JPS60152059A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS60152059A
JPS60152059A JP59007958A JP795884A JPS60152059A JP S60152059 A JPS60152059 A JP S60152059A JP 59007958 A JP59007958 A JP 59007958A JP 795884 A JP795884 A JP 795884A JP S60152059 A JPS60152059 A JP S60152059A
Authority
JP
Japan
Prior art keywords
region
capacitor
diffusion region
trench
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59007958A
Other languages
Japanese (ja)
Other versions
JPH0365664B2 (en
Inventor
Yukimasa Uchida
内田 幸正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59007958A priority Critical patent/JPS60152059A/en
Priority to KR1019840007746A priority patent/KR890004767B1/en
Priority to DE8484115474T priority patent/DE3477532D1/en
Priority to EP84115474A priority patent/EP0169938B1/en
Publication of JPS60152059A publication Critical patent/JPS60152059A/en
Publication of JPH0365664B2 publication Critical patent/JPH0365664B2/ja
Priority to US07/857,727 priority patent/US5428236A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To shorten a distance between groove-shaped capacitors remarkably by forming a first conduction type impurity diffusion region having junction depth shallower than a second conduction type impurity diffusion region shaped in an impurity diffusion region in the inner surface of a groove section formed while reaching in a semiconductor layer from the surface of a well region. CONSTITUTION:A P type well region 22 is buried selectively to the surface layer of a semiconductor substrate 21. A groove-shaped capacitor 25a has a groove section 26a shaped while reaching into the substrate 21 from the surface of the region 22. A P type diffusion region 27a is formed to the region 22 in the inner surface of the groove section 26a and the substrate 21. An N type diffusion region 28a shallower than the region 27a is formed in the region 27a. An electrode 30 is shaped extending over the periphery of an opening section for the groove section 26a through an insulating film 31a for the capacitor. The electrode 30 and the region 28a function as first and second capacitor electrodes. Accordingly, a distance between groove-shaped capacitors is shortened remarkably without generating a punch-through phenomenon, and the density of a memory cell can be increased.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、半導体記憶装置に関し、特に記憶部としての
溝型キャパシタの構造を改良した半導体記憶装置に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device in which the structure of a trench-type capacitor as a memory portion is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ダイナミックメモリをはじめとする半導体記憶装置は、
その記憶容量がf!llB加工技術の進歩に伴って約3
年で4倍の速度で増大している。記憶容量の大容量化に
伴ってメモリセル面積は急速に縮小されつづけているが
、メモリセルの記憶キャパシタ値はソフトエラーの防止
上及びセンスアンプのセンスのためのS/N比の確保の
ために数十fFの大きな値に維持する必要がある。
Semiconductor storage devices, including dynamic memory,
Its storage capacity is f! With the advancement of llB processing technology, approximately 3
It is increasing at a rate of four times per year. The memory cell area continues to be rapidly reduced as storage capacity increases, but the storage capacitor value of the memory cell is being adjusted to prevent soft errors and to ensure the S/N ratio for sensing by the sense amplifier. Therefore, it is necessary to maintain a large value of several tens of fF.

ところで、従来より単位面積当りのキャパシタ値を大き
くするために、記憶キャパシタを構成するMO3構造の
絶縁膜を薄膜化したり、絶縁膜材料を酸化シリコン膜か
ら窒化シリコン膜に変えたりしている。しかしながら、
これらの記憶キャパシタは半導体基板の表面を利用して
MOS構造を形成するので、セル面積の微細化に伴って
、大きなキャパシタ値を得ることは自ずと限界があった
Incidentally, conventionally, in order to increase the capacitor value per unit area, the insulating film of the MO3 structure constituting the storage capacitor has been made thinner, or the insulating film material has been changed from silicon oxide film to silicon nitride film. however,
Since these storage capacitors form a MOS structure using the surface of a semiconductor substrate, there is a natural limit to obtaining a large capacitor value as the cell area becomes smaller.

このようなことから、最近、H,Sunamiらは、”
A Corrugated Capacitor Ce
1l (CCC)forMeaabit Dynami
c MOS MemorieS″、(nternati
nal l:1ectric [)evices Me
ettng Technical o+pest 5g
1l演番号26゜9、DO1806〜808 DeC1
1982で第1図に示す構造の溝型キャパシタを有する
MOSメモリを発表した。即ち、第1図中の1は例えば
p型シリコン基板であり、この基板1の表面から内部に
屋って深い(例えば3〜5μm程度)溝部2が設けられ
ている。この溝部2内から開口部周辺に屋っで第1層多
結晶シリコンからなるキャパシタ電極3がキャパシタ絶
縁膜4を介して設けられている。このキャパシタ絶縁N
@ 4は5i02 /5j3N。
For this reason, recently, H. Sunami et al.
A Corrugated Capacitor Ce
1l (CCC) for Meaabit Dynami
c MOS MemoryS″, (internati
nal l:1etric [)evices Me
ettng Technical o+pest 5g
1l performance number 26°9, DO1806-808 DeC1
In 1982, he announced a MOS memory having a trench capacitor with the structure shown in FIG. That is, reference numeral 1 in FIG. 1 is, for example, a p-type silicon substrate, and a deep groove 2 (for example, about 3 to 5 μm) is provided inside the substrate 1 from its surface. A capacitor electrode 3 made of a first layer of polycrystalline silicon is provided from within the trench 2 to the periphery of the opening with a capacitor insulating film 4 interposed therebetween. This capacitor insulation N
@4 is 5i02/5j3N.

/810.の3層膜からなる。こうした基板1、溝部2
、キャパシタ絶縁膜4及びキャパシタ電極3によって溝
型キャパシタ、5−が構成されている。また、前記溝型
キャパシタ、5−に隣接するシリコン基板1の表面には
互いに電気的に分離されたn+型のソース、ドレイン領
域6.7が設けられている。これらソース、ドレイン領
域6.7間を少なくとも含む基板1部分上には、ゲート
酸化膜8を介して第2層多結晶シリコンからなるゲート
電極9が設けられている。こうしたソース、ドレイン領
域6.7、ゲート酸化膜8及びゲート電極9によって転
送トランジスタ10が構成されている。更に、前記ソー
ス領域6は前記溝型キャパシタ、5−の絶縁膜4に接し
ており、かつ前記トレイン領域7は図示しないビット線
と接続されている。なお、図中の9′は隣接するメモリ
セルのゲート電極である。
/810. It consists of a three-layer film. Such a substrate 1, groove part 2
, the capacitor insulating film 4 and the capacitor electrode 3 constitute a trench capacitor 5-. Further, n+ type source and drain regions 6.7 electrically isolated from each other are provided on the surface of the silicon substrate 1 adjacent to the trench capacitor 5-. A gate electrode 9 made of a second layer of polycrystalline silicon is provided on a portion of the substrate 1 including at least between the source and drain regions 6 and 7 with a gate oxide film 8 interposed therebetween. The source and drain regions 6.7, gate oxide film 8, and gate electrode 9 constitute a transfer transistor 10. Furthermore, the source region 6 is in contact with the insulating film 4 of the trench capacitor 5-, and the train region 7 is connected to a bit line (not shown). Note that 9' in the figure is the gate electrode of an adjacent memory cell.

しかしながら、前述した第1図図示のMOSメモリは文
献中にも一部記載しであるように一つの溝型キャパシタ
と他の溝型キャパシタとの間で生じるパンチスルー現象
による情報の干渉により、メモリセル間の溝型キャパシ
タの距離を短くできず、高密度のメモリセルを実現でき
ないとう欠点があった。即ち、一般にメモリセルを構成
する転送トランジスタのドレインの接合容量は、ビット
線容量を減らすために減少させることが要求されている
。このため、p型シリコン基板の濃度を下げる必要があ
るが、これによってMOS構造のキャパシタ付近の基板
に空乏層が広がり、パンチスルー現象が生じ易くなる。
However, as described in the literature, the MOS memory shown in FIG. The disadvantage is that the distance between the trench capacitors between cells cannot be shortened, and high-density memory cells cannot be realized. That is, in general, the junction capacitance of the drain of a transfer transistor constituting a memory cell is required to be reduced in order to reduce the bit line capacitance. For this reason, it is necessary to lower the concentration of the p-type silicon substrate, but this spreads a depletion layer in the substrate near the capacitor of the MOS structure, making it easier to cause a punch-through phenomenon.

こうしたパンチスルー現象は、一般にシリコン基板表面
近傍からの不純物イオン注入で防止できる。しかしなが
ら、第1図図示のようなシリコン基板1に奪い溝部2を
形成して作られる溝型キャパシタLでは、シリコン基板
1の深い部分にまで不純物のイオン注入を行なうことが
困難であるため、隣接する溝型キャパシタの底部付近同
志でパンチスルー現象が生じ、それを防止できないとい
う重大な欠点があった。
Such punch-through phenomenon can generally be prevented by implanting impurity ions from near the surface of the silicon substrate. However, in the trench type capacitor L which is made by forming a trench 2 in a silicon substrate 1 as shown in FIG. 1, it is difficult to implant impurity ions deep into the silicon substrate 1. There is a serious drawback in that a punch-through phenomenon occurs near the bottom of the groove-type capacitor, and it cannot be prevented.

従って、従来の構造ではメモリセル間の溝型キャパシタ
間に長い距離をあける必要が生じ高密度のメモリセルを
実現するのは極めて困難であった。
Therefore, in the conventional structure, it is necessary to leave a long distance between the trench capacitors between memory cells, making it extremely difficult to realize a high density memory cell.

また、第1図の構造では、シリコン基板1の深い所で溝
型キャパシタ、5−により空乏層が伸び、α線の入射に
より生じた電荷をファネリング現象で集め易い為、ソフ
1へエラーに対して弱いという欠点があった。
In addition, in the structure shown in FIG. 1, a depletion layer is extended by the trench capacitor 5- deep in the silicon substrate 1, and the charge generated by the incidence of α rays is likely to be collected by the funneling phenomenon. It had the disadvantage of being weak.

(発明の目的〕 本発明は、単位面積当りのキャパシタ値が大きい溝型キ
ャパシタを備え、かつ該溝型キャパシタ間の距離を著し
く短縮でき、更に耐ソフトエラー性に優れた半導体記憶
装置を提供しようとするものである。
(Objective of the Invention) It is an object of the present invention to provide a semiconductor memory device that includes trench capacitors with a large capacitor value per unit area, can significantly shorten the distance between the trench capacitors, and has excellent soft error resistance. That is.

〔発明の概要〕[Summary of the invention]

本発明は、第1導電型の半導体層と、この半導体層の表
面層に選択的に埋設された第2導電型のウェル領域と、
このウェル領域表面から前記半導体層中に達して設けら
れた溝部と、この溝部内面のウェル領域及び半導体層に
設けられた第2導電型の不純物拡散領域と、前記溝部内
面の不純物拡散領域に設けられた該拡散領域より接合深
さが浅い第1導電型の不純物拡散領域と、前記溝部内か
ら少なくとも開口部周辺に亙ってキャパシタ用絶縁膜を
介して設けられた電極とからなり、前記電極を第1のキ
ャパシタ電極とし、前記第1導電型の不純物拡散領域を
第2のキャパシタ電極とした構造の溝型キャパシタを具
備したことを特徴とするものである。こうした構造にお
いて、第1導電型の不純物拡散@域により、隣接する溝
型キャパシタ間のパンチスルー現象を防止して高密度の
メモリセルを可能とし、かつ第2導電型の不純物拡散領
域と第1導電型の不純物拡散領域との間の接合容量によ
り単位面積当りのキャパシタ値を増大し、更にウェル領
域と第2′4電型の不純物拡散領域により耐ソフトエラ
ー性を向上した構造の半導体記憶装置を得ることができ
る。
The present invention includes a semiconductor layer of a first conductivity type, a well region of a second conductivity type selectively buried in a surface layer of the semiconductor layer,
A trench provided reaching from the surface of the well region into the semiconductor layer, an impurity diffusion region of the second conductivity type provided in the well region and the semiconductor layer on the inner surface of the trench, and an impurity diffusion region provided on the inner surface of the trench. an impurity diffusion region of a first conductivity type having a junction depth shallower than that of the diffusion region; and an electrode provided from within the groove portion to at least the periphery of the opening via a capacitor insulating film; The present invention is characterized by comprising a trench type capacitor having a structure in which the impurity diffusion region of the first conductivity type is used as a first capacitor electrode and the impurity diffusion region of the first conductivity type is used as a second capacitor electrode. In such a structure, the impurity diffusion region of the first conductivity type prevents the punch-through phenomenon between adjacent trench capacitors and enables high-density memory cells, and the impurity diffusion region of the second conductivity type and the first A semiconductor memory device having a structure in which the capacitor value per unit area is increased by the junction capacitance between the conductivity type impurity diffusion region, and the soft error resistance is further improved by the well region and the 2'4 conductivity type impurity diffusion region. can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図乃至第4図を参照して詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 2 to 4.

第2図はダイナミックMOSメモリの一部を示す断面図
、第3図は第2図の要部を示す平面図、第4図は第3図
のIV −IVに沿う断面図である。図中の21は第1
導電型の半導体層としての例えば8X10 /cm3の
リンなどのドナー不純物を含むn型シリコン基板である
。このシリコン基板21の表面層には、例えば1xio
 /cm3のアクセプタ不純物(ボロン等)を含み、深
さ2μmのp型ウェル領域22が選択的に埋設されてい
る。
2 is a sectional view showing a part of the dynamic MOS memory, FIG. 3 is a plan view showing the main part of FIG. 2, and FIG. 4 is a sectional view taken along IV-IV in FIG. 3. 21 in the diagram is the first
The substrate is an n-type silicon substrate containing a donor impurity such as phosphorus at 8×10 2 /cm 3 as a conductive type semiconductor layer. The surface layer of this silicon substrate 21 has, for example, 1xio
A p-type well region 22 containing acceptor impurities (such as boron) of /cm3 and having a depth of 2 μm is selectively buried.

このウェル領域22には例えば厚さ約0.6μmのフィ
ールド酸化膜23が設けられており、がつウェル領域2
2には第3図に示す如く該フィールド酸化膜23で分離
された複数の島状の活性領域(メモリセル領域)248
〜24cが形成されている。これら活性領域24a、2
4bの一部及び活性領域24cの両端部には夫々溝型キ
ャパシタ25a〜25dが設けられており、かつ溝型キ
ャパシタ25 a 、= 25 bは互いに隣接して配
置されている。溝型キャパシタ11Lは第4図に示す如
くウェル領域22の表面からシリコン基板21中に達し
て設けられた例えば深さ3〜5μmの溝部26aを備え
ている。この溝部26aの内面のウェル領域22及びシ
リコン基板21には第2導電型の不純物拡散領域として
のn型拡散領域27aが形成されている。このn型拡散
領域27aは例えば深さが0.5μ肌で、前記ウェル領
域22の濃度より高い、例えば2X10 /cm3の濃
度を有する。また、前記溝部26a内面のn型拡散領域
27aには、該n型拡散領域27aより浅い第1導電型
の不純物拡散領域としてのn型拡散領域28aが形成さ
れている。このn型拡散領域28aは深さが0.2μm
で、濃度が例えば1×10” ”/ an 3のもので
ある。このn型拡散領域28aの前記溝型キャパシタ1
1と反対側の側部表面には延出部29aが形成されてい
る。前記溝部26a内から少なくとも該溝部26aの開
口部周辺に亙って第1層多結晶シリコンからなる電極3
゜がキャパシタ用絶縁膜としての例えば厚さ200人の
酸化シリコン膜31aを介して設けられている。こうし
た溝型キャパシタ25aにおいて、前記電極30は第1
のキャパシタ電極として、前記n型拡散領域28aは第
2のキャパシタ電極として機能する。なお、電極30は
各溝型キャパシタL1L〜25dの共通電極となってい
る。一方、前記溝型キャパシタ25bは溝部26b、 
n型拡散領域27b、n型拡散領域28b、電極3o及
び酸化シリコン膜31bとから構成されている。
This well region 22 is provided with a field oxide film 23 having a thickness of, for example, about 0.6 μm.
2 includes a plurality of island-shaped active regions (memory cell regions) 248 separated by the field oxide film 23 as shown in FIG.
~24c is formed. These active regions 24a, 2
Groove capacitors 25a to 25d are provided at a portion of the active region 4b and at both ends of the active region 24c, respectively, and the trench capacitors 25a and 25b are arranged adjacent to each other. As shown in FIG. 4, the trench type capacitor 11L includes a trench 26a extending from the surface of the well region 22 into the silicon substrate 21 and having a depth of, for example, 3 to 5 μm. An n-type diffusion region 27a serving as a second conductivity type impurity diffusion region is formed in the well region 22 and the silicon substrate 21 on the inner surface of the groove portion 26a. This n-type diffusion region 27a has a depth of, for example, 0.5 μm, and a concentration higher than that of the well region 22, for example, 2×10 2 /cm 3 . Further, an n-type diffusion region 28a as a first conductivity type impurity diffusion region shallower than the n-type diffusion region 27a is formed in the n-type diffusion region 27a on the inner surface of the groove portion 26a. This n-type diffusion region 28a has a depth of 0.2 μm.
The density is, for example, 1×10″/an 3. The trench type capacitor 1 in this n-type diffusion region 28a
An extending portion 29a is formed on the side surface opposite to 1. An electrode 3 made of a first layer of polycrystalline silicon extends from inside the groove 26a to at least around the opening of the groove 26a.
.degree. is provided through a silicon oxide film 31a having a thickness of, for example, 200 mm as a capacitor insulating film. In such a trench capacitor 25a, the electrode 30 is the first
The n-type diffusion region 28a functions as a second capacitor electrode. Note that the electrode 30 serves as a common electrode for each of the trench capacitors L1L to 25d. On the other hand, the groove-type capacitor 25b has a groove portion 26b,
It is composed of an n-type diffusion region 27b, an n-type diffusion region 28b, an electrode 3o, and a silicon oxide film 31b.

また、前記溝型キャパシタ25C125dは詳細に示し
ていないが、前記溝型キャパシタ25a125bと同様
な構造になっている。なお、p型ウェル領域22の端部
にも同様な構造の溝型キャパシタ1が設けられている。
Although the trench type capacitor 25C125d is not shown in detail, it has a similar structure to the trench capacitor 25a125b. Note that a trench capacitor 1 having a similar structure is also provided at the end of the p-type well region 22.

ここで溝型キャパシタの製造方法について第5図(a)
〜くC)を参照して簡単に説明する。まず、n型シリコ
ン基板21の表面層に選択的にp型ウェル領域22を形
成した後、該ウェル領域22の表面にフィールド酸化I
II 23を形成すると共に、島状の活性領域24a、
24b (24cは図示せず)を形成した後、活性領域
24a、24bの表面に厚さ約1000人の酸化膜31
を形成する。つづいて、フォトレジストを塗布し、写真
蝕刻法により酸化膜32の溝部形成予定部上にレジスト
パターン(図示せず)を形成した後、該レジストパター
ンをマスクとして反応性イオンエツチングによりウェル
領域22表面からシリコン基板21中に達して選択的に
エツチングして例えば深さ3〜5μmの溝部26a、2
6bを形成する゛(第5図(a)図示)。この後レジス
トパターンを剥離した。
Here, Fig. 5(a) shows a method for manufacturing a trench type capacitor.
This will be briefly explained with reference to C). First, after selectively forming a p-type well region 22 on the surface layer of an n-type silicon substrate 21, field oxidation I
II 23 and an island-shaped active region 24a,
24b (24c is not shown), an oxide film 31 with a thickness of approximately 1,000 yen is formed on the surfaces of the active regions 24a and 24b.
form. Subsequently, a photoresist is applied and a resist pattern (not shown) is formed on the groove portion of the oxide film 32 by photolithography, and then the surface of the well region 22 is etched by reactive ion etching using the resist pattern as a mask. It reaches into the silicon substrate 21 and is selectively etched to form grooves 26a, 2 with a depth of 3 to 5 μm, for example.
6b (as shown in FIG. 5(a)). After that, the resist pattern was peeled off.

次いで、写真蝕刻法により転送1〜ランジスタのソース
領域の一部に対応する前記酸化膜32を選択的に除去し
た後、全面にp型不純1力、(伺え【工ボロンをドープ
した酸化シリコン膜(又は多結晶シリコン膜)33をC
VD法により堆積し、更に該ボロンドープ酸化シリコン
膜33を拡散源にしてボロンを溝部26a、26b内面
のp型つェル領域22及びn型シリコン基板21に熱拡
散してn型拡散領域27a、27bを形成する(第5図
(b)図示)。つづいて、ボロンドープ酸化シリコン膜
33を除去し、全面にリンドープl1lft(ビシ1ノ
コンl(又は砒素ドープ酸化シリコン膜、1ノンや砒素
をドープした多結晶シリコン膜)34をCVD法により
堆積した後、該リンドープ酸化シ1ノコン膜34を拡散
源にしてリンをp型拡散領域に27a、27bに熱拡散
して同拡散領域27a、27bに夫々n型拡散領域28
a、28b及び延出部29a、29bを形成する(第5
図(C)図示)。この後、図示しないが、リンドープ酸
化シ1ノコン膜を除去し、酸化膜も除去し、更に、再度
熱酸化処理を施して溝部内面を含む露出したウェル領域
及び基板表面に酸化シリコン膜を形成し、ひきつづき全
面に第1層多結晶シリコン膜を堆積し、これをパターニ
ングして溝部内から少なくともその開口部周辺に亙って
電極を形成し、この電極をマスクとして前記酸化シリコ
ン膜を選択的にエツチングしキャパシタ用の酸化シリコ
ン膜を形成する。
Next, after selectively removing the oxide film 32 corresponding to part of the source region of the transfer transistor 1 to the transistor by photolithography, a silicon oxide film doped with p-type impurity (as shown) is formed on the entire surface. (or polycrystalline silicon film) 33
The boron-doped silicon oxide film 33 is deposited by the VD method, and boron is thermally diffused into the p-type well regions 22 and the n-type silicon substrate 21 on the inner surfaces of the grooves 26a and 26b to form n-type diffusion regions 27a, 27b (as shown in FIG. 5(b)). Subsequently, the boron-doped silicon oxide film 33 is removed, and a phosphorus-doped silicon oxide film (or an arsenic-doped silicon oxide film, or a polycrystalline silicon film doped with arsenic) 34 is deposited on the entire surface by the CVD method. Using the phosphorus-doped silicon oxide film 34 as a diffusion source, phosphorus is thermally diffused into the p-type diffusion regions 27a and 27b to form n-type diffusion regions 28 in the same diffusion regions 27a and 27b, respectively.
a, 28b and extending portions 29a, 29b (fifth
Figure (C) (Illustrated). After this, although not shown, the phosphorus-doped silicon oxide film is removed, the oxide film is also removed, and thermal oxidation treatment is performed again to form a silicon oxide film on the exposed well region including the inner surface of the trench and on the substrate surface. Subsequently, a first layer polycrystalline silicon film is deposited on the entire surface, and this is patterned to form an electrode from inside the trench to at least around the opening, and using this electrode as a mask, the silicon oxide film is selectively deposited. Etching is performed to form a silicon oxide film for a capacitor.

また、前記各溝型キャパシタ25a〜25dに隣接した
各活性領域24a〜24Gには転送トランジスタ358
〜35dが形成されている。転送トランジスタ35aは
、前記溝型キャパシタ25Lに隣接する活性領域24’
aの表面に互いに電気的に分離して設けられた例えば1
020/cm3のアダセプタ不純物を含むn+型のソー
ス、ドレイン領域36a、37aと、これらソース、ド
レイン領域36a、37c間を少なくとも含む活性領域
24a部分上にゲート酸化膜38aを介して設けられた
第2層多結晶シリコンからなるゲート電極QQp、L−
σ上i樫虞大わTいス 曲りn”ff1−ノース領域3
6aは前記溝型キャパシタ25aを構成するn型拡散領
域28aの延出部29aと接続されている。一方、前記
転送トランジスタiは、n+型のソース、ドレイン領域
36b、37b、ゲート酸化膜38b及びゲート電極3
9bとから構成されており、かつソース領hil’36
bは前記溝型キャパシタ25bを構成するn型拡散領域
28bの延出部29bに接続されている。また、前記転
送トランジスタ35c、 LL史は、前記各転送トラン
ジスタ35a1旦12−と同様、ソース、トレイン領域
、ゲート酸化膜(いずれも図示せず)及びグー1〜電極
390,396から構成されている。なお、前記ウェル
領域22の端部には転送]・ランジスタ35eが形成さ
れており、該転送トランジスタ35eは、n+型のソー
ス領域36eと、n型のドレイン領域(前記転送トラン
ジスタ35仄のドレイン領域37bと共通)と、これら
ソース、ドレイン領域36e、37b間を少なくとも含
むウェル領域22部分上にゲート酸化膜38eを介して
設けられたグー1へ電極39eとから構成されている。
Furthermore, a transfer transistor 358 is provided in each active region 24a to 24G adjacent to each trench type capacitor 25a to 25d.
~35d is formed. The transfer transistor 35a is located in the active region 24' adjacent to the trench capacitor 25L.
For example, 1
A second layer is provided via a gate oxide film 38a over the n+ type source and drain regions 36a and 37a containing adapter impurities of 0.020 cm3 and the active region 24a portion including at least the area between these source and drain regions 36a and 37c. Gate electrode QQp, L- made of layered polycrystalline silicon
σUpper i Kashiwa Tisu Bend n”ff1-North area 3
6a is connected to an extension 29a of the n-type diffusion region 28a constituting the trench capacitor 25a. On the other hand, the transfer transistor i includes n+ type source and drain regions 36b and 37b, a gate oxide film 38b, and a gate electrode 3.
9b, and the source area hil'36
b is connected to an extension 29b of the n-type diffusion region 28b constituting the trench capacitor 25b. Further, the transfer transistors 35c and LL are made up of a source, a train region, a gate oxide film (none of which are shown), and electrodes 390 and 396, similar to the transfer transistors 35a1 and 12-. . Note that a transfer transistor 35e is formed at the end of the well region 22, and the transfer transistor 35e has an n+ type source region 36e and an n type drain region (the drain region of the transfer transistor 35). 37b), and an electrode 39e provided on the well region 22 via a gate oxide film 38e on a portion of the well region 22 including at least between these source and drain regions 36e and 37b.

前記転送トランジスタ35a、35以のゲート電極39
a、39bは前記溝型キャパシタ25C125dの電極
30上に酸化膜(図示せず)を介して横切り、かつ前記
転送トランジスタ35G、35dのグー]へ電極39c
139dは前記溝型キャパシタ25a、25bの電極3
o上を酸化膜40a、40bを介して横切っている。
Gate electrode 39 of the transfer transistors 35a, 35 and beyond
a and 39b cross over the electrode 30 of the trench type capacitor 25C125d via an oxide film (not shown), and connect to the electrode 39c of the transfer transistor 35G and 35d.
139d is the electrode 3 of the trench type capacitors 25a and 25b.
It crosses over the oxide films 40a and 40b.

更に、前記各溝型キャパシタ25a〜25e及び前記各
転送トランジスタ35a〜35eを含むウェル領域22
及びシリコン基板21上には層間絶縁膜41が被覆され
ており、かつ該層間絶縁膜41上にはAflからなるピ
ッ1〜線42.42′が前記各ゲート電極39a〜39
eと直交する方向に設けられている。一方のビット線4
2は、前記転送]・ランジスタ35aのドレイン領域3
7a、転送トランジスタ35b、35eの共通のトレイ
ン領域37bにコンタクトホール43a、43bを介し
て夫々接続されている。他方のピッ1−線42′は、前
記転送トランジスタよ1LS1L先の共通のドレイン領
域(図示せず)にコンタクトホール43cを介して接続
されている。これらピッ!〜線42.42−を含む層間
絶縁11941上には保護絶縁膜44が被覆されている
Furthermore, a well region 22 including the trench capacitors 25a to 25e and the transfer transistors 35a to 35e.
An interlayer insulating film 41 is coated on the silicon substrate 21, and on the interlayer insulating film 41, pins 1 to 42 and 42' made of Afl are connected to each of the gate electrodes 39a to 39.
It is provided in a direction perpendicular to e. One bit line 4
2 is the above-mentioned transfer] Drain region 3 of transistor 35a
7a, and are connected to a common train region 37b of transfer transistors 35b and 35e via contact holes 43a and 43b, respectively. The other pin 1-line 42' is connected to a common drain region (not shown) located 1LS1L ahead of the transfer transistor via a contact hole 43c. These beep! A protective insulating film 44 is coated on the interlayer insulation 11941 including the lines 42, 42-.

しかして、本発明の半導体記憶装置によれば、溝型キャ
パシタ(例えば25a、25b)の夫々の記憶ノードを
構成するn型拡散領域28a、28bの外部には約2 
X 1017/ cm3の不純物濃度をもつp型拡散領
域2’7a、27bが形成されているため、溝型キャパ
シタ25a、25b上部周囲のp型ウェル領域22への
空乏層の伸びを前記p型拡散領域27a、27bの存在
により著しく抑制できる。事実、記憶ノードの電位がp
型ウェル領域22に対して5Vの電位差の時、“b型拡
散領域27a、27bとn型拡散領域28a、28bの
間に伸びる空乏層幅は約0.2μmであった。
According to the semiconductor memory device of the present invention, approximately 2
Since the p-type diffusion regions 2'7a and 27b having an impurity concentration of This can be significantly suppressed by the presence of regions 27a and 27b. In fact, the potential of the storage node is p
When the potential difference was 5V with respect to the type well region 22, the width of the depletion layer extending between the b-type diffusion regions 27a, 27b and the n-type diffusion regions 28a, 28b was about 0.2 μm.

その結果、溝型キャパシタ25a、25b間の距離(A
>をn型拡散領域27a、27bが重なる0、6μmま
で近付けても両者間のパンチスルー現象を防止できる。
As a result, the distance (A
Even if the n-type diffusion regions 27a and 27b overlap with each other by 0.6 μm, the punch-through phenomenon between them can be prevented.

なお、第1図図示の溝型キャパシタiの構造では、溝型
キャパシタ間の距離を約2μmで既にパンチスルー現象
が生じた。これは距離にして3倍以上の改善である。し
かも、本発明ではビット線の接合容量は全く増加しない
In the structure of the groove capacitor i shown in FIG. 1, the punch-through phenomenon already occurred when the distance between the groove capacitors was about 2 μm. This is an improvement of more than three times in terms of distance. Moreover, in the present invention, the junction capacitance of the bit line does not increase at all.

従って、溝型キャパシタ間のパンチスルー現象を防止す
ることにより、高密度のメモリセルを実現できる。
Therefore, by preventing the punch-through phenomenon between trench capacitors, high-density memory cells can be realized.

また、溝型キャパシタ25a〜25eを構成する溝部2
6a〜26eは、ウェル領域22表面から該ウェル領域
22の深さよりも制限なしに深くできる。しかも、例え
ば溝型キャパシタ絶縁膜において、n型拡散領域27a
とn型拡散領域28aとの間のpn接合容量が酸化シリ
コン膜31aを介在したn型拡散領域28aと電極30
との間の静電容量に重畳されるため、単位面積当りのキ
ャパシタ値が高い溝型キャパシタ25aを実現でき、ひ
いてはメモリセルを高密度化できる。事実、前記pn接
合容量はキャパシタ絶縁膜としての200Aの酸化シリ
コン膜31aを用いた静電容量値の約3割に達すること
がわかった。
Further, the groove portions 2 constituting the groove capacitors 25a to 25e are
6a to 26e can be made deeper than the depth of the well region 22 from the surface of the well region 22 without any restriction. Moreover, in the trench type capacitor insulating film, for example, the n-type diffusion region 27a
The pn junction capacitance between the n-type diffusion region 28a and the n-type diffusion region 28a with the silicon oxide film 31a interposed between the n-type diffusion region 28a and the electrode 30
Since the capacitance is superimposed on the capacitance between the trench capacitor 25a and the trench capacitor 25a, which has a high capacitance value per unit area, it is possible to realize a high density memory cell. In fact, it has been found that the pn junction capacitance reaches approximately 30% of the capacitance value when the 200A silicon oxide film 31a is used as the capacitor insulating film.

更に、n型シリコン基板21の表面にp型ウェル領域2
2を設け、かつ溝型キャパシタ25aの最外層にn型拡
散領域27aを設けた4R造になっているため、゛それ
らp型ウェル領域22、pW拡散領域27aがα粒子の
軌跡に沿って生成したキャリアに対して記憶ノード周囲
にポテンシャルバリアを形成するので、耐ソフトエラー
性に優れた半導体記憶装置を実現できる。
Furthermore, a p-type well region 2 is formed on the surface of the n-type silicon substrate 21.
2 and an n-type diffusion region 27a in the outermost layer of the trench capacitor 25a, the p-type well region 22 and the pW diffusion region 27a are generated along the trajectory of the Since a potential barrier is formed around the storage node against the carriers, a semiconductor memory device with excellent soft error resistance can be realized.

なお、上記実施例ではキャパシタ用絶縁膜として、酸化
シリコン膜、を用いたが、これに限定されない。例えば
、酸化シリコン膜で窒化シリコン膜をサンドインチ状に
挟んだ複合膜、窒化シリコン膜、あるいは酸化シリコン
と酸化タンタルの二層膜等を用いてもよい。
In the above embodiment, a silicon oxide film is used as the capacitor insulating film, but the present invention is not limited to this. For example, a composite film in which a silicon nitride film is sandwiched between silicon oxide films, a silicon nitride film, or a two-layer film of silicon oxide and tantalum oxide may be used.

上記実施例では、半導体層としてn型シリコン基板を用
いたが、n型シリコン基板を用いてもよい。この場合、
第2導電型の不純物拡散領域はn型に、第1導電型の不
純物拡散領域はp型に、転送トランジスタはpチャンネ
ルMosトランジスタよりなる。
In the above embodiment, an n-type silicon substrate was used as the semiconductor layer, but an n-type silicon substrate may also be used. in this case,
The second conductivity type impurity diffusion region is n type, the first conductivity type impurity diffusion region is p type, and the transfer transistor is a p channel Mos transistor.

上記実施例では、ダイナミックMOSメモリを例にして
説明したが、スタティックMOSメモリにも同様に適用
できる。この場合、例えばフリップフロップ型のセルの
双安定ノードに前述した溝型キャパシタを設ければよい
Although the above embodiment has been explained using a dynamic MOS memory as an example, it can be similarly applied to a static MOS memory. In this case, for example, the trench type capacitor described above may be provided at the bistable node of a flip-flop type cell.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば単位面積当りのキャ
パシタ値が大きい溝型キャパシタを備えかつ該溝型キャ
パシタ間の距離を、パンチスルー現象を生じることなく
著しく短縮してメモリセルの高密度化を可能とし、更に
耐ソフ]−エラー性を向上でき、ひいては高密度、高信
頼性の半導体記憶装置を提供できる。
As described in detail above, according to the present invention, a trench capacitor having a large capacitor value per unit area is provided, and the distance between the trench capacitors is significantly shortened without causing a punch-through phenomenon, thereby achieving high density memory cells. In addition, it is possible to improve the error resistance and provide a high-density, highly reliable semiconductor memory device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のダイナミックMOSメモリを示す断面
図、第2図は、本発明の一実施例を示すダイナミックM
OSメモリの断面図、第3図は、第2図の要部平面図、
第4図は、第3図のIV −IV線に沿う断面図、第5
図(a)〜(C)は本実施例の溝型キャパシタを形成す
るための工程を示す断面図である。 21・・・n型シ+jコン基板、22・・・p型ウェル
領域、23・・・フィールド酸化膜、24a〜24c・
・・活性態域(メモリセル)、25a〜25e・・・溝
型キャパシタ、26a〜26e・・・溝部、27a〜2
7e・・・n型拡散領域(第2導電型の不純物拡散領域
)、28a〜28e・・・n型拡散領域(第1s電型の
不純物拡散領域)、29a〜29e・・・延出部、30
・・・第1層多結晶シリコンからなる電極、31a〜3
1e・・・酸化シリコン族〈キャパシタ用絶縁膜)、3
3・・・ボロンドープ酸化シリコン膜、34・・・リン
ドープ酸化シリコン膜、358〜35e・・・転送トラ
ンジスタ、36a〜36c・・・n++ソース領域、3
7a、37b・・・n+型トドレイン領域39a〜39
e・・・第2層多結晶シリコンからなるゲート電極、4
2.42′・・・ビット線。 出願人代理人 弁理士 鈴江武彦 7′5117I 第2図
FIG. 1 is a sectional view showing a conventional dynamic MOS memory, and FIG. 2 is a sectional view showing a dynamic MOS memory according to an embodiment of the present invention.
A sectional view of the OS memory, FIG. 3 is a plan view of the main part of FIG. 2,
Figure 4 is a sectional view taken along line IV-IV in Figure 3;
Figures (a) to (C) are cross-sectional views showing steps for forming the trench type capacitor of this example. 21... N-type silicon substrate, 22... P-type well region, 23... Field oxide film, 24a to 24c.
... Active region (memory cell), 25a-25e... Trench capacitor, 26a-26e... Groove portion, 27a-2
7e...n-type diffusion region (second conductivity type impurity diffusion region), 28a-28e...n-type diffusion region (first s-type impurity diffusion region), 29a-29e...extension portion, 30
...Electrodes made of first layer polycrystalline silicon, 31a to 3
1e...Silicon oxide group (insulating film for capacitors), 3
3... Boron-doped silicon oxide film, 34... Phosphorus-doped silicon oxide film, 358-35e... Transfer transistor, 36a-36c... n++ source region, 3
7a, 37b...n+ type drain regions 39a to 39
e...Gate electrode made of second layer polycrystalline silicon, 4
2.42'...Bit line. Applicant's agent Patent attorney Takehiko Suzue 7'5117I Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体層と、この半導体層の表面層
に選択的に埋設された第2導電型のウェル領域と、この
ウェル領域表面から前記半導体層中に達して設けられた
溝部と、この溝部内面のウェル領域及び半導体層に設け
られた第213電型の不純物拡散領域と、前記溝部内面
の不純物拡散領域に設Gノられた該拡散領域より接合深
さが浅い第1導電型の不純〜物拡散領域と、前記溝部内
から少なくとも開口部周辺に屋っでキャパシタ用絶縁膜
を介して設けられた電極とからなり、約記電極を第1の
キャパシタ電極とし、前記第1導電型の不純物拡散領域
を第2のキャパシタ電極とした構造の溝型キャパシタを
具備したことを特徴とする半導体記憶装置。
(1) A semiconductor layer of a first conductivity type, a well region of a second conductivity type selectively buried in the surface layer of the semiconductor layer, and a trench provided extending from the surface of the well region into the semiconductor layer. , a 213th type impurity diffusion region provided in the well region and the semiconductor layer on the inner surface of the trench, and a first conductive layer having a junction depth shallower than that of the diffusion region provided in the impurity diffusion region on the inner surface of the trench. an impurity diffusion region of a mold type, and an electrode provided from inside the groove to at least around the opening via an insulating film for a capacitor, the electrode being a first capacitor electrode, and the first electrode being a first capacitor electrode. 1. A semiconductor memory device comprising a trench type capacitor having a structure in which a conductive type impurity diffusion region is used as a second capacitor electrode.
(2)半導体層、ウェル領域、第2導電型の不純物拡散
領域及び第1s電型の不純物拡散領域の濃度を、夫々n
l 、n2 、n3 、n4とした場合それらの濃度関
係をnl <n2≦j13<n4とすることを特徴とす
る特許請求の範囲第1項記載の半導体記憶装置。
(2) The concentration of the semiconductor layer, the well region, the second conductivity type impurity diffusion region, and the first s conductivity type impurity diffusion region is set to n
2. The semiconductor memory device according to claim 1, wherein when l, n2, n3, and n4, their concentration relationship is nl<n2≦j13<n4.
(3)溝型キャパシタの第2導電型、第1導電型の不純
物拡散領域が二重拡散法により形成されたものであるこ
とを特徴とする特許請求の範囲第1項記載の半導体記憶
装置。
(3) The semiconductor memory device according to claim 1, wherein the second conductivity type and first conductivity type impurity diffusion regions of the trench capacitor are formed by a double diffusion method.
(4)第2導電型のウェル領域の表面に互いに電気的に
分離して設けられた第1導電型のソース、ドレイン領域
と、これらソース、トレイン領域間を少なくとも含むウ
ェル領域部分上にゲート絶縁膜を介して設けられたゲー
ト電極とからなる転送トランジスタを備え、かつ前記ソ
ース、ドレイン領域の一方が溝型キャパシタの第1導電
型の不純物拡散領域に接続し、他方がビット線と接続し
ていることを特徴とする特許請求の範囲第1項記載の半
導体記憶装置。
(4) Source and drain regions of the first conductivity type provided electrically isolated from each other on the surface of the well region of the second conductivity type, and gate insulation on the well region portion including at least between these source and train regions. a transfer transistor including a gate electrode provided through a film, one of the source and drain regions being connected to a first conductivity type impurity diffusion region of the trench capacitor, and the other being connected to a bit line. A semiconductor memory device according to claim 1, characterized in that:
JP59007958A 1983-12-15 1984-01-20 Semiconductor memory device Granted JPS60152059A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59007958A JPS60152059A (en) 1984-01-20 1984-01-20 Semiconductor memory device
KR1019840007746A KR890004767B1 (en) 1984-01-20 1984-12-07 Semiconductor memory device
DE8484115474T DE3477532D1 (en) 1983-12-15 1984-12-14 Semiconductor memory device having trenched capacitor
EP84115474A EP0169938B1 (en) 1983-12-15 1984-12-14 Semiconductor memory device having trenched capacitor
US07/857,727 US5428236A (en) 1983-12-15 1992-03-26 Semiconductor memory device having trenched capicitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007958A JPS60152059A (en) 1984-01-20 1984-01-20 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS60152059A true JPS60152059A (en) 1985-08-10
JPH0365664B2 JPH0365664B2 (en) 1991-10-14

Family

ID=11679992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007958A Granted JPS60152059A (en) 1983-12-15 1984-01-20 Semiconductor memory device

Country Status (2)

Country Link
JP (1) JPS60152059A (en)
KR (1) KR890004767B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273761A (en) * 1985-09-27 1987-04-04 Toshiba Corp Semiconductor memory device
JPS6294976A (en) * 1985-10-22 1987-05-01 Toshiba Corp Semiconductor memory device
JPS62141753A (en) * 1985-12-16 1987-06-25 Toshiba Corp Manufacture of semiconductor device
US4794434A (en) * 1987-07-06 1988-12-27 Motorola, Inc. Trench cell for a dram
US4803535A (en) * 1986-03-03 1989-02-07 Fujitus Limited Dynamic random access memory trench capacitor
US4860071A (en) * 1985-03-08 1989-08-22 Hitachi, Ltd. Semiconductor memory using trench capacitor
US4918503A (en) * 1987-04-13 1990-04-17 Nec Corporation Dynamic random access memory device having a plurality of one transistor type memory cells

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860071A (en) * 1985-03-08 1989-08-22 Hitachi, Ltd. Semiconductor memory using trench capacitor
JPS6273761A (en) * 1985-09-27 1987-04-04 Toshiba Corp Semiconductor memory device
JPS6294976A (en) * 1985-10-22 1987-05-01 Toshiba Corp Semiconductor memory device
JPS62141753A (en) * 1985-12-16 1987-06-25 Toshiba Corp Manufacture of semiconductor device
US4803535A (en) * 1986-03-03 1989-02-07 Fujitus Limited Dynamic random access memory trench capacitor
US4918503A (en) * 1987-04-13 1990-04-17 Nec Corporation Dynamic random access memory device having a plurality of one transistor type memory cells
US4794434A (en) * 1987-07-06 1988-12-27 Motorola, Inc. Trench cell for a dram

Also Published As

Publication number Publication date
JPH0365664B2 (en) 1991-10-14
KR890004767B1 (en) 1989-11-25
KR850005734A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
US4958318A (en) Sidewall capacitor DRAM cell
US4792834A (en) Semiconductor memory device with buried layer under groove capacitor
JPS6167953A (en) Semiconductor memory device and manufacture thereof
JPS61179568A (en) Manufacture of semiconductor memory device
US5428236A (en) Semiconductor memory device having trenched capicitor
JPH01123462A (en) Semiconductor memory
JPH01287956A (en) Semiconductor memory and manufacture thereof
JPS60152059A (en) Semiconductor memory device
JPS60128658A (en) Semiconductor memory device
JPS62193273A (en) Semiconductor memory
JPS63281457A (en) Semiconductor memory
JPS62200759A (en) Semiconductor memory
JPH03268462A (en) Formation of memory cell
JPS60128657A (en) Semiconductor memory device
JP3354333B2 (en) Semiconductor storage device
JP3128896B2 (en) Semiconductor storage device and method of manufacturing the same
JP3177038B2 (en) Semiconductor memory device and method of manufacturing the same
JP2760979B2 (en) Semiconductor memory device and method of manufacturing the same
JP2583123B2 (en) Method of forming memory cell
JP3288371B2 (en) Random access memory or electronic device and method of manufacturing the same
JPS61140171A (en) Semiconductor memory device
JP3075933B2 (en) Semiconductor memory device and method of manufacturing the same
JP3902731B2 (en) Electronic element or electronic device.
JP3238529B2 (en) Semiconductor device and method of manufacturing the same
JPH05182457A (en) Dynamic semiconductor memory