JPS63188972A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPS63188972A
JPS63188972A JP2092987A JP2092987A JPS63188972A JP S63188972 A JPS63188972 A JP S63188972A JP 2092987 A JP2092987 A JP 2092987A JP 2092987 A JP2092987 A JP 2092987A JP S63188972 A JPS63188972 A JP S63188972A
Authority
JP
Japan
Prior art keywords
effect transistor
gate
xas
inp
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2092987A
Other languages
Japanese (ja)
Other versions
JPH0622248B2 (en
Inventor
Takemoto Kasahara
健資 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2092987A priority Critical patent/JPH0622248B2/en
Publication of JPS63188972A publication Critical patent/JPS63188972A/en
Publication of JPH0622248B2 publication Critical patent/JPH0622248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a field-effect transistor where interfacial characteristics are favorable and a gate leakage current is small by providing an AlxIn1-xAs thin film which performs lattice matching toward a compound semiconductor containing In on the surface of a channel layer, and by forming a multilayered film where a structure equipped with an AlyGa1-yAs thin film is repeatedly used on the above AlxIn1-xAs thin film. CONSTITUTION:An N-type InP operating layer 12 is formed on a semi-insulation InP substrate 11 and non-doped Al0.48In0.52As which performs lattice matching toward InP is applied and then Al0.4Ga0.6As is applied. A multilayered film 13 is formed by repeating ten times of the above operations and a non-doped layer of an ohmic contact part is removed by etching. Finally a field-effect transistor is formed by forming a gate and source/drain electrodes. As a result, a leakage current in the reversed direction is drastically reduced and a high gate breakdown strength is obtained and even a turn ON voltage in the case of reversed direction bias becomes large. Thus an ultra high frequency and high speed field-effect transistor having a little gate leakage current as well as favorable interfacial characteristics is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高周波・、超高速な電界効果トランジスタ
、特にInを含む化合物半導体を動作層とする電界効果
トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultra-high frequency and ultra-high speed field effect transistor, particularly to a field effect transistor whose active layer is a compound semiconductor containing In.

〈従来技術) InP、 InGaAs等Inを含む化合物半導体は、
電子の飽和速度、ピーク速度が大きいなど、すぐれた性
質を有し、超高速・高周波素子材料として注目されこれ
を用いた電界効果トランジスタの検討がいくつか行なわ
れている。
(Prior art) Compound semiconductors containing In, such as InP and InGaAs,
It has excellent properties such as high electron saturation velocity and high peak velocity, and has attracted attention as a material for ultrahigh-speed and high-frequency devices, and several studies have been conducted on field-effect transistors using it.

例えばInPを用いた従来技術としてはショットキーゲ
ートを用いた電界効果トランジスタ(MESFET)が
あり、例えばバレラ(Borrera)及びアーチャー
(Archer)によりアイ・トリプルイー・I・ラン
ザクジョン・オン・エレクトロン・デバイスイズ(IE
EE Trans、 on Electron Dev
ices volED−22No、11 Nov、 1
975)に報告されている。第5図はこの基本構造を示
す断面図である。同図では、半絶縁性1nP基板11上
に、 InP動作層12を設け、さらにその上にドレイ
ン電極14、ソース電極15、ゲート電極16を設けた
構造のMESFETである。
For example, as a conventional technology using InP, there is a field effect transistor (MESFET) using a Schottky gate. (IE
EE Trans, on Electron Dev
ices volED-22No, 11 Nov, 1
975). FIG. 5 is a sectional view showing this basic structure. In the figure, the MESFET has a structure in which an InP active layer 12 is provided on a semi-insulating 1nP substrate 11, and a drain electrode 14, a source electrode 15, and a gate electrode 16 are further provided thereon.

また、5i02膜をゲート絶縁膜に用いた電界効果トラ
ンジスタ(MISFET)では、例えばライル(L目e
)等によってエレクトロンクスレター(Ele(tro
n。
In addition, in a field effect transistor (MISFET) using a 5i02 film as a gate insulating film, for example, a Lyle (L-eye
) etc., the electronic letter (Ele(tro)
n.

LetL、 vol、14 P、657−6595ep
t、 197B)に報告されている。この構造断面図を
第6図に示した。面図において61はSiO3膜、62
はN”lnPコンタクト層であり、第1図と同一部分は
同一番号をつけである。
LetL, vol, 14 P, 657-6595ep
T, 197B). A sectional view of this structure is shown in FIG. In the plan view, 61 is a SiO3 film, 62
is an N''lnP contact layer, and the same parts as in FIG. 1 are given the same numbers.

(発明が解決しようとする問題点) しかしながら従来の前記のようなゲート構造を用いたI
nP電界効果トランジスタではまずMESI造において
は、 InPに対するショットキーのバリアハイドが0
.3〜0.4eV程度しかないため、逆方向リーク電流
が大きい、ゲート耐圧が小さいなどの問題がある。また
、Mis構造においては、 InP表面にnチャネルは
容易に形成されるものの界面変成層の存在による電流等
のドリフトが生じること、また多数の界面順位の存在に
より表面ボランシャルの曲がりが小さく従ってNチャネ
ルのディプレッションモードの素子には適応しにくい等
実用上天きな問題があった。これはInを含む化合物半
導体についても同じように言える。
(Problems to be Solved by the Invention) However, the conventional I
In nP field effect transistors, first of all, in the MESI structure, the Schottky barrier hide for InP is 0.
.. Since the voltage is only about 3 to 0.4 eV, there are problems such as a large reverse leakage current and a low gate breakdown voltage. In addition, in the Mis structure, although the n-channel is easily formed on the InP surface, drift of current occurs due to the presence of the interfacial metamorphic layer, and the bending of the surface voluntar is small due to the presence of a large number of interface orders, so the n-channel There were serious problems in practical use, such as difficulty in adapting to depletion mode devices. The same can be said of compound semiconductors containing In.

本発明は、上述の問題点を解消し良好な特性−を有する
超高周波、超高速電界効果トランジスタを提供すること
である。
The object of the present invention is to solve the above-mentioned problems and provide an ultra-high frequency, ultra-high speed field effect transistor having good characteristics.

(問題点を解決するための手段) 本発明によればInを含む化合物半導体層を電子チャネ
ルとする電界効果トランジスタにおいて、該チャネル層
の表面上にInを含む化合物半導体に格子整合するA 
Q 、In1−xAs薄膜を設け、さらにその上にA 
Q yGal−yAs薄膜を設けた構造をn(n層1)
回繰り返した(A Q yGal−yAs/A Q X
In1−xAs)nの多層膜を形成し該(A Q yG
al −yAs/A Q 、In1−xAs)nの多層
膜上に前記電子チャネル層を制御するゲート電極と前記
チャネル層にオム性接触するソース電極及びドレイン電
極を具備したことを特徴とする電界効果トランジスタが
得られる。
(Means for Solving the Problems) According to the present invention, in a field effect transistor having an In-containing compound semiconductor layer as an electron channel, A lattice-matched to the In-containing compound semiconductor on the surface of the channel layer.
Q, In1-xAs thin film is provided, and A
Q The structure with yGal-yAs thin film is n (n layer 1)
Repeated times (A Q yGal-yAs/A Q
A multilayer film of In1-xAs)n is formed and the (A Q yG
A field effect characterized in that a gate electrode for controlling the electron channel layer and a source electrode and a drain electrode in ohmic contact with the channel layer are provided on a multilayer film of al-yAs/AQ, In1-xAs)n. A transistor is obtained.

(作用) 以下、本発明の詳細な説明する。(effect) The present invention will be explained in detail below.

第1図は動作層にInPを用いた本発明による電界効果
トランジスタの構造断面図である。第5図、第6図と同
一構成部分には、同じ番号を付しである。第2図は本発
明による電界効果トランジスタの熱平衡状態でのゲート
電極下のエネルギー帯図である。ここで、21はゲート
電極領域、22は(八Q yGal−yAs/A Q 
xlnl−xAs)nの多層構造領域、23はInP動
作層領域、24は半絶縁性1nP基板領域である。第2
図に示すように〈^It 、Ga1−、八s/A Q 
xlnl−Js)n層とInPとの界面には、A Q 
、InAとInPとの間に[1,5eV程度の伝導帯不
連続が存在し、 InP中の電子は、この障壁によって
(A Q yGal−yAs/A Q xlnl−gA
s)n層への拡散は少ない。一方(A Q yGal−
yAs/A Q XIn1−xAs)n層のゲートメタ
ルに対する障壁の高さは、A Q 、Ga1−yAsが
高いバリアハイドをもつので0.8〜1.2eVあり、
従ってゲートリーク電流についてもこの大きな障壁によ
って十分小さくすることができる。す−なわち上述のこ
とから明らかな様に本発明によりInPに対する実効的
なショットキーゲートの障壁の高さを高くすることがで
き、かつ、伝導帯不連続の存在により、ゲートをある程
度順方向にバイアスしてもゲートを流れる電流を十分小
さくすることができる。また(A Q yGa、−yA
s/A Q xlnl−xAs)nと lnP界面は、
エピタキシャル成長された、格子整合したA Q XI
n1−XへsとInPのへテロ接合とすることができ、
界面準位密度の小さい良好なものが得られる。さらに格
子不整による結晶の劣下を、超格子構造により緩和する
ことができるので、良質なゲート絶縁膜の形成が可能で
ある。これは、Inを含む化合物半導体についても適用
できる。以上より、界面特性の良好でゲートリーク電流
の小さい電界効果トランジスタが得られる。
FIG. 1 is a structural sectional view of a field effect transistor according to the present invention using InP for the active layer. Components that are the same as those in FIGS. 5 and 6 are given the same numbers. FIG. 2 is an energy band diagram under the gate electrode of the field effect transistor according to the present invention in a thermal equilibrium state. Here, 21 is the gate electrode region, 22 is (8Q yGal-yAs/A Q
23 is an InP active layer region, and 24 is a semi-insulating 1nP substrate region. Second
As shown in the figure 〈^It , Ga1-, 8s/A Q
xlnl-Js) At the interface between the n layer and InP, AQ
, a conduction band discontinuity of about [1.5 eV exists between InA and InP, and the electrons in InP are separated by (A Q yGal-yAs/A Q xlnl-gA
s) Diffusion into the n layer is small. On the other hand (A Q yGal-
The height of the barrier of the yAs/A Q XIn1-xAs)n layer to the gate metal is 0.8 to 1.2 eV because A Q , Ga1-yAs has a high barrier hide.
Therefore, gate leakage current can also be sufficiently reduced by this large barrier. In other words, as is clear from the above, the present invention can increase the height of the effective Schottky gate barrier to InP, and due to the presence of the conduction band discontinuity, the gate can be moved in the forward direction to some extent. Even if biased to , the current flowing through the gate can be made sufficiently small. Also (A Q yGa, -yA
s/A Q xlnl-xAs)n and lnP interface are
Epitaxially grown lattice matched A Q
n1-X can be a heterojunction of s and InP,
A good product with low interface state density can be obtained. Furthermore, since crystal deterioration due to lattice misalignment can be alleviated by the superlattice structure, it is possible to form a high-quality gate insulating film. This can also be applied to compound semiconductors containing In. As described above, a field effect transistor with good interface characteristics and low gate leakage current can be obtained.

(実施例) 本実施例のFETの製造方法の1例を第1図を用いて説
明する。
(Example) An example of a method for manufacturing the FET of this example will be explained using FIG. 1.

まず、半絶縁性1nP基板11上にVPE法により不純
物濃度I X 10”cm−3のN形のInP動作層1
2を2000^成長する。次にMBE法により、 In
Pに格子整合するノンドープA Q 0.4gIn0.
52Asを40人っけ、さらにA Q o、 4Ga0
.6Asを40人つけ、これを10回繰りしくA Q 
g、4Gao、6^s/A Q 0.4glog、 5
2AS)10多層構造膜13を形成し、オーミックコン
タクト部のノンドープ(A Q o、 4ca0.6A
S/A Q o、 4aIn0.52AS)In層をエ
ツチング除去する。最後に通常の方法でゲート電極及び
ソース・トレイン電極を形成して電界効果トランジスタ
を実現する。本実施例ではA Q xlrll−XAS
層と A Q yGap−yAs層をともに40λとし
たが、2つの膜厚を変化させたり、繰り返しの回数を変
えることも可能である。また、組成比を変化させてもよ
い。
First, an N-type InP active layer 1 with an impurity concentration of I x 10"cm-3 is formed on a semi-insulating 1nP substrate 11 by the VPE method.
Grow 2 by 2000^. Next, by MBE method, In
Non-doped A Q 0.4gIn0. lattice matched to P.
52As, 40 people, and A Q o, 4Ga0
.. Add 6As to 40 people and repeat this 10 times.Q
g, 4Gao, 6^s/A Q 0.4glog, 5
2AS) 10 multilayer structure film 13 is formed, and the ohmic contact part is non-doped (A Q o, 4ca0.6A
S/A Qo, 4aIn0.52AS) Etch and remove the In layer. Finally, gate electrodes and source/train electrodes are formed using a conventional method to realize a field effect transistor. In this example, A Q xlrll-XAS
Although both the A Q yGap-yAs layer and the AQ yGap-yAs layer were set to have a thickness of 40λ, it is also possible to change the thickness of the two films or change the number of repetitions. Further, the composition ratio may be changed.

第3図は、本発明による電界効果トランジスタのゲート
・ソース間の電流−電圧特性を示したもので、図には従
来技術によるショットキゲートの電界効果トランジスタ
における電流−電圧特性も示しである。図に示すように
従来技術に比べて本発明による電界効果トランジスタの
ソース・ゲート間の電流−電圧特性は実効的な立上り電
圧が大きく、しかも逆方向のリーク電流も小さく耐圧も
きわめて大きく良好な特性が得られた。
FIG. 3 shows the current-voltage characteristics between the gate and source of the field effect transistor according to the present invention, and also shows the current-voltage characteristics of the Schottky gate field effect transistor according to the prior art. As shown in the figure, compared to the conventional technology, the current-voltage characteristics between the source and gate of the field effect transistor according to the present invention have a large effective rise voltage, a small leakage current in the reverse direction, and a very high breakdown voltage, which is good. was gotten.

また、第4図は、本発明による電界効果トランジスタの
ゲーI・ソース間のC−■特性を示したもので、図にお
いて、従来の5i02絶縁膜を用いたMis構造の電界
効果トランジスタのC−■特性も示しである。本発明に
よる電界効果トランジスタは、従来のものに比べ静特性
におけるヒステリシスが小さく電流のドリフトもない良
好な特性を示した。
Furthermore, FIG. 4 shows the C-■ characteristics between the gate I and the source of the field effect transistor according to the present invention. ■Characteristics are also indicated. The field effect transistor according to the present invention exhibited good characteristics with less hysteresis in static characteristics and no current drift than conventional ones.

(発明の効果) 本発明(第1図に示すもの〉と従来のMES横遣(第5
図に示すもの)のI−V特性を第3図に示す。図からも
明らかなように逆方向リーク電流は大きく減少し、高い
ゲート耐圧を得ることが可能となり、順方向バイアス時
のターンオン電圧も大きくなる。また本発明(第1図に
示すもの)と従来のMis構造(第6図に示すもの)の
C−■特性を第4図に示す。ヒステリシスは小さくなり
界面特性の良好なものが得られる。
(Effects of the invention) The present invention (shown in Figure 1) and the conventional MES sideways (as shown in Figure 5)
FIG. 3 shows the IV characteristics of the device shown in the figure. As is clear from the figure, the reverse leakage current is greatly reduced, it becomes possible to obtain a high gate breakdown voltage, and the turn-on voltage during forward bias is also increased. Further, FIG. 4 shows the C-■ characteristics of the present invention (shown in FIG. 1) and the conventional Mis structure (shown in FIG. 6). The hysteresis is reduced and good interfacial properties can be obtained.

以上より本発明によればゲートリークの小さい良好な界
面特性を有する、良好な超高周波特性を有するInP 
FETが実現でき今後の通信情報技術に寄与するところ
が極めて大きい。
As described above, according to the present invention, InP has good interfacial characteristics with small gate leakage and good ultra-high frequency characteristics.
The realization of FET will greatly contribute to future communications and information technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電界効果トランジスタの構造断面
図、第2図はゲート電極下のエネルギー帯図、第3図は
本発明及び従来ショットキー接合を用いた電界効果トラ
ンジスタのI−V特性、第4図は本発明及び従来5i0
2絶縁膜を用いた電界効果トランジスタのC−■特性を
示す図である。第5図、第6図は従来技術によるFET
の構造断面図である。 図において、 11・・・半絶縁性1nP基板 12・・・InP動作層 13−−− (A Q yGal−yAs/A Q x
lnl−xAs)n層14・・・ドレイン電極 15・・・ソース電極 16・・・ゲート電極 21・・・ゲート金属領域 22− (A Q yGal−yへs/A Q 、In
1−XA5)n層領域23・・・InP動作層領域 24・・・半絶縁性1nP基板領域 61・・・SiO□膜 62・・・N”−1nPコンタクト層 第1図 第 2 図     工nP基板 一21→1−c−22キー−23−一本−24−第3図 第4図 電圧[V]
FIG. 1 is a structural cross-sectional view of a field effect transistor according to the present invention, FIG. 2 is an energy band diagram under the gate electrode, and FIG. 3 is an IV characteristic of a field effect transistor using the present invention and a conventional Schottky junction. Figure 4 shows the present invention and conventional 5i0
2 is a diagram showing C-■ characteristics of a field effect transistor using two insulating films; FIG. Figures 5 and 6 show FETs according to conventional technology.
FIG. In the figure, 11... Semi-insulating 1nP substrate 12... InP active layer 13 --- (A Q yGal-yAs/A Q x
lnl-xAs) n layer 14...drain electrode 15...source electrode 16...gate electrode 21...gate metal region 22- (A
1-XA5) N layer region 23...InP active layer region 24...Semi-insulating 1nP substrate region 61...SiO□ film 62...N''-1nP contact layer Fig. 1 Fig. 2 Board 21→1-c-22 Key-23-One-24-Figure 3 Figure 4 Voltage [V]

Claims (1)

【特許請求の範囲】[Claims] Inを含む化合物半導体層を電子チャネルとする電界効
果トランジスタにおいて該チャネル層の表面上にInを
含む化合物半導体に格子整合するAl_xIn_1_−
_xAs薄膜を設け、さらにその上にAl_yGa_1
_−_yAs薄膜を設けた構造をn(n≧1)回繰り返
した(Al_yGa_1_−_yAs/Al_xIn_
1_−_xAs)_nの多層膜を形成し該(Al_yG
a_1_−_yAs/Al_xIn_1_−_xAs)
_nの多層膜上に前記電子チャネル層を制御するゲート
電極と、前記チャネル層にオーム性接触するソース電極
及びドレイン電極を具備したことを特徴とする電界効果
トランジスタ。
In a field effect transistor using a compound semiconductor layer containing In as an electron channel, Al_xIn_1_- is lattice-matched to the compound semiconductor containing In on the surface of the channel layer.
_xAs thin film is provided, and then Al_yGa_1
The structure with the ____yAs thin film was repeated n (n≧1) times (Al_yGa_1_-_yAs/Al_xIn_
A multilayer film of 1_-_xAs)_n is formed and the (Al_yG
a_1_-_yAs/Al_xIn_1_-_xAs)
A field effect transistor comprising: a gate electrode for controlling the electron channel layer; and a source electrode and a drain electrode that are in ohmic contact with the channel layer.
JP2092987A 1987-01-30 1987-01-30 Field effect transistor Expired - Fee Related JPH0622248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2092987A JPH0622248B2 (en) 1987-01-30 1987-01-30 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2092987A JPH0622248B2 (en) 1987-01-30 1987-01-30 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS63188972A true JPS63188972A (en) 1988-08-04
JPH0622248B2 JPH0622248B2 (en) 1994-03-23

Family

ID=12040903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2092987A Expired - Fee Related JPH0622248B2 (en) 1987-01-30 1987-01-30 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH0622248B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349242A (en) * 1989-07-17 1991-03-04 Agency Of Ind Science & Technol Field effect transistor and its manufacture
US5705827A (en) * 1991-12-25 1998-01-06 Nec Corporation Tunnel transistor and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349242A (en) * 1989-07-17 1991-03-04 Agency Of Ind Science & Technol Field effect transistor and its manufacture
US5705827A (en) * 1991-12-25 1998-01-06 Nec Corporation Tunnel transistor and method of manufacturing same

Also Published As

Publication number Publication date
JPH0622248B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US4583105A (en) Double heterojunction FET with ohmic semiconductor gate and controllable low threshold voltage
JPH05110086A (en) Tunnel transistor
JPS6255315B2 (en)
KR920003799B1 (en) Semiconductor device
US5448086A (en) Field effect transistor
US4652896A (en) Modulation doped GaAs/AlGaAs field effect transistor
JP2689057B2 (en) Static induction semiconductor device
JPS63188972A (en) Field-effect transistor
JPS61147577A (en) Complementary semiconductor device
JPH11121737A (en) Field-effect transistor and manufacture thereof
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JPH0212927A (en) Manufacture of mesfet
JPS609174A (en) Semiconductor device
JP2792295B2 (en) Tunnel transistor
JPS63144580A (en) Field-effect transistor
JPS6115375A (en) Hetero junction fet
JPH01179371A (en) Field effect transistor
WO2020062706A1 (en) Silicon-based germanium-tin transistor with high electron mobility
JPS6273675A (en) Semiconductor device
JPS6255316B2 (en)
JP3493205B2 (en) Field effect transistor and method of manufacturing the same
JPS63281474A (en) Semiconductor device
JPH04280640A (en) Field-effect transistor and manufacture thereof
JPH02150038A (en) Modulation-doping field effect transistor
JPS62229972A (en) Compound semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees