JPS6294976A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6294976A
JPS6294976A JP60235672A JP23567285A JPS6294976A JP S6294976 A JPS6294976 A JP S6294976A JP 60235672 A JP60235672 A JP 60235672A JP 23567285 A JP23567285 A JP 23567285A JP S6294976 A JPS6294976 A JP S6294976A
Authority
JP
Japan
Prior art keywords
substrate
type
groove
capacitor
impurity layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60235672A
Other languages
Japanese (ja)
Other versions
JPH0650767B2 (en
Inventor
Takeshi Tanaka
剛 田中
Hidemi Ishiuchi
秀美 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60235672A priority Critical patent/JPH0650767B2/en
Publication of JPS6294976A publication Critical patent/JPS6294976A/en
Publication of JPH0650767B2 publication Critical patent/JPH0650767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent soft errors, by applying a groove-dug-type capacitor structure wherein an impurity layer having a specific impurity density and the same conduction type as a substrate is formed on the whole part of the substrate from the surface of a silicon substrate to the depth deeper than the bottom of the groove. CONSTITUTION:After boron ion implantation with a dosage of 1X10<13>cm<2> into a P-type substrate 1 having resistivity of 5OMEGA.cm, thermal treatment is performed at a temperature of 1,190 deg.C for 680min to form an impurity layer 3a, and the impurity density profile of the substrate is adjusted. a 3mum-deep groove 21 is dug on a silicon substrate, and arsenic is diffused to form an N-type impurity layer 2, and then a SiO2 film 6 of 100Angstrom thickness is grown on the inside wall of the groove 21 by thermal oxidation. A polysilicon electrode 8 is arranged to form a capacitor. A one transistor/one capacitor-type dynamic memory is completed by installing a transistor for readout. Prevention characteristics for soft error superior to or equal to the conventional Hi-C structure can be realized, thereby.

Description

【発明の詳細な説明】 [発明の技術分野」 本発明は半導体記憶装置に係わり、特に1トランジスタ
/1キヤパシタ型のメモリセルを有するダイナミックメ
モリに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device, and particularly to a dynamic memory having a one-transistor/one-capacitor type memory cell.

[発明の技術的背景とその問題点] この種の1トランジスタ/1キヤパシタ型のダイナミッ
クメモリで、特にα線に起因するソフトエラーに対して
耐性のある構造として従来用いられてきたのは、いわ6
るHi−C(ハイキャパシタンス・セル)構造である。
[Technical background of the invention and its problems] The reason why this kind of one-transistor/one-capacitor type dynamic memory has been conventionally used as a structure that is particularly resistant to soft errors caused by alpha rays is that 6
It has a Hi-C (high capacitance cell) structure.

この構造は第4図に示すように、情報を蓄積すべきシリ
コン基板1と逆導電型の不純物領域2の下に、不純物濃
度が%板1より高いこれと同導電型の不純物濃度層3を
設けるもので、この高濃度不純物層がキャリアに対する
電位障壁を形成することにより、ソフトエラーが防止さ
れる。第4図において4,5は基板1とは逆導電型の領
域(ソース、ドレイン)、6は絶縁膜、7はゲート電極
、8はキャパシタンス電極である。
As shown in FIG. 4, this structure has an impurity concentration layer 3 of the same conductivity type, which has a higher impurity concentration than the silicon substrate 1, below the silicon substrate 1 on which information is to be stored and an impurity region 2 of the opposite conductivity type. This highly concentrated impurity layer forms a potential barrier against carriers, thereby preventing soft errors. In FIG. 4, 4 and 5 are regions (source, drain) of a conductivity type opposite to that of the substrate 1, 6 is an insulating film, 7 is a gate electrode, and 8 is a capacitance electrode.

第5図は第4図の電気的等価回路で、11はトランジス
タ、12は情報を蓄積するキャパシタ、13はワード線
、14はビット線である。
FIG. 5 is an electrical equivalent circuit of FIG. 4, in which 11 is a transistor, 12 is a capacitor for storing information, 13 is a word line, and 14 is a bit line.

平面上に形成されたキャパシタに対しては、従来より用
いられているH 1−c構造(第4図)で充分であった
が、LSIの高集積化に伴なって第6図に示すようにシ
リコン基板1中に溝21を掘り、その内壁をキャパシタ
として利用することが行なわれるようになってきた。第
6図においては第4図と対応する個所には同一符号が付
されている。
For capacitors formed on a plane, the conventionally used H1-c structure (Fig. 4) was sufficient, but with the increasing integration of LSIs, the structure shown in Fig. 6 has been used. Recently, a trench 21 has been dug in the silicon substrate 1 and the inner wall thereof has been used as a capacitor. In FIG. 6, parts corresponding to those in FIG. 4 are given the same reference numerals.

この構造でも、第6図に示すようにHi−C構造をとる
ことは原理的に可能であるが、容易に分かるように従来
の如くイオン注入法により手軽に不純物領域3を形成す
ることはできない。この領域3を形成する一つの方法は
、BSG膜のような固体拡散源を使用することであるが
、かなり煩多な工程を必要とするものである。
Even with this structure, it is theoretically possible to form a Hi-C structure as shown in FIG. 6, but as can be easily seen, the impurity region 3 cannot be easily formed using the conventional ion implantation method. . One method for forming this region 3 is to use a solid diffusion source such as a BSG film, but this requires quite a complicated process.

し発明の目的〕 本発明は上記実情に鑑みてなされたもので、その目的と
するところは、従来のH;−C構造と同等以上の耐ソフ
トエラー性をもち、溝掘り型のキャパシタ構造に容易に
適用できる半導体記憶装置を提供しようとするものであ
る。
OBJECT OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a trench-type capacitor structure with soft error resistance equal to or higher than that of the conventional H;-C structure. The present invention aims to provide a semiconductor memory device that can be easily applied.

[発明の概要コ 本発明は、溝掘り型のキャパシタ構造を用いる場合にお
いて、シリコン基板表面から溝の底部より深い位置まで
の基板全体に、不純物濃度が1×1018an′3以上
で、基板の不純物濃度より高く、基板と同一導電型を有
する不純物層を設けることにより、ソフトエラーを防止
するようにしたものである。
[Summary of the Invention] The present invention provides that when using a trench type capacitor structure, the impurity concentration in the entire substrate from the surface of the silicon substrate to a position deeper than the bottom of the trench is 1×1018 an'3 or more, and the impurity of the substrate is By providing an impurity layer having a higher concentration than the substrate and having the same conductivity type as the substrate, soft errors are prevented.

[発明の実施例] 以下図面を参照して本発明の一実施例を説明する。第1
図は同実施例の構成を示す断面図であるが、これは前記
従来例のものに対応するので、対応個所には同一符号を
用いる。まず比抵抗が5Ω・airのP型基本板1に、
ドーズ量lX1013αりでボロンをイオン注入し11
90℃で680分の熱拡散を行なって不純物層3aを形
成し、第2図のように基板の不純物濃度プロファイルを
調整する。次にシリコン基板に深さ3μmの溝21を掘
り、ヒ素を拡散させてN型の不純物領域2を形成した後
、熱酸化により、溝21の内壁に100人の5Lo2膜
6を成長させる。その後ポリシリコン電極8を設け、キ
ャパシタ(第5図の12に相当)形成を行なう。その後
このキャパシタに隣接して書き込み、読み出し用のトラ
ンジスタ(第5図の11に相当)を設け、更に所定の配
線を行なうことにより、第1図のような1トランジスタ
/1キヤパシタ型のダイナミックメモリが完成する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a sectional view showing the configuration of the same embodiment, but since this corresponds to that of the conventional example, the same reference numerals are used for corresponding parts. First, on the P-type basic board 1 with a specific resistance of 5Ω・air,
Boron ions were implanted at a dose of lX1013α.11
Thermal diffusion is performed at 90° C. for 680 minutes to form an impurity layer 3a, and the impurity concentration profile of the substrate is adjusted as shown in FIG. Next, a trench 21 with a depth of 3 μm is dug in the silicon substrate, arsenic is diffused to form an N-type impurity region 2, and then a 100-layer 5Lo2 film 6 is grown on the inner wall of the trench 21 by thermal oxidation. Thereafter, a polysilicon electrode 8 is provided, and a capacitor (corresponding to 12 in FIG. 5) is formed. After that, a writing/reading transistor (corresponding to 11 in Fig. 5) is installed adjacent to this capacitor, and by further performing predetermined wiring, a 1-transistor/1-capacitor type dynamic memory as shown in Fig. 1 is created. Complete.

第3図が本発明の効果を示すもので、縦軸は実施例で述
べた方法により、ボロンのイオン注入量を変化させて作
成したダイナミックメモリのソフトエラー・レート、横
軸はボロンのイオン注入ドーズ量である。第3図から明
らかなように、本発明はソフトエラー・レートの低減に
著しい効果を示し、ボロンのイオン注入量を5×101
2cm″2とすることで、従来のHi−C構造とほぼ同
等のソフトエラー耐性を有するダイナミックメモリが得
られる。またボロンのイオン注入ドーズ量を1×101
3cm’2以上とすることで、従来のHi−C構造に比
較して著しく良好なソフトエラー・レートが得られる。
Figure 3 shows the effect of the present invention, where the vertical axis is the soft error rate of a dynamic memory created by varying the boron ion implantation amount using the method described in the example, and the horizontal axis is the boron ion implantation rate. It is the dose amount. As is clear from FIG. 3, the present invention has a remarkable effect on reducing the soft error rate, and the boron ion implantation amount is reduced to 5×101
2cm''2, a dynamic memory with soft error resistance almost equivalent to that of the conventional Hi-C structure can be obtained.Also, by setting the boron ion implantation dose to 1×101
By setting it to 3 cm'2 or more, a significantly better soft error rate can be obtained compared to the conventional Hi-C structure.

この時第2図を参照するとわかるように、上記5×10
12 cm 4のイオン注入量の場合、シリコン基板表
面から溝21の底部までの不純物濃度は、概略1×10
1S101S以上となっている。また実施例のようにl
X10”cm’のドーズ量を用いれば不純物層3aの濃
度は概略2X1016cm’以上となるが、この場合上
記のように従来のHi−C構造に比較して著しい効果が
得られるようになるものである。
At this time, as you can see from Figure 2, the above 5 x 10
In the case of an ion implantation dose of 12 cm 4 , the impurity concentration from the silicon substrate surface to the bottom of the trench 21 is approximately 1×10
It is 1S101S or more. Also, as in the example
If a dose of X10"cm' is used, the concentration of the impurity layer 3a will be approximately 2X1016cm' or more, but in this case, as mentioned above, a remarkable effect can be obtained compared to the conventional Hi-C structure. be.

[発明の効果] 以上説明した如く本発明によれば、従来の1−(i−C
構造と同等以上の耐ソフトエラー性が実現でき、また製
造も容易な半導体記憶装置が提供できるものである。
[Effect of the invention] As explained above, according to the present invention, the conventional 1-(i-C
It is possible to provide a semiconductor memory device that can realize soft error resistance equivalent to or better than the structure and is easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図。 第3図はその効果を示す特性図、第4図は従来のHi−
C構造をとった記憶装置の断面図、第5図は1トランジ
スタ/1キヤパシタンス型メモリセルの回路図、第6図
は第4図の変形構造の断面図である。 1・・・シリコン基板、2.4.5・・・基板とは逆導
電型の領域、3a・・・lX10”cm−3以上の不純
物濃度層、6・・・絶縁膜、7.8・・・電極。 出願人代理人 弁理士 鈴江武彦 奉 1 図 (Hm)
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of an embodiment of the present invention. Figure 3 is a characteristic diagram showing the effect, and Figure 4 is a conventional Hi-
FIG. 5 is a circuit diagram of a one-transistor/one-capacitance type memory cell, and FIG. 6 is a cross-sectional view of a modified structure of FIG. 4. DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2.4.5...Region of conductivity type opposite to the substrate, 3a...Impurity concentration layer of lX10"cm-3 or more, 6...Insulating film, 7.8. ...Electrode. Applicant's representative Patent attorney Takehiko Suzue 1 Figure (Hm)

Claims (1)

【特許請求の範囲】[Claims] 1トランジスタ/1キャパシタ型のメモリセルを有する
半導体記憶装置において、一導電型の半導体基板と、こ
の半導体基板よりも高濃度でかつ1×10^1^6cm
^−^3以上の濃度の一導電型の不純物層と、この不純
物層に形成された溝と、この溝内に絶縁膜を介して形成
された電極とを有することを特徴とする半導体記憶装置
In a semiconductor memory device having one transistor/one capacitor type memory cell, a semiconductor substrate of one conductivity type and a semiconductor substrate having a higher concentration than the semiconductor substrate and having a size of 1×10^1^6 cm are used.
A semiconductor memory device characterized by having an impurity layer of one conductivity type with a concentration of ^-^3 or more, a groove formed in this impurity layer, and an electrode formed in this groove with an insulating film interposed therebetween. .
JP60235672A 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device Expired - Fee Related JPH0650767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235672A JPH0650767B2 (en) 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235672A JPH0650767B2 (en) 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6294976A true JPS6294976A (en) 1987-05-01
JPH0650767B2 JPH0650767B2 (en) 1994-06-29

Family

ID=16989488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235672A Expired - Fee Related JPH0650767B2 (en) 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0650767B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105268A (en) * 1983-11-11 1985-06-10 Toshiba Corp Semiconductor device and manufacture thereof
JPS60140860A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Semiconductor device
JPS60152059A (en) * 1984-01-20 1985-08-10 Toshiba Corp Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105268A (en) * 1983-11-11 1985-06-10 Toshiba Corp Semiconductor device and manufacture thereof
JPS60140860A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Semiconductor device
JPS60152059A (en) * 1984-01-20 1985-08-10 Toshiba Corp Semiconductor memory device

Also Published As

Publication number Publication date
JPH0650767B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US4141027A (en) IGFET integrated circuit memory cell
TW212851B (en)
US5106774A (en) Method of making trench type dynamic random access memory device
JP2532182B2 (en) Method of manufacturing dynamic memory cell using stacked capacitor
JPS6155258B2 (en)
JPH02312270A (en) Dram cell and its manufacture
JPH0612805B2 (en) Method of manufacturing semiconductor memory device
JPS59191374A (en) Semiconductor integrated circuit device
JPH0131308B2 (en)
JPH0369185B2 (en)
JPS60224260A (en) Semiconductor memory device
US5646061A (en) Two-layer polysilicon process for forming a stacked DRAM capacitor with improved doping uniformity and a controllable shallow junction contact
JPS61107768A (en) Semiconductor memory device
JPS6294976A (en) Semiconductor memory device
JPS6340362A (en) Semiconductor storage device
JP2702702B2 (en) Semiconductor storage device
US4203125A (en) Buried storage punch through dynamic ram cell
JPH0444428B2 (en)
JPH0752755B2 (en) Method for manufacturing semiconductor device
JPH0750745B2 (en) Semiconductor device
JPS63278268A (en) Dynamic random-access memory cell
JPH0329186B2 (en)
JPH06125052A (en) Manufacture of semiconductor memory
JP2900717B2 (en) Semiconductor device
JP2553322B2 (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees