JPS61147577A - Complementary semiconductor device - Google Patents

Complementary semiconductor device

Info

Publication number
JPS61147577A
JPS61147577A JP59268384A JP26838484A JPS61147577A JP S61147577 A JPS61147577 A JP S61147577A JP 59268384 A JP59268384 A JP 59268384A JP 26838484 A JP26838484 A JP 26838484A JP S61147577 A JPS61147577 A JP S61147577A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
heterojunction
channel
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59268384A
Other languages
Japanese (ja)
Inventor
Yoshiko Hiraoka
佳子 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59268384A priority Critical patent/JPS61147577A/en
Publication of JPS61147577A publication Critical patent/JPS61147577A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Abstract

PURPOSE:To enable to easily manufacture a complementary semiconductor device and to improve the characteristics thereof by a method wherein the complementary semiconductor device consisting of an n-channel heterojunction FET and a p-channel heterojunction FET is made into the prescribed structure. CONSTITUTION:An N-type GaAlAs layer 2 with the wide forbidden band gap, an undoped GaAs layer 3 with the narrow forbidden band gap and a large electron affinity and a P-type GaAlAs layer 4 with the wide forbidden band gap are laminated in order on a semiisulative GaAs substrate 1. The gate elec trode 6 and the input and output electrodes 7 and 8 of the p-channel heterojunc tion FET are provided on the layer 4 to control the concentration of positive holes 5 and the gate electrode 10 and the input and output electrodes 11 and 12 of the n-channel heterojunction FET are provided on the layer 4 and the layer 3, from which a part thereof is removed, to control the concentration of electrons. 9. A connection is performed on each electrode so that a comple mentary inverter circuit is constituted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、nチャネルヘテロ接合電界効果トランジス
タと、pチャネルヘテロ接合電界効果トランジスタとを
もって構成される相補型半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a complementary semiconductor device comprising an n-channel heterojunction field effect transistor and a p-channel heterojunction field effect transistor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ヘテロ接合電界効果トランジスタ(ヘテロ接合FET 
 )とは異種半導体間のヘテロ接合界面に生ずる2次元
的に分布する高移動度の電子ガスを利用した電界効果ト
ランジスタである。代表的な構造を第2図に示す。r、
’HAB  の電子親和力に比べてGa−4−/−AI
  の電子親和力の方が小さいので、23のn 型Ga
hlA虐  層中の電子は22のアンドープGaAs 
 層に注入され、GaAs  とGBン仏II  のヘ
テロ接合界面のGaAB  側に′1子が蓄積されチャ
ネルを形成する。電子の濃度は24のゲート電極を制御
されるので、このゲート電極をはさんで両側に設けられ
ている入出力電極すなわち、ソース、ドレーン電極25
゜26間の電流がゲート電極に印加する電圧でコントロ
ールすることができる。
Heterojunction field effect transistor (heterojunction FET)
) is a field effect transistor that utilizes a two-dimensionally distributed high-mobility electron gas generated at the heterojunction interface between different types of semiconductors. A typical structure is shown in Figure 2. r,
'Ga-4-/-AI compared to the electron affinity of HAB.
Since the electron affinity of 23 is smaller, n-type Ga
The electrons in the hlA layer are 22 undoped GaAs
The '1' electrons are implanted into the GaAs layer and accumulated on the GaAB side of the heterojunction interface between GaAs and GB II to form a channel. Since the concentration of electrons is controlled by the 24 gate electrodes, the input/output electrodes, that is, the source and drain electrodes 25 provided on both sides of the gate electrode.
The current between 26° and 26° can be controlled by the voltage applied to the gate electrode.

一方、これとは逆の特性を持つ、pチャネルヘテロ接合
FET の1例を第3図に示す。nチャネルヘテロ接合
FET  との違いはGaん仏8 層23′がp型にド
ープされていて、ヘテロ接合界面にホールが蓄積される
ことである。
On the other hand, FIG. 3 shows an example of a p-channel heterojunction FET that has the opposite characteristics. The difference from the n-channel heterojunction FET is that the Ga layer 23' is p-doped and holes are accumulated at the heterojunction interface.

ところでこれらのヘテロ接合FET はGaAs層22
より上にGaAJJl 層23を形成しても下に形成し
ても、それぞれ膜の厚さやキャリアのドープ量などの条
件を適当に調整してやればトランジスタ動作を行う。さ
らにノーマリオン型もノーマリオフぶちこれらの条件を
適当に選ぶことにより製造可能である。
By the way, these heterojunction FETs have a GaAs layer 22
Whether the GaAJJl layer 23 is formed above or below, transistor operation can be achieved by appropriately adjusting conditions such as film thickness and carrier doping amount. Further, a normally-on type and a normally-off type can be manufactured by appropriately selecting these conditions.

ヘテロ接合電界効果トランジスタの特徴はキャリアの供
給層がキャリアの走行するチャネル領域から分離されて
いるために、キャリアが高移動度を有することである。
A feature of a heterojunction field effect transistor is that carriers have high mobility because the carrier supply layer is separated from the channel region in which carriers travel.

従って、これを利用して相補型回路を構成すれば非常に
良好な性能を得る可能性がある。
Therefore, if a complementary circuit is constructed using this, it is possible to obtain very good performance.

ところで、一般にヘテロ接合FET  を製作する際は
分子線エピタキシー(MBE)法によりあらかじめ積層
膜を成長しておき、次にエツチング、電極形成等の工程
を行う。従って、同一ウェーハ上の一部分をp型にドー
プし、他の一部分をnfiにドープすることは非常に困
難である。また、nチャネルのヘテロ接合PET は電
子供給層であるGa 1− XA−txA−のXが0.
3付近で良好なFET  特性を示すのに対し、pチャ
ネルのヘテロ接合FET  はXが、より大きい領域で
良好な特性を示す。従ってnチャネルヘテロ接合FET
  とpチャネルヘテロ接合FET  とではQBAJ
AH層のM濃度を変えることが望ましい。
By the way, in general, when manufacturing a heterojunction FET, a laminated film is grown in advance by the molecular beam epitaxy (MBE) method, and then steps such as etching and electrode formation are performed. Therefore, it is very difficult to dope one part of the same wafer p-type and the other part nfi. In addition, in the n-channel heterojunction PET, the electron supply layer Ga 1-XA-txA- has X of 0.
While the FET exhibits good characteristics near 3, the p-channel heterojunction FET exhibits good characteristics in the region where X is larger. Therefore, the n-channel heterojunction FET
and p-channel heterojunction FET and QBAJ
It is desirable to vary the M concentration of the AH layer.

〔発明の目的〕[Purpose of the invention]

この発明は上述した困難をとりのぞき、製造が容易で良
好な特性を持つnチャネルヘテロ接合FET  とpチ
ャネルヘテロ接合FgT から構成される相補型半導体
装置を提供することを目的とする。
An object of the present invention is to eliminate the above-mentioned difficulties and provide a complementary semiconductor device composed of an n-channel heterojunction FET and a p-channel heterojunction FgT, which is easy to manufacture and has good characteristics.

〔発明の概要〕[Summary of the invention]

この発明の概要を図面を用いて説明する。第1図はこの
発明の基本的構造を模式的に示したものである。図中1
はたとえば半絶縁性GaAg基板のような高抵抗半導体
基板、2はたとえばGaA、/7〜8 のようなバンド
ギャップの広い第1の半導体でn型にドープしてあり、
電子の供給層となる層である。3は第1の半導体よりも
バンドギャップが狭く電子親和力が大きい、たとえばG
aAs  のような第2の半導体で、アンドープあるい
はわずかにPutかn型にドープされている。4は第2
半導体よりもバンドギャップの広い、たとえばGaAム
S のような第3の半導体でp型にドープされており、
正孔の供給層となる層である。5はp型GaAtAs 
 とアンドープGaAsとのヘテロ接合界面のGaAa
  側に蓄積される正孔である。6はp型ゲート電極で
、ゲート下の正孔濃度をコントロールする。7と8はp
型ゲート逍極の両側に配置されたp型入出力電極で、5
〜8でもってpチャネルのヘテロ接合FETを形成して
いる。9はn型GaAIA s  とアンドープGaA
s  とのヘテロ接合界面のGaAm  側に蓄積され
る電子である。10はn型ゲート′電極で、p型GaA
J@  とアンドープGaAg  の一部分をとり除い
たのちアンドープQBノs、s  の上に設けられてい
て、i型ゲート直下の電子濃度を制御する。
The outline of this invention will be explained using the drawings. FIG. 1 schematically shows the basic structure of this invention. 1 in the diagram
2 is a high-resistance semiconductor substrate such as a semi-insulating GaAg substrate, 2 is a first semiconductor with a wide bandgap such as GaA, /7 to 8, and is doped n-type;
This layer serves as an electron supply layer. 3 has a narrower band gap and higher electron affinity than the first semiconductor, for example, G
A second semiconductor, such as aAs, which is undoped or slightly put or n-type doped. 4 is the second
It is doped p-type with a third semiconductor, such as GaAm S, which has a wider bandgap than the semiconductor,
This layer serves as a hole supply layer. 5 is p-type GaAtAs
GaAa at the heterojunction interface between and undoped GaAs
The holes are accumulated on the side. 6 is a p-type gate electrode that controls the hole concentration under the gate. 7 and 8 are p
The p-type input/output electrodes are placed on both sides of the type gate electrode.
~8 forms a p-channel heterojunction FET. 9 is n-type GaAIA s and undoped GaA
These are electrons accumulated on the GaAm side of the heterojunction interface with s. 10 is an n-type gate' electrode, which is made of p-type GaA
After removing J@ and a part of the undoped GaAg, it is provided above the undoped QB s and s to control the electron concentration directly under the i-type gate.

11と12はn型制御電極の両側に配置されたn型入出
力電極で、9〜ノ2でnチャネルヘテロ接合FET  
を形成している。
11 and 12 are n-type input/output electrodes arranged on both sides of the n-type control electrode, and 9 to 2 are n-channel heterojunction FETs.
is formed.

これら2つのヘテロ接合FET はノーマリオフ特性を
有するようにn型GaALS、a  層、p型QBAt
Ag層およびアンド−ZGaAs  層とアンドープG
aAs 層を除去する部分の厚さ、また、不純物のドー
プ量を調整しである。
These two heterojunction FETs are made of n-type GaALS, a layer, p-type QBAt, and have normally-off characteristics.
Ag layer and and-ZGaAs layer and undoped G
The thickness of the portion where the aAs layer is removed and the amount of impurity doping are adjusted.

これらヘテロ接合FET  をたとえば第1図のように
結線すれば相補型インバーター回路として動作する。
If these heterojunction FETs are connected, for example, as shown in FIG. 1, they will operate as a complementary inverter circuit.

第1図杜nチャネルヘテロ接合FET が下側にpチャ
ネルヘテロ接合FET が上側に配置されているが、両
者の上下を反対にした構造も可能である。その場合は半
絶縁性基板上に、まず、p型GaA−/As  を次に
アンドープGaAs、更にn型GaAt−kg  の順
に積層した積層膜を用いればよい。
Although the N-channel heterojunction FET is placed on the bottom side and the P-channel heterojunction FET is placed on the top side in Figure 1, it is also possible to have a structure in which the two are upside down. In that case, a laminated film in which p-type GaA-/As is laminated, then undoped GaAs, and then n-type GaAt-kg may be used on a semi-insulating substrate.

また、ヘテロ接合FET の特性を改善するために行わ
れている工夫、たとえば、アンドープGaAAAa  
をアンドープGaAs  とドープしたGaAjAa 
 の間に入れることなども同様に可能である。
In addition, we will also discuss the efforts being made to improve the characteristics of heterojunction FETs, such as undoped GaAAAa.
undoped GaAs and doped GaAjAa
It is also possible to insert it in between.

〔発明の効果〕〔Effect of the invention〕

次に本発明による効果をやはり第1図を参照して説明す
る。ヘテロ接合FET は良質なヘテロ接合界面と、高
精度にコントロールされた各層の膜厚とドープ量をもっ
て、初めて動作が可能になるので、一般に分子線コピタ
キシ法等により成長した積層膜にエツチングや電極づけ
を行って素子を製作する0従って、シリコンM OS 
F E Tのように、拡散等により、同一ウニ−バー上
の一部分をp型に他の一部分をn型にドープすることは
非常に困難である。本発明による構造はこの困難をとり
除き、積層膜上にnチャネへヘテロ接合FFJT  と
pチャネルヘテロ接合FET  を容易に形成させうる
ものである。
Next, the effects of the present invention will be explained with reference to FIG. Heterojunction FETs can only operate with a high-quality heterojunction interface and precisely controlled film thickness and doping amount for each layer, so it is generally necessary to etch or attach electrodes to a laminated film grown by molecular beam copytaxy. Therefore, silicon MOS
It is very difficult to dope a part of the same Unibar to be p-type and the other part to be n-type by diffusion or the like as in FET. The structure according to the present invention eliminates this difficulty and makes it possible to easily form an n-channel heterojunction FFJT and a p-channel heterojunction FET on a laminated film.

ま、た、図中2のIl型GaAjAs  と4のp型G
a−’JAt+  のAt の濃度はそれぞれ任意に選
ぶことができるので、pチャネルヘテロ接合FETとn
チャネルヘテロ接合FET がそれぞれ最も良好な特性
を示す4(t の濃度を選ぶことができる〇 一般にp型ドープ層とn型ドープ層とではン1ットキー
接合の障壁の高さが異っているので順方向逆方向の耐圧
も異っている。第1図〆のような構造にすればp型ゲー
ト電極の直下にたとえばn“ ドープ層を適当にはさむ
ことによりpチャネルヘテロ接合FgT  とnチャネ
ルヘテロ接合FET の耐圧をそろえることもできる。
Well, Il-type GaAjAs (2) and p-type G (4) in the figure
Since the concentration of At in a-'JAt+ can be selected arbitrarily, p-channel heterojunction FET and n
The channel heterojunction FET exhibits the best characteristics.4(t) concentration can be selected.Generally, the barrier height of the t-key junction is different between the p-type doped layer and the n-type doped layer. The breakdown voltages in the forward and reverse directions are also different. If the structure is as shown in Figure 1, a p-channel hetero junction FgT and an n-channel hetero It is also possible to make the breakdown voltages of junction FETs the same.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

まず、分子線エピタキシ法で第4図(、)に示すような
積層膜を形成した。図中41はCr  ドープ半絶縁性
基板、42は81  ドープGa6・7!¥zo−s”
’  でnチャネルヘテuJ 合F E Tのキャリア
供給層となる層、43はアンドーフG36ayAム、3
A−スペーサ一層、44はアンドープGaAs、 45
はアンドープGao−5A14−sAllで、エツチン
グのストッパーとなる層、46社アンドープGaAs、
 47はアンドープGa6.、A4.、As :xペー
サ一層、48はBe  ドープp型Gao*s”−1!
−o−sAll  で、pチャネルヘテロ接合FET 
のキャリア供給層となる層である。
First, a laminated film as shown in FIG. 4 (,) was formed by molecular beam epitaxy. In the figure, 41 is a Cr-doped semi-insulating substrate, and 42 is 81-doped Ga6.7! ¥zo-s”
43 is the carrier supply layer of the n-channel het uJ combination FET, 3
A-Spacer single layer, 44 undoped GaAs, 45
is undoped Gao-5A14-sAll, a layer that serves as an etching stopper, undoped GaAs from 46 companies,
47 is undoped Ga6. , A4. , As:x-pacer layer, 48 is Be-doped p-type Gao*s''-1!
-o-sAll, p-channel heterojunction FET
This layer serves as a carrier supply layer.

次に、nナヤネルヘテロ接合FET  を形成する部分
のみを次のような方法でエツチングした0石酸、水、過
酸化水素水を混合した液でp型Ga6.5Ato、s 
A11  とアンドープGa6.lA4−5”とアンド
ープGaps  の一部分を除去したのち、CC4F!
ガスを用いてドライエツチングを行った。このエツチン
グ方法はGaAs  のみを選択的にエツチングするの
で、図中5のGa、、、A4.、、As層でエツチング
が止っている。更に水、リン酸、過酸化水素水を混合し
たエツチング液で45のGa(1,5A41.6As+
を除去した。次にnチャネルヘテロ接合FETのソース
ドレイン電極51.52としてAuGeを15001 
 とAu  aoooXを蒸着し、pチャネルヘテロ接
合FET のソースドレイン”X極499s o 、!
: L テAuZn  ’k 1soox ト、Au 
 を3000λ蒸着したのち400℃5分の熱処理を行
なった。
Next, the p-type Ga6.5Ato, s was etched using a mixture of 0-carboxylic acid, water, and hydrogen peroxide, which was etched only in the portion that would form the n-Nayanel heterojunction FET using the following method.
A11 and undoped Ga6. After removing part of the undoped Gaps and CC4F!
Dry etching was performed using gas. This etching method selectively etches only GaAs. , Etching stopped at the As layer. Furthermore, 45 Ga (1,5A41.6As+
was removed. Next, AuGe 15001 was used as the source and drain electrodes 51 and 52 of the n-channel heterojunction FET.
and Au aoooX are evaporated, and the source drain of the p-channel heterojunction FET ``X pole 499s o,!
: L teAuZn'k 1soox ト、Au
After evaporating 3000λ, heat treatment was performed at 400°C for 5 minutes.

ゲート電隠s3.s4としては両ヘテロ接合FET  
ともTi、Pt、Au  を用い、第4図(b)のよう
な構造を形成した。
gate dengakure s3. Both heterojunction FETs are used as s4
In both cases, Ti, Pt, and Au were used to form a structure as shown in FIG. 4(b).

次に絶縁膜としてStO,を50001堆積し、ソース
、ドレイン、ゲートの各電極上にコンタクトホールをあ
けたのち、Ti 、 Pt 、 Au  を蒸着して配
線を行った0完成した相補型素子はインバータとして動
作することが確認された。
Next, 50,000 ml of StO was deposited as an insulating film, and contact holes were made on each of the source, drain, and gate electrodes, and then Ti, Pt, and Au were evaporated to conduct wiring. It has been confirmed that it works as

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体装置の基本的概念図である。 l・・・半絶縁性基板、2・・・n型ドープ第jの半導
体層、3・・・アンドーグあるいは低ドープの第2の半
導体層、4・・・p型ドープ第3の半導体層、5・・・
ゲート下の正孔蓄積層、6・・・p型ゲート電極、7・
・・p屋入力電極、8・・・p型出力電極、9・・・メ
ート下の゛電子蓄積層、10・・・ゲート下の電子蓄積
層、1ノ・・・n型入力電極、12・・・nm出力電極
。 代理人 弁理士  則 近 憲 佑 (ほか1名) 第  1  図 N 第  2  図 第  4  図 (4ン
FIG. 1 is a basic conceptual diagram of a semiconductor device of the present invention. l... Semi-insulating substrate, 2... n-type doped j-th semiconductor layer, 3... undoped or lightly doped second semiconductor layer, 4... p-type doped third semiconductor layer, 5...
Hole storage layer under the gate, 6... p-type gate electrode, 7.
...p-type input electrode, 8...p-type output electrode, 9...electron storage layer under the gate, 10...electron storage layer under the gate, 1no...n-type input electrode, 12 ...nm output electrode. Agent Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 N Figure 2 Figure 4 (4 N

Claims (4)

【特許請求の範囲】[Claims] (1)半絶縁性半導体基板上に電子の供給層となる第1
の半導体層、チャネル層を形成する上記第1の半導体層
よりバンドギャップの狭いアンドープあるいは低ドープ
の第2の半導体層、正孔の供給層となる上記第2の半導
体層よりバンドギャップの広い第3の半導体層が積層さ
れてなり、第3の半導体層上の一部領域に設けられた制
御電極と該制御電極を挾んで前記第3の半導体層上に設
けられた入出力電極を有するpチャネルヘテロ接合FE
Tと前記pチャネルヘテロ接合FETが形成されている
領域とは異なる領域の第3の半導体層と第2の半導体層
の一部分を除去し、第2の半導体層上の一部領域に設け
られた制御電極と、該制御電極を挾んで前記第2の半導
体層上に設けられた入出力電極を有するnチャネルヘテ
ロ接合FETを有し、前記2種のヘテロ接合FETの制
御電極は相互に接続されて入力電極を形成し、前記2種
のヘテロ接合 FETの出力電極は相互に接続されて出力電極を構成し
、前記2種のヘテロ接合FETの入力電極は電源電極を
構成してなることを特徴とする相補型半導体装置。
(1) A first layer that serves as an electron supply layer on a semi-insulating semiconductor substrate
an undoped or lightly doped second semiconductor layer with a narrower bandgap than the first semiconductor layer forming a channel layer, and a second semiconductor layer with a wider bandgap than the second semiconductor layer forming a hole supply layer. 3 semiconductor layers are laminated, and has a control electrode provided in a partial area on the third semiconductor layer and an input/output electrode provided on the third semiconductor layer sandwiching the control electrode. channel heterojunction FE
A portion of the third semiconductor layer and the second semiconductor layer in a region different from the region where the T and the p-channel heterojunction FET are formed is removed, and a portion of the third semiconductor layer and a portion of the second semiconductor layer are removed. It has an n-channel heterojunction FET having a control electrode and an input/output electrode provided on the second semiconductor layer with the control electrode in between, and the control electrodes of the two types of heterojunction FETs are connected to each other. the two types of heterojunction FETs form an input electrode, the output electrodes of the two types of heterojunction FETs are connected to each other to form an output electrode, and the input electrodes of the two types of heterojunction FETs form a power supply electrode. Complementary semiconductor device.
(2)基板は半絶縁性GaAs、第1の半導体層はn型
GaAlAs、第2の半導体層はGaAs、第3の半導
体層はp型GaAlAsであるような特許請求範囲第1
項記載の相補型半導体装置。
(2) The first claim in which the substrate is semi-insulating GaAs, the first semiconductor layer is n-type GaAlAs, the second semiconductor layer is GaAs, and the third semiconductor layer is p-type GaAlAs.
Complementary semiconductor device as described in .
(3)基板は半絶縁性GaAs、第1の半導体層はn型
GaAlAs、第3の半導体層はGaAsとGaAlA
sを積層した積層膜、第3の半導体層はp型 GaAlAsであるような特許請求の範囲第1項記載の
相補型半導体装置。
(3) The substrate is semi-insulating GaAs, the first semiconductor layer is n-type GaAlAs, and the third semiconductor layer is GaAs and GaAlA.
2. The complementary semiconductor device according to claim 1, wherein the third semiconductor layer is p-type GaAlAs.
(4)半絶縁性半導体基板上に正孔の供給層となる第3
の半導体層、チャネル層を形成する上記第3の半導体層
よりバンドギャップの狭いアンドープあるいは低ドープ
の第2の半導体層、電子の供給層となる上記第2の半導
体層よりバンドギャップの広い第1の半導体層が積層さ
れてなり、第1の半導体層上の一部領域に設けられた制
御電極と該制御電極を挾んで前記第1の半導体層上に設
けられた入出力電極を有するnチャネルヘテロ接合FE
Tと前記nチャネルヘテロ接合FETが形成されている
領域とは異なる領域の第1の半導体層と第2の半導体層
の一部分を除去し、第2の半導体層上の一部領域に設け
られた制御電極と該制御電極を挾んで前記第2の半導体
層上に設けられた入出力電極を有するpチャネルヘテロ
接合FETを有し、前記2種のヘテロ接合FETの制御
電極は相互に接続されて入力電極を構成し、前記2種の
ヘテロ接合FETの出力電極は相互に接続されて出力電
極を構成し、前記2種のヘテロ接合FETの入力電極は
電源電極を構成してなることを特徴とする相補型半導体
装置。
(4) A third layer that serves as a hole supply layer on the semi-insulating semiconductor substrate
an undoped or lightly doped second semiconductor layer with a narrower bandgap than the third semiconductor layer forming the channel layer, and a first semiconductor layer with a wider bandgap than the second semiconductor layer forming the electron supply layer. an n-channel, which is formed by laminating semiconductor layers, and has a control electrode provided in a partial region on the first semiconductor layer, and an input/output electrode provided on the first semiconductor layer sandwiching the control electrode. heterojunction FE
T and a portion of the first semiconductor layer and the second semiconductor layer in a region different from the region where the n-channel heterojunction FET is formed, and A p-channel heterojunction FET has a control electrode and an input/output electrode provided on the second semiconductor layer sandwiching the control electrode, and the control electrodes of the two types of heterojunction FETs are connected to each other. The output electrodes of the two types of heterojunction FETs are connected to each other to form an output electrode, and the input electrodes of the two types of heterojunction FETs form a power supply electrode. Complementary semiconductor device.
JP59268384A 1984-12-21 1984-12-21 Complementary semiconductor device Pending JPS61147577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59268384A JPS61147577A (en) 1984-12-21 1984-12-21 Complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59268384A JPS61147577A (en) 1984-12-21 1984-12-21 Complementary semiconductor device

Publications (1)

Publication Number Publication Date
JPS61147577A true JPS61147577A (en) 1986-07-05

Family

ID=17457735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59268384A Pending JPS61147577A (en) 1984-12-21 1984-12-21 Complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS61147577A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194676A (en) * 1987-10-06 1989-04-13 Nec Corp Semiconductor device and manufacture thereof
US4835581A (en) * 1986-07-25 1989-05-30 Hitachi, Ltd. Electron gas hole gas tunneling transistor device
JPH01253970A (en) * 1988-04-04 1989-10-11 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor
US4974038A (en) * 1987-08-05 1990-11-27 Thomson Hybrides Et Microondes Microwave transistor with double heterojunction
JP2007151379A (en) * 2005-10-26 2007-06-14 Toshiba Corp Dynamo-electric machine
CN103123932A (en) * 2011-11-17 2013-05-29 株式会社丰田中央研究所 Semiconductor device
GB2504614A (en) * 2012-07-17 2014-02-05 Element Six Technologies Us Corp Complimentary Heterojunction Field Effect Transistor
EP3876290A3 (en) * 2010-07-28 2021-12-15 The University of Sheffield Semiconductor devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835581A (en) * 1986-07-25 1989-05-30 Hitachi, Ltd. Electron gas hole gas tunneling transistor device
US4974038A (en) * 1987-08-05 1990-11-27 Thomson Hybrides Et Microondes Microwave transistor with double heterojunction
JPH0194676A (en) * 1987-10-06 1989-04-13 Nec Corp Semiconductor device and manufacture thereof
JPH01253970A (en) * 1988-04-04 1989-10-11 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor
JP2007151379A (en) * 2005-10-26 2007-06-14 Toshiba Corp Dynamo-electric machine
EP3876290A3 (en) * 2010-07-28 2021-12-15 The University of Sheffield Semiconductor devices
CN103123932A (en) * 2011-11-17 2013-05-29 株式会社丰田中央研究所 Semiconductor device
JP2013106018A (en) * 2011-11-17 2013-05-30 Toyota Central R&D Labs Inc Semiconductor device
GB2504614A (en) * 2012-07-17 2014-02-05 Element Six Technologies Us Corp Complimentary Heterojunction Field Effect Transistor

Similar Documents

Publication Publication Date Title
US4821090A (en) Compound semiconductor integrated circuit device
JP3135939B2 (en) HEMT type semiconductor device
JPH024140B2 (en)
JP2679333B2 (en) Schottky barrier junction gate type field effect transistor
JP2689057B2 (en) Static induction semiconductor device
JPS62274783A (en) Semiconductor device
JPS61147577A (en) Complementary semiconductor device
JPS6242569A (en) Field effect transistor
JPH0797638B2 (en) Field effect transistor
JPH02257669A (en) Semiconductor device
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JPS60263471A (en) Semiconductur device
JP3054216B2 (en) Semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JPH0261149B2 (en)
JP2695832B2 (en) Heterojunction field effect transistor
JPH01257372A (en) Insulated gate field effect transistor
JP2834172B2 (en) Field effect transistor
JPH01204475A (en) Iii-v compound semiconductor element and manufacture thereof
JPS62209866A (en) Semiconductor device
JPS60176275A (en) Integrated type semiconductor device
JPS58162070A (en) Field effect transistor
JPH0210747A (en) Semiconductor integrated circuit device and its manufacture
JPH06188274A (en) Hetero junction field effect transistor
JPH04101436A (en) Field-effect transistor