JPS58162070A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS58162070A
JPS58162070A JP4496982A JP4496982A JPS58162070A JP S58162070 A JPS58162070 A JP S58162070A JP 4496982 A JP4496982 A JP 4496982A JP 4496982 A JP4496982 A JP 4496982A JP S58162070 A JPS58162070 A JP S58162070A
Authority
JP
Japan
Prior art keywords
type
effect transistor
field effect
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4496982A
Other languages
Japanese (ja)
Inventor
Hiromitsu Takagi
弘光 高木
Daisuke Ueda
大助 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4496982A priority Critical patent/JPS58162070A/en
Publication of JPS58162070A publication Critical patent/JPS58162070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To extremely reduce a source resistance and to enhance the integration of a field effect transistor by forming an N type inverted layer on the surface of a P type gallium arsenide substrate. CONSTITUTION:A low density P type GaAs layer 25 is epitaxially grown on a high density-type substrate 21. Then, an n type gallium aluminum arsenide layer 22 is continuously epitaxially grown. Then, W, Pt or Al is, for example, deposited as a metal to become a gate electrode, the gate part is merely allowed to remain, and an electrode metal 23 and the layer 22 are etched. Subsequently, with the gate electrode as a mask a high density N type region 24 is formed by Si ion implantation, thereby obtaining an enhancement GaAs field effect transistor having source and drain of the region 24.

Description

【発明の詳細な説明】 本発明は、電界効果トランジスタに関するものであり、
特にp型ガリウム砒素基板の表面にn型反転層を有する
電界効果トランジスタを提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor,
In particular, we propose a field effect transistor having an n-type inversion layer on the surface of a p-type gallium arsenide substrate.

従来、n型ガリウム砒素の電子移動度がシリコンに比べ
て約6倍大きいという材料的特長に着眼し、数多くの電
界効果トランジスタの研究開発がなされてきた。ところ
が、そのほとんどは第1図に示すようなショットキー、
ゲート構造の電界効果トランジスタである。すなわち、
半絶縁性ガリウム砒素基板11にn型活性層12(チャ
ネル領域)及び高濃度!lI型層13をイオン注入法を
用いて形成した後、n型活性層12上にショットキ接合
電極141だ高濃度n型層13の上にソース・ドレイン
電極16を形成して、作製される電界効果トランジスタ
である。
BACKGROUND ART In the past, research and development of a large number of field effect transistors has focused on the material feature of n-type gallium arsenide, which is that the electron mobility is about six times higher than that of silicon. However, most of them are Schottky, as shown in Figure 1.
This is a field effect transistor with a gate structure. That is,
N-type active layer 12 (channel region) and high concentration on semi-insulating gallium arsenide substrate 11! After forming the II type layer 13 using the ion implantation method, a Schottky junction electrode 141 is formed on the n-type active layer 12 and a source/drain electrode 16 is formed on the heavily doped n-type layer 13 to reduce the electric field created. It is an effect transistor.

このような従来の電界効果トランジスタは、ゲート電極
とソース領域は電気的に分離せねばならないためソース
抵抗が大きい。また、この電界効果トランジスタのピン
チオフ電圧はn型活性層の不純物濃度と厚さによって定
まるが、その制(財)には極めて高度な技術を必要とす
る。さらに、エンハンスメント型の特性を得ようとする
場合には、活性層の厚さは60人程度の制御性が要求さ
れる。
Such conventional field effect transistors have a large source resistance because the gate electrode and the source region must be electrically separated. Furthermore, the pinch-off voltage of this field effect transistor is determined by the impurity concentration and thickness of the n-type active layer, and controlling it requires extremely sophisticated technology. Furthermore, if enhancement-type characteristics are to be obtained, the thickness of the active layer must be controlled to a degree of about 60 degrees.

本発明は、このような大きいソース抵抗が得られ、エン
ハンスメント型電界効果トランジスタを得るための活性
層の制(財)の問題を解決できるガリウム砒素を用いた
電界効果トランジスタを提供するものである。
The present invention provides a field effect transistor using gallium arsenide that can obtain such a large source resistance and solve the problem of controlling the active layer to obtain an enhancement type field effect transistor.

以下に、本発明の一実施例における電界効果トランジス
タについて述べる。まず、本発明の一実施例だおける電
界効果トランジスタの構造断面図を第2図として示す。
A field effect transistor according to an embodiment of the present invention will be described below. First, FIG. 2 shows a cross-sectional view of the structure of a field effect transistor according to an embodiment of the present invention.

高濃度p型基板21(不純物濃は1018〜1019α
−6)上に分子線エピタキシャル(MBE)法を用いて
、低濃度p型GaAs層25をエピタキシャル成長する
。このp型GaAs層25の不純物濃度は10〜10 
cTn  で厚さは1μmである。次に連続してMBE
法によりn型ガリウム−7ルミ砒素層(n−Ap、xG
al 、As)22をエピタキシャル成長する。このn
型ガリウムpアルミ砒素層22の不純物濃度と厚さはそ
れぞれ10〜5×1o rIn 、0.1μmである。
High concentration p-type substrate 21 (impurity concentration is 1018 to 1019α
-6) A low concentration p-type GaAs layer 25 is epitaxially grown thereon using the molecular beam epitaxial (MBE) method. The impurity concentration of this p-type GaAs layer 25 is 10 to 10
It is made of cTn and has a thickness of 1 μm. Then consecutive MBE
An n-type gallium-7 lumi arsenide layer (n-Ap, xG
al, As) 22 is epitaxially grown. This n
The impurity concentration and thickness of the gallium p-aluminum arsenide layer 22 are 10 to 5×1 orIn and 0.1 μm, respectively.

また、n A l xG a 1x A sにおけるA
QとGaの混晶比!は0.2〜o3である。次に、ゲー
ト電極となる金属として、例えばW、Pt、A、Q等を
蒸着し、通常のフォト・レジスト法を甲いてゲート部だ
けを残して電極金属23及びn −AQ 、Ga 1.
−xAsAs層をエツチング形成する。この後、ゲート
電極ヲマスクにして、Stのイオン注入によって高濃度
n型領域24を形成する。この高濃度n型領域24の不
純物濃度は1018〜10” cm−’で深さは0.2
〜0.6μm である。
Also, A in n A l x G a 1x A s
Mixed crystal ratio of Q and Ga! is 0.2 to o3. Next, for example, W, Pt, A, Q, etc., are vapor-deposited as metals that will become the gate electrodes, and the electrode metal 23, n-AQ, Ga 1.
-xAsAs layer is etched. Thereafter, using the gate electrode as a mask, a heavily doped n-type region 24 is formed by ion implantation of St. The impurity concentration of this high concentration n-type region 24 is 1018 to 10"cm-' and the depth is 0.2".
~0.6 μm.

以上のような工程により、高濃度n型飴域24をソース
・ドレインとするエンハンスメント型のG a A s
電界効果トランジスタを実現することができる。以上の
製造工程および第2図の構造かられかるように、本発明
の電界効果トランジスタは通常のシリコンnチャンネル
MO8FETと類似している。
Through the above steps, an enhancement type GaAs using the high concentration n-type candy region 24 as the source and drain is produced.
A field effect transistor can be realized. As can be seen from the above manufacturing process and the structure shown in FIG. 2, the field effect transistor of the present invention is similar to a conventional silicon n-channel MO8FET.

次に上記構成のゲート領域の各接合部におけるポテンシ
ャル分布を第3図に示す。n−AQ工Ga1−xA3と
p−GaAs の接合部は各々の材料に対する電子親和
力の差によって第3図のようになり、ゲート電位が零(
Vg=O) の時、電子に対する価電子帯vc、導電帯
Ev等のポテンシャルは第3図の実線のようになり、p
−GaAsと n−Afl、Ga1−xAsとの電子親
和力の差によって生ずるポテンシャルの谷の部分が7工
ルミ準位Ef より上にある。この時p −G a A
 s 側に溜る電子は少なく、正孔と再結合するためド
レイン・ソース間に電流は流れない。次に、ゲート電位
を正にバイアス(Vg)o)すると価電子帯Evが破線
で示すように下がるとともに、p−GaAs 側に生ず
る電子の数が増加し、ドレイン・ソース間に電流が流れ
る。
Next, FIG. 3 shows the potential distribution at each junction of the gate region having the above structure. The junction between n-AQ Ga1-xA3 and p-GaAs is as shown in Figure 3 due to the difference in electron affinity for each material, and the gate potential is zero (
Vg=O), the potentials of the valence band vc, conduction band Ev, etc. for electrons are as shown by the solid line in Figure 3, and p
The valley of the potential caused by the difference in electron affinity between -GaAs, n-Afl, and Ga1-xAs is above the 7-Eluminum level Ef. At this time p −G a A
Few electrons accumulate on the s side and recombine with holes, so no current flows between the drain and source. Next, when the gate potential is positively biased (Vg)o), the valence band Ev decreases as shown by the broken line, the number of electrons generated on the p-GaAs side increases, and a current flows between the drain and source.

以上に述べたように本発明の電界効果トランジスタの構
造を甲いると、ヱンノ1ンスメント型でかつソースおよ
びドレイン領域がゲート佃域に対してセルフ・アライン
構造で製作できるためソース抵抗を極めて小さくするこ
とができる。したがって、従来のG a A trを用
いた電界効果トランジスタと比較して、本発明の電界効
果トランジスタは集積度が高くなるとともに、さらに高
周波動作が可能となる。
As described above, the structure of the field-effect transistor of the present invention is of an awareness type, and the source and drain regions can be manufactured in a self-aligned structure with respect to the gate region, making the source resistance extremely small. be able to. Therefore, compared to the conventional field effect transistor using G a A tr, the field effect transistor of the present invention has a higher degree of integration and can operate at a higher frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のG a A sを馬いた電界効果トラン
ジスタの断面図、第2図は本発明の一実施例における電
界効果トランジスタの断面図、第3図は同電界効果トラ
ンジスタのゲート領域のポテンシャル状態を示す図であ
る。 21・・・・・・高濃度p型G a A s基板、22
會・−・・On型AgGa   As層、23・・・・
・・ゲート電極、x    1−x 25・・・・・・低濃度p型G a A s層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 12図 3 第3図
FIG. 1 is a cross-sectional view of a conventional field-effect transistor using GaAs, FIG. 2 is a cross-sectional view of a field-effect transistor according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of the gate region of the same field-effect transistor. It is a figure showing a potential state. 21...High concentration p-type GaAs substrate, 22
Meeting: On-type AgGaAs layer, 23...
...Gate electrode, x1-x25...Low concentration p-type GaAs layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 12 Figure 3 Figure 3

Claims (1)

【特許請求の範囲】[Claims] p型ガリウム砒素基板の表面に2つのn型領域が形成さ
れ、前記n型領域の2つの間にまたがって、n型ガリウ
ム・アルミニウム砒素層が形成されて、前記n型ガリウ
ム・アルミニウム砒素層をゲート、前記2つのn型領域
をそれぞれソースおよびドレインとす、ることを特徴と
する電界効果トランジスタ。
Two n-type regions are formed on the surface of the p-type gallium arsenide substrate, and an n-type gallium aluminum arsenide layer is formed spanning between the two of the n-type regions, and the n-type gallium aluminum arsenide layer is A field effect transistor characterized in that a gate and the two n-type regions serve as a source and a drain, respectively.
JP4496982A 1982-03-19 1982-03-19 Field effect transistor Pending JPS58162070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4496982A JPS58162070A (en) 1982-03-19 1982-03-19 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4496982A JPS58162070A (en) 1982-03-19 1982-03-19 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS58162070A true JPS58162070A (en) 1983-09-26

Family

ID=12706301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4496982A Pending JPS58162070A (en) 1982-03-19 1982-03-19 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS58162070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134479A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Semiconductor device
JPS61177782A (en) * 1985-01-28 1986-08-09 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694780A (en) * 1979-12-28 1981-07-31 Fujitsu Ltd Semiconductor device
JPS577165A (en) * 1980-06-17 1982-01-14 Fujitsu Ltd Semiconductor device
JPS5773979A (en) * 1980-10-27 1982-05-08 Nec Corp Field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694780A (en) * 1979-12-28 1981-07-31 Fujitsu Ltd Semiconductor device
JPS577165A (en) * 1980-06-17 1982-01-14 Fujitsu Ltd Semiconductor device
JPS5773979A (en) * 1980-10-27 1982-05-08 Nec Corp Field effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134479A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Semiconductor device
JPH0810762B2 (en) * 1983-12-23 1996-01-31 株式会社日立製作所 Semiconductor device
JPS61177782A (en) * 1985-01-28 1986-08-09 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor device
JPH07123164B2 (en) * 1985-01-28 1995-12-25 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Semiconductor device

Similar Documents

Publication Publication Date Title
US4583105A (en) Double heterojunction FET with ohmic semiconductor gate and controllable low threshold voltage
JP2679333B2 (en) Schottky barrier junction gate type field effect transistor
JPH0324782B2 (en)
JPS6356710B2 (en)
JPS61147577A (en) Complementary semiconductor device
JPS58162070A (en) Field effect transistor
JPH0249465A (en) Compound semiconductor device and manufacture thereof
JPS63161677A (en) Field effect transistor
JP2503594B2 (en) Semiconductor integrated device and manufacturing method thereof
JP3304343B2 (en) Field effect transistor
JPS58147130A (en) Manufacture of semiconductor device
JPS59222966A (en) Semiconductor device
JPS6390865A (en) Manufacture of field-effect transistor
JPH01257372A (en) Insulated gate field effect transistor
JPS63228762A (en) Manufacture of semiconductor device
JP2996267B2 (en) Method for manufacturing insulated gate field effect transistor
JPS60136380A (en) Semiconductor device
JPH05283439A (en) Semiconductor device
JPH03240243A (en) Manufacture of field effect type transistor
JPS60234374A (en) Manufacture of semiconductor device
JPH0439775B2 (en)
JPS61102069A (en) Field-effect transistor
JPH04280640A (en) Field-effect transistor and manufacture thereof
JPH05102192A (en) Field-effect transistor
JPS61188973A (en) Schottky barrier type field effect transistor