFETでは
ゲート電極3はアルミニウム、ソース電極およびドレイ
ン電極2ば金(Au)系金属が使用される。
Among such FETs, there is a structure called a recessed type which aims at higher gain and higher output, and FIG. 1 shows the actual structure thereof. As shown in the figure, a source electrode, a drain region 2, and a gate electrode 3 are provided on a GaAs substrate 1''2, and the gate electrode has a structure formed in a recessed region 4 of the semiconductor substrate. Furthermore, the gate electrode 3 and the source and drain electrodes 2 are made of different materials; in the GaAsFET, the gate electrode 3 is made of aluminum, and the source and drain electrodes 2 are made of a gold (Au) based metal.

このようなリセス構造の凹部領域形成概要を第2図およ
び第3図に示す。まず、第2図に示すように二酸化しノ
リコン(Si02)膜5とレジスト膜6とをマスクにし
てソース、ドレインの電極材料2を被着する。次いで、
レジスト膜6と5i02膜5とを除去し、同時にリフト
オフによってレジスト膜6上の電極材料を除去して、ソ
ース電極およびドレイン電極2を形成する。次いで、第
3図に示すように再びレジスト膜7をパターンニングし
て、これをマスクにして半導体基板1をエツチングし凹
部領域4を形成する。
An outline of the formation of the recessed region of such a recessed structure is shown in FIGS. 2 and 3. First, as shown in FIG. 2, source and drain electrode materials 2 are deposited using a silicon dioxide (Si02) film 5 and a resist film 6 as masks. Then,
The resist film 6 and the 5i02 film 5 are removed, and at the same time, the electrode material on the resist film 6 is removed by lift-off to form the source electrode and the drain electrode 2. Next, as shown in FIG. 3, the resist film 7 is patterned again, and using this as a mask, the semiconductor substrate 1 is etched to form the recessed region 4.

しかし、上記形成方法によればソース電極、ドレイン電
極2と四部領域4との間に位置ずれを生じる欠点がある
。凹部領域4の位置ずれはゲート電極が位置ずれするこ
とになり、そのためにトランジスタ特性がバラツキを生
じる原因となる。
However, the above-mentioned formation method has a drawback that misalignment occurs between the source and drain electrodes 2 and the four-part region 4. Misalignment of the recessed region 4 causes misalignment of the gate electrode, which causes variations in transistor characteristics.

(C) 発明の目的 本発明は、このような問題点を解消させ、セルファライ
ンによって高精度に電極間隔を形成する製造方法を提案
するものである。
(C) Object of the Invention The present invention solves these problems and proposes a manufacturing method in which the electrode spacing is formed with high precision using self-alignment.

+d+ 発明の構成 その目的は、第1絶縁膜を被覆した基板上に選択的にレ
ジスト膜を形成し、該レジスト膜をマスクにして前記露
出した第1絶縁膜を除去し、更に該レジスト膜下の周縁
部をサイドエッチする工程、次いで電極膜を被着し、該
電極膜上に第1絶縁膜とエツチングレートの異なる第2
絶縁膜を被覆した後、前記レジスト膜をエツチング除去
して、同時に該レジスト膜上面の電極膜と第2絶縁膜と
をリフトオフして除去する工程、次いで露出した第1絶
縁膜を除去して基板面の露出領域を工・ンチングする工
程が含まれてなる半導体装置の製造方法によって達成さ
れる。
+d+ Structure of the Invention The object is to selectively form a resist film on a substrate covered with a first insulating film, remove the exposed first insulating film using the resist film as a mask, and further remove the exposed first insulating film under the resist film. Next, an electrode film is deposited on the electrode film, and a second insulating film having an etching rate different from that of the first insulating film is formed on the electrode film.
After covering the insulating film, the resist film is removed by etching, and at the same time, the electrode film and the second insulating film on the upper surface of the resist film are lifted off and removed, and then the exposed first insulating film is removed and the substrate is removed. This is achieved by a method for manufacturing a semiconductor device that includes a step of etching the exposed region of the surface.

(el 発明の実施例 以下1図面を参照してGaAs F E Tの電極形成
の実施例によって詳細に説明する。
(el) Embodiments of the Invention A detailed description will be given below of an embodiment of electrode formation of a GaAs FET with reference to the drawings.

第4図ないし第10図は本発明にかかる形成方法の工程
順断面図である。まず、第4図に示すようにGaAs基
板ll上に化学気相成長(CVD )法によって膜厚約
5000人の5I02膜12(第1絶縁膜)を被着し、
更にその上に膜厚1μm程度のポジ系レジスト膜13を
パターンニングする。
FIGS. 4 to 10 are cross-sectional views in the order of steps of the forming method according to the present invention. First, as shown in FIG. 4, a 5I02 film 12 (first insulating film) with a thickness of approximately 5000 was deposited on a GaAs substrate 1 by chemical vapor deposition (CVD).
Furthermore, a positive resist film 13 having a thickness of about 1 μm is patterned thereon.

次いで、第5図に示すようにレジスト膜13をマスクに
して5i02膜12を弗酸系エソチンダ液でエツチング
除去し、且つ過度にエツチングしてレジスト膜13上周
縁部の5i02膜12にサイドエッチを起こさせる。レ
ジスト膜13の幅を5μmとずれば、サイドエッチは周
縁からそれぞれ1μI11程度まで進行させる。
Next, as shown in FIG. 5, using the resist film 13 as a mask, the 5i02 film 12 is removed by etching with a hydrofluoric acid-based ethotinda solution, and the 5i02 film 12 at the upper peripheral edge of the resist film 13 is side-etched by excessive etching. make me wake up If the width of the resist film 13 is shifted to 5 .mu.m, the side etching will proceed from the periphery to about 1 .mu.I11.

次いで、第6図に示すようにその上面に林着法で膜厚2
000人程度のオーミック電極14を被着する。
Next, as shown in Figure 6, a film with a thickness of 2
Approximately 1,000 ohmic electrodes 14 are deposited.

更に、第7図に示すようにその上にプラズマCVD法に
よって膜厚1000人弱の窒化シリコン(Si3N4)
膜15(第2絶縁膜)を被着する。プラズマCVD法に
よって被着すれば、サイドエッチされた内面まで十分に
廻り込んでS 13N 4膜15が被着される。
Furthermore, as shown in Fig. 7, a silicon nitride (Si3N4) film with a thickness of less than 1000 nm is deposited on top of it by plasma CVD.
A film 15 (second insulating film) is deposited. If deposited by plasma CVD, the S 13N 4 film 15 will be deposited sufficiently around the side-etched inner surface.

次いで、第8図に示すようにアセトンに浸漬して超音波
洗浄するとレジスト膜13上のS i3N 4膜15が
破壊されてレジスト膜13が/8解し、同時にレジスト
膜上のS r3N 4膜15および電極14がリフトオ
フによって除去される。次いで、第9図に示すように弗
酸系溶液によって露出した5i021W12を工。
Next, as shown in FIG. 8, the Si3N4 film 15 on the resist film 13 is destroyed by ultrasonic cleaning by immersion in acetone, and the resist film 13 is reduced to 1/8, and at the same time the Sr3N4 film on the resist film is destroyed. 15 and electrode 14 are removed by lift-off. Next, as shown in FIG. 9, the exposed 5i021W12 was treated with a hydrofluoric acid solution.

チング除去する。Remove tinging.

次いで、第1O図に示すようにS i3N 4膜15を
マスクとして、GaAs基板11をアルカリ系溶液又は
弗酸系溶液によりエツチングして凹部領域16を形成し
、最後にC];4 ト02ガスによるドライエツチング
によって513N 4 +1W 1−5をエツチングし
て取り除(。
Next, as shown in FIG. 1O, using the Si3N4 film 15 as a mask, the GaAs substrate 11 is etched with an alkaline solution or a hydrofluoric acid solution to form a concave region 16, and finally, a concave region 16 is etched using the Si3N4 film 15 as a mask. 513N 4 +1W 1-5 was removed by dry etching (.

このようにすれば、オーミック電極14と凹部領域16
の凹部領域とが高精度に形成され、従ってソース、ドレ
インの各電極と凹部領域との位置ずれ、率いては凹部領
域(リセス部)に設けられるゲート電極との位置ずれは
なくなる。
In this way, the ohmic electrode 14 and the recessed region 16
The recessed region is formed with high precision, and therefore, there is no misalignment between the source and drain electrodes and the recessed region, and there is no misalignment between the gate electrode provided in the recessed region (recessed portion).

ここに、上記実施例は第1絶縁膜を5i02膜。Here, in the above embodiment, the first insulating film is a 5i02 film.

第2絶縁膜をS i3N 4膜として説明したが、リフ
l−オフが可能でエツチングレートが異なるものならば
、他の材質の膜を用いても差支えない。
Although the second insulating film has been described as a Si3N4 film, films made of other materials may be used as long as they can be refloated and have different etching rates.

又、上記はリセス構造のGaAs F E T電極形成
の実施例であるが、リセス型でないGaAs F E 
T JPsiFETにも適用できることは勿論である。
Further, although the above is an example of forming a GaAs FET electrode with a recessed structure, a GaAs FET electrode without a recessed structure
Of course, it can also be applied to TJPsiFET.

(fl 発明の効果 以上の説明から明らかなように、本発明によれば電極間
隔が極めて精度良く形成できて、高品質のトランジスタ
(FET)が得られる効果が大きいものである。
(fl) Effects of the Invention As is clear from the above explanation, the present invention has a significant effect in that the electrode spacing can be formed with extremely high accuracy and a high quality transistor (FET) can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5B−FETの実体図、第2図および第3図は
従来の形成工程順断面図、第4図ないし第1O図は本発
明にかかる形成工程順断面図である。 図中、1,11はGaAs基板、2はソース電極、ドレ
イン電極、3はゲート電極、4.16は凹部領域。 5.12は5i02膜、6,7.13はレジスト膜、1
4第1図 第2@ 第3閏 第5図 − 第 6閃 ビシ ff1Bl’71 − @10171
FIG. 1 is an actual diagram of a 5B-FET, FIGS. 2 and 3 are sectional views in the order of conventional forming steps, and FIGS. 4 to 10 are sectional views in order of the forming steps according to the present invention. In the figure, 1 and 11 are GaAs substrates, 2 is a source electrode and a drain electrode, 3 is a gate electrode, and 4.16 is a recessed region. 5.12 is 5i02 film, 6, 7.13 is resist film, 1
4 Figure 1 Figure 2 @ 3rd leap Figure 5 - 6th flash ff1Bl'71 - @10171

Claims (1)

【特許請求の範囲】[Claims] 第1絶縁膜を被覆した基板上に選択的にレジスト膜を形
成し、該レジスト膜をマスクにして前記露出した第1絶
縁膜を除去し、更に該レジスト膜下の周縁部をサイドエ
ッチする工程、次いで電極膜を被着し、該電極膜上に第
1絶縁膜とエンチングレートの異なる第2絶縁膜を被覆
した後、前記レジスト膜をエツチング除去して、同時に
該レジスト膜上面の電極膜と第2絶縁膜とをリフトオン
して除去する工程、次いで露出した第1絶縁膜を除去し
て基板面の露出領域をエツチングする工程が含まれてな
ることを特徴とする半導体装置の製造方法。
A step of selectively forming a resist film on the substrate coated with the first insulating film, removing the exposed first insulating film using the resist film as a mask, and further side-etching the peripheral portion under the resist film. Then, after depositing an electrode film and covering the electrode film with a second insulating film having a different etching rate from the first insulating film, the resist film is removed by etching, and at the same time the electrode film on the upper surface of the resist film is removed. 1. A method of manufacturing a semiconductor device, comprising the steps of lifting-on and removing the first insulating film and the second insulating film, and then removing the exposed first insulating film and etching the exposed region on the substrate surface.
JP14844083A 1983-08-12 1983-08-12 Manufacture of semiconductor device Pending JPS6039875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14844083A JPS6039875A (en) 1983-08-12 1983-08-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14844083A JPS6039875A (en) 1983-08-12 1983-08-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6039875A true JPS6039875A (en) 1985-03-01

Family

ID=15452839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14844083A Pending JPS6039875A (en) 1983-08-12 1983-08-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6039875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029983A (en) * 2012-07-05 2014-02-13 Mitsubishi Electric Corp Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029983A (en) * 2012-07-05 2014-02-13 Mitsubishi Electric Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4843024A (en) Method of producing a Schottky gate field effect transistor
JPS6351550B2 (en)
JPH0472381B2 (en)
JPS6039875A (en) Manufacture of semiconductor device
JPS61190985A (en) Semiconductor device
JPS62211957A (en) Manufacture of field-effect transistor
JPS59184572A (en) Manufacture of semiconductor device
JPH0713982B2 (en) Method of manufacturing Schottky field effect transistor
JPH02189936A (en) Manufacture of semiconductor device
JP2557432B2 (en) Field effect transistor
JPH03145738A (en) Formation of gate electrode
JPH0358433A (en) Manufacture of field effect transistor
KR0162757B1 (en) Airbridge metal formation method using dielectric material
JPS6025277A (en) Manufacture of semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JPS62195146A (en) Manufacture of semiconductor device
JP2904094B2 (en) Method for manufacturing semiconductor device
JPH0629322A (en) Formation of gate electrode of field-effect transistor
JPS627715B2 (en)
JPS6381864A (en) Manufacture of field-effect transistor
JPS616870A (en) Manufacture of field-effect transistor
JPH0638431B2 (en) Method for manufacturing semiconductor device
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor
JPS60234375A (en) Manufacture of schottky gate type field effect transistor
JPS58135667A (en) Semiconductor device