JPS6155258B2 - - Google Patents

Info

Publication number
JPS6155258B2
JPS6155258B2 JP52022685A JP2268577A JPS6155258B2 JP S6155258 B2 JPS6155258 B2 JP S6155258B2 JP 52022685 A JP52022685 A JP 52022685A JP 2268577 A JP2268577 A JP 2268577A JP S6155258 B2 JPS6155258 B2 JP S6155258B2
Authority
JP
Japan
Prior art keywords
insulating film
film
polycrystalline silicon
impurity doped
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52022685A
Other languages
Japanese (ja)
Other versions
JPS53108392A (en
Inventor
Mitsumasa Koyanagi
Kikuji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2268577A priority Critical patent/JPS53108392A/en
Priority to NLAANVRAGE7707297,A priority patent/NL176415C/en
Priority to GB27724/77A priority patent/GB1572674A/en
Priority to DE19772730202 priority patent/DE2730202A1/en
Priority to US05/812,907 priority patent/US4151607A/en
Publication of JPS53108392A publication Critical patent/JPS53108392A/en
Publication of JPS6155258B2 publication Critical patent/JPS6155258B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Description

【発明の詳細な説明】 (1) 発明の利用分野 本発明は、半導体装置の高集積化に関するもの
で、特に情報蓄積用の容量の一部がスイツチング
トランジスタの上方に重なるように形成された半
導体記憶装置に関するものである。
[Detailed Description of the Invention] (1) Field of Application of the Invention The present invention relates to high integration of semiconductor devices, and in particular, a semiconductor device in which a part of a capacitor for information storage is formed so as to overlap above a switching transistor. The present invention relates to semiconductor memory devices.

(2) 従来技術 第1図に平面図を、第2図にY方向断面図(メ
モリセル1ビツト分)を示す。従来知られている
1トランジスタ型MOSランダム・アクセス・メ
モリはスイツチングのためのMOSトランジスタ
1を情報を記憶するための容量2よりなるメモリ
セルをワード線(Al線)3とデータ線(拡散
層)4によつて選択するようになつている。第1
図、第2図において5は基板、6は素子間分離用
の絶縁膜、7はゲート酸化膜、8,12は第1層
多結晶シリコン、9は層間絶縁膜、4,10は拡
散層、11は反転層、22はコンタクト孔であ
る。
(2) Prior Art FIG. 1 shows a plan view, and FIG. 2 shows a cross-sectional view in the Y direction (for one bit of memory cell). A conventionally known one-transistor type MOS random access memory has a memory cell consisting of a MOS transistor 1 for switching, a capacitor 2 for storing information, a word line (Al line) 3 and a data line (diffusion layer). The selection is made by 4. 1st
2, 5 is a substrate, 6 is an insulating film for isolation between elements, 7 is a gate oxide film, 8 and 12 are first layer polycrystalline silicon, 9 is an interlayer insulating film, 4 and 10 are diffusion layers, 11 is an inversion layer, and 22 is a contact hole.

図からわかるように、情報を蓄積するための容
量2はスイツチングトランジスタ1と互いに重な
らないように同一平面に2次元的に配置されてい
るために、メモリ・セルのセル面積が大きくな
る。
As can be seen from the figure, since the capacitor 2 for storing information is two-dimensionally arranged on the same plane as the switching transistor 1 so as not to overlap with each other, the cell area of the memory cell increases.

(3) 発明の目的 本発明は蓄積容量の少なくとも一部をスイツチ
ング・トランジスタの上方に重なるように設ける
ことによつて、メモリセル面積を少なくし、
MOSメモリの集積度を上げることを目的とす
る。
(3) Purpose of the invention The present invention reduces the memory cell area by providing at least a portion of the storage capacitor so as to overlap above the switching transistor.
The purpose is to increase the degree of integration of MOS memory.

(4) 実施例 以下、本発明を実施例を参照して詳細に説明す
る。
(4) Examples Hereinafter, the present invention will be explained in detail with reference to examples.

第3図および第4図に本発明による半導体記憶
装置の一例を平面図および断面図で示す(メモリ
セル2ビツト分)。図からわかるように、本発明
においては比抵抗15Ω.cm、結晶軸方向〈100〉
のP型シリコン基板5の一部に1.5μmの厚さの
素子分離用酸化膜6,800Åの厚さのゲートSiO2
膜7、膜厚500Å、層抵抗15Ω/□の第1多結晶
シリコン・ゲート電極12、接合深さ1.5μmで
層抵抗10Ω/□のソースおよびドレイン領域1
0,13、4000Åの厚さのSiO2膜19を設けた
後、コンタクト孔18を通して不純物添加領域
(拡散領域)10に接するように膜厚5000Å、層
抵抗30Ω/□の第2多結晶シリコン電極14を形
成する。更に絶縁膜16および膜厚5000Å、層抵
抗15Ω/□の第3多結晶シリコン電極15を形成
し、8000Åの厚さのりんガラス(P2O5濃度2mole
%)9を堆積した後、コンタクト孔17を設け、
Al電極41を形成する。なお、第3図および第
4図において、第2多結晶シリコン14、絶縁膜
16、第3多結晶シリコン15は蓄積容量を構成
している。また、この場合、絶縁膜16としては
SiO2膜以外にSi3N4膜、Ta2O5膜の如き誘電率の
大きな膜あるいはこれらを組み合わせた多層絶縁
膜を使用することにより大きな蓄積容量を得るこ
とができる。従つて、従来のメモリセルで用いら
れている蓄積容量と同一の値を得る場合、その面
積は少なくてすむ。たとえば、絶縁膜として800
ÅのSiO2膜、Si2N4膜、Ta2O5膜を用いた場合、
コンタクト孔寸法2μm、マスク合わせ余裕2μ
m、多結晶シリコンゲート幅6μm、不純物添加
層(拡散層)幅6μm、蓄積容量2.22pFとする
と、1ビツトあたりのメモリセル面積は、それぞ
れ、725μm2,297μm2,192μm2となる。この面
積はそれぞれ同じ設計値を用いて製作した従来型
メモリのメモリセル面積925μm2の78%,32%,
21%である。
FIGS. 3 and 4 show a plan view and a sectional view of an example of a semiconductor memory device according to the present invention (for 2 bits of memory cells). As can be seen from the figure, in the present invention, the specific resistance is 15Ω. cm, crystal axis direction <100>
A device isolation oxide film 6 with a thickness of 1.5 μm is formed on a part of the P-type silicon substrate 5, and a gate SiO 2 with a thickness of 800 Å is formed.
Membrane 7, film thickness 500 Å, first polysilicon gate electrode 12 with layer resistance 15 Ω/□, source and drain regions 1 with junction depth 1.5 μm and layer resistance 10 Ω/□
After forming a SiO 2 film 19 with a thickness of 0, 13, or 4000 Å, a second polycrystalline silicon electrode with a thickness of 5000 Å and a layer resistance of 30 Ω/□ is placed in contact with the impurity doped region (diffusion region) 10 through the contact hole 18. form 14. Furthermore, an insulating film 16 and a third polycrystalline silicon electrode 15 with a film thickness of 5000 Å and a layer resistance of 15 Ω/□ are formed, and a phosphorous glass electrode 15 with a thickness of 8000 Å (P 2 O 5 concentration of 2 moles) is formed.
%) 9, a contact hole 17 is provided,
An Al electrode 41 is formed. Note that in FIGS. 3 and 4, the second polycrystalline silicon 14, the insulating film 16, and the third polycrystalline silicon 15 constitute a storage capacitor. Further, in this case, the insulating film 16 is
A large storage capacity can be obtained by using, in addition to the SiO 2 film, a film with a high dielectric constant such as a Si 3 N 4 film or a Ta 2 O 5 film, or a multilayer insulating film that is a combination of these films. Therefore, in order to obtain the same storage capacitance value as that used in conventional memory cells, the area required is smaller. For example, 800 as an insulating film.
When using SiO 2 film, Si 2 N 4 film, Ta 2 O 5 film of Å,
Contact hole size 2μm, mask alignment margin 2μm
Assuming that the polycrystalline silicon gate width is 6 μm, the impurity doped layer (diffusion layer) width is 6 μm, and the storage capacitance is 2.22 pF, the memory cell areas per 1 bit are 725 μm 2 , 297 μm 2 , and 192 μm 2 , respectively. These areas are 78%, 32%, and 32% of the memory cell area of 925 μm 2 of conventional memory fabricated using the same design values, respectively.
It is 21%.

本実施例で示したメモリセルへの情報の書き込
み、読み出しは次のように行う。すなわち、第3
多結晶シリコン電極15を接地電位に固定した
後、第1多結晶シリコンより成るワード線31に
正電圧を印加することによりスイツチングトラン
ジスタ1を導通させる。その後、Alより成るデ
ータ線41に“0”または“1”に相当する電圧
を印加することにより、蓄積容量2に情報となる
電荷を蓄積する。情報の読み出しはスイツチング
トランジスタ1を導通させた後、データ線41の
電位変化を検出することによつて行われる。本発
明のメモリセルにおいては、蓄積容量を形成する
のに反転層を用いていないため、それに基づくリ
ーク電流が流れない。従つて、記憶情報保持時間
が著く長くなるという利点がある。
Writing and reading information to and from the memory cell shown in this embodiment is performed as follows. That is, the third
After fixing polycrystalline silicon electrode 15 to the ground potential, switching transistor 1 is made conductive by applying a positive voltage to word line 31 made of first polycrystalline silicon. Thereafter, by applying a voltage corresponding to "0" or "1" to the data line 41 made of Al, charges serving as information are stored in the storage capacitor 2. Reading of information is performed by turning on the switching transistor 1 and then detecting a change in the potential of the data line 41. In the memory cell of the present invention, since an inversion layer is not used to form a storage capacitor, no leakage current flows due to the inversion layer. Therefore, there is an advantage that the storage information retention time becomes significantly longer.

第5図および第6図に本発明の他の実施例につ
いて平面図と断面図(メモリセル2ビツト分)を
示す。図からわかるように本実施例においては、
不純物添加領域(拡散領域)10,13と第2多
結晶シリコン電極14およびAl電極41を接触
させるためのコンタクト孔18,17を自己整合
で形成している。このような自己整合によるコン
タクト孔の形成は本発明者等が先に出願した特願
昭50−111622号明細書に詳しく示されている。
FIGS. 5 and 6 show a plan view and a cross-sectional view (for 2 bits of memory cells) of another embodiment of the present invention. As can be seen from the figure, in this example,
Contact holes 18 and 17 for bringing the impurity doped regions (diffusion regions) 10 and 13 into contact with the second polycrystalline silicon electrode 14 and Al electrode 41 are formed in a self-aligned manner. The formation of contact holes by such self-alignment is described in detail in Japanese Patent Application No. 111622/1982, previously filed by the present inventors.

自己整合コンタクト方式を採用することによ
り、本発明を用いる利点が更に顕著になる。たと
えば、絶縁膜16として800ÅのSiO2膜、Si3N4
膜、Ta2O5膜を使用し、前述の設計値に基づいて
本実施例のメモリを製作するとメモリセル面積は
それぞれ675μm2,270μm2,176μm2となる。こ
の面積は、それぞれ、同じ設計値を用いて製作し
た従来型メモリのメモリセル面積925μm2の73
%,29%,19%である。
By employing a self-aligned contact method, the advantages of using the present invention become even more pronounced. For example, as the insulating film 16, an 800 Å SiO 2 film, Si 3 N 4
When the memory of this embodiment is manufactured using a Ta 2 O 5 film and a Ta 2 O 5 film based on the above-mentioned design values, the memory cell areas will be 675 μm 2 , 270 μm 2 , and 176 μm 2 , respectively. This area is 73% of the memory cell area of 925μm 2 of conventional memory fabricated using the same design values, respectively.
%, 29%, 19%.

第7図および第8図に本発明の他の実施例につ
いて平面図と断面図を示す(メモリセル2ビツト
分)。本実施例においては図に示すようにX方向
(データ線方向)の素子分離を800ÅのSiO2膜2
1上に形成した第1多結晶シリコン20に負電圧
を印加すること(フイールド・シールドと記す)
により行つている。フイールド・シールド方法に
ついてはすでに公知の文献に詳しく述べられてい
る。自己整合コンタクトおよびフイールド・シー
ルド方法を採用することにより、本発明を用いる
利点が更に顕著になる。すなわち、局所酸化によ
つて素子分離用酸化膜を形成する場合に生じるよ
うな横方向酸化(バード・ビーク)によるコンタ
クト孔寸法の変化、および素子分離用酸化膜端部
での結晶欠陥などに基づくリーク電流が少なくな
り、自己整合コンタクト方式が容易になる。メモ
リセル面積に関しては第5図、第6図の場合とほ
ぼ同じである。なお、第3図から第8図におい
て、蓄積容量2を構成する第2多結晶シリコン1
4、絶縁膜16、第3多結晶シリコン15は自己
整合エツチングによりマスク合わせ余裕を必要と
せずに加工できる。
FIGS. 7 and 8 show a plan view and a sectional view of another embodiment of the present invention (for 2 bits of memory cells). In this example, as shown in the figure, element isolation in the X direction (data line direction) is performed using an 800 Å SiO 2 film 2.
Applying a negative voltage to the first polycrystalline silicon 20 formed on the first polycrystalline silicon 1 (referred to as field shield)
It is going by. Field shielding methods have already been described in detail in the known literature. By employing self-aligned contacts and field shielding methods, the advantages of using the present invention are even more pronounced. In other words, changes in contact hole dimensions due to lateral oxidation (bird's beak), which occur when forming an oxide film for element isolation by local oxidation, and crystal defects at the edges of the oxide film for element isolation, etc. Leakage current is reduced and self-aligned contact method is facilitated. Regarding the memory cell area, it is almost the same as in the cases of FIGS. 5 and 6. In addition, in FIGS. 3 to 8, the second polycrystalline silicon 1 constituting the storage capacitor 2
4. The insulating film 16 and the third polycrystalline silicon 15 can be processed by self-aligned etching without requiring a mask alignment margin.

(5) まとめ 以上説明したごとく本発明によれば、蓄積容量
の一部がスイツチング・トランジスタの上部に重
なるように設けるために、従来の半導体メモリに
くらべてメモリセル面積を著しく小さくでき、半
導体メモリの集積度を大幅に向上できる。本発明
による半導体記憶装置においては従来の1トラン
ジスタ型のMOSメモリのように、蓄積容量を形
成するために誘起した反転層に基づくリーク電流
が存在しないために、情報保持時間が著しく長く
なるという利点がある。
(5) Summary As explained above, according to the present invention, since a part of the storage capacitor is provided so as to overlap with the top of the switching transistor, the memory cell area can be significantly reduced compared to conventional semiconductor memory, and semiconductor memory The degree of integration can be greatly improved. Unlike the conventional one-transistor type MOS memory, the semiconductor memory device according to the present invention has the advantage that the information retention time is significantly longer because there is no leakage current due to the inversion layer induced to form the storage capacitor. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の1トランジスタ型MOSメモリ
セル1ビツトの平面図、第2図はその断面図、第
3図、第5図、第7図は本発明によるMOSメモ
リセル2ビツトの平面図、第4図、第6図、第8
図はその断面図である。 1:スイツチング・トランジスタ、2:蓄積容
量、3:ワード線(Al線)、4:データ線(拡散
層)、5:シリコン基板、6:素子間分離用酸化
膜、7:ゲート酸化膜、8:第1多結晶シリコン
電極、9:層間絶縁膜(りんガラス)、10,1
3:拡散層、11:反転層、12:第1多結晶シ
リコン・ゲート電極、14:第2多結晶シリコ
ン、15:第3多結晶シリコン、16:蓄積容量
形成用絶縁膜、17,18,22:コンタクト
孔、19:層間酸化膜、20:フイールドシール
ド用第1多結晶シリコン、21:フイールドシー
ルド用酸化膜、31:ワード線(第1多結晶シリ
コン)、41:データ線(Al線)。
FIG. 1 is a plan view of a conventional one-transistor type MOS memory cell with 1 bit, FIG. 2 is a cross-sectional view thereof, and FIGS. 3, 5, and 7 are plan views of a 2-bit MOS memory cell according to the present invention. Figure 4, Figure 6, Figure 8
The figure is a sectional view thereof. 1: Switching transistor, 2: Storage capacitor, 3: Word line (Al line), 4: Data line (diffusion layer), 5: Silicon substrate, 6: Oxide film for isolation between elements, 7: Gate oxide film, 8 : first polycrystalline silicon electrode, 9: interlayer insulating film (phosphorus glass), 10,1
3: Diffusion layer, 11: Inversion layer, 12: First polycrystalline silicon gate electrode, 14: Second polycrystalline silicon, 15: Third polycrystalline silicon, 16: Insulating film for forming storage capacitor, 17, 18, 22: Contact hole, 19: Interlayer oxide film, 20: First polycrystalline silicon for field shield, 21: Oxide film for field shield, 31: Word line (first polycrystalline silicon), 41: Data line (Al line) .

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電形を有する半導体基板の、素子分離
用の厚い絶縁膜で区分された表面領域に、所望の
間隔をもつて形成された第2導電形を有する複数
の不純物添加領域および所望の該不純物添加領域
間の上記半導体基板上に第1の絶縁膜を介して形
成された第1の導電膜からなるゲート電極をそな
えた絶縁ゲート電界効果トランジスタと、上記ゲ
ート電極の上部と側部に形成された第2の絶縁膜
と、上記ゲート電極上の上記第2の絶縁膜上から
上記不純物添加領域の表面を経て上記厚い絶縁膜
上へ延びる第2の導電膜および該第2の導電膜上
に積層して形成された第3の絶縁膜と第3の導電
膜から構成された記憶容量と、隣接する二つのメ
モリセル間に形成された上記不純物添加領域に電
気的に接続され、上記二つのメモリセルの有する
上記第3の導電膜上に形成された第4の絶縁膜上
に延びる第4の導電膜を少なくともそなえ上記第
2の導電膜は上記ゲート電極の側部に形成された
上記第2の絶縁膜と上記厚い絶縁膜によつて規定
される開口部を介して上記不純物添加領域と電気
的に接続されていることを特徴とする半導体装
置。
1. A plurality of impurity doped regions having a second conductivity type formed at desired intervals in a surface region of a semiconductor substrate having a first conductivity type divided by a thick insulating film for element isolation and a desired conductivity type. an insulated gate field effect transistor including a gate electrode made of a first conductive film formed on the semiconductor substrate between the impurity doped regions via a first insulating film; a second insulating film extending from above the second insulating film on the gate electrode to the thick insulating film through the surface of the impurity doped region; A storage capacitor composed of a third insulating film and a third conductive film formed in a laminated manner is electrically connected to the impurity doped region formed between two adjacent memory cells, and the second at least a fourth conductive film extending over a fourth insulating film formed on the third conductive film of the two memory cells; A semiconductor device, wherein the semiconductor device is electrically connected to the impurity-doped region through an opening defined by a second insulating film and the thick insulating film.
JP2268577A 1976-07-05 1977-03-04 Semiconductor device Granted JPS53108392A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2268577A JPS53108392A (en) 1977-03-04 1977-03-04 Semiconductor device
NLAANVRAGE7707297,A NL176415C (en) 1976-07-05 1977-06-30 SEMI-CONDUCTOR MEMORY DEVICE CONTAINING A MATRIX OF SEMI-CONDUCTOR MEMORY CELLS CONSISTING OF A FIELD-EFFECT TRANSISTOR AND A STORAGE CAPACITY.
GB27724/77A GB1572674A (en) 1976-07-05 1977-07-01 Semiconductor memory devices
DE19772730202 DE2730202A1 (en) 1976-07-05 1977-07-04 SEMICONDUCTOR STORAGE
US05/812,907 US4151607A (en) 1976-07-05 1977-07-05 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268577A JPS53108392A (en) 1977-03-04 1977-03-04 Semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP60093607A Division JPS6110272A (en) 1985-05-02 1985-05-02 Semiconductor device
JP60093606A Division JPS6110271A (en) 1985-05-02 1985-05-02 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS53108392A JPS53108392A (en) 1978-09-21
JPS6155258B2 true JPS6155258B2 (en) 1986-11-27

Family

ID=12089712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268577A Granted JPS53108392A (en) 1976-07-05 1977-03-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS53108392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198560U (en) * 1986-06-09 1987-12-17

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209156A (en) * 1982-05-31 1983-12-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and its manufacture
JPS58215067A (en) * 1982-06-08 1983-12-14 Nec Corp Semiconductor integrated circuit device
JPS602784B2 (en) * 1982-12-20 1985-01-23 富士通株式会社 semiconductor storage device
US5244825A (en) * 1983-02-23 1993-09-14 Texas Instruments Incorporated DRAM process with improved poly-to-poly capacitor
US5359216A (en) * 1983-02-23 1994-10-25 Texas Instruments Incorporated DRAM process with improved polysilicon-to-polysilicon capacitor and the capacitor
JPH0618257B2 (en) * 1984-04-28 1994-03-09 富士通株式会社 Method of manufacturing semiconductor memory device
JPH0673368B2 (en) * 1985-01-31 1994-09-14 富士通株式会社 Semiconductor memory device and manufacturing method thereof
US5098192A (en) * 1986-04-30 1992-03-24 Texas Instruments Incorporated DRAM with improved poly-to-poly capacitor
JPH02312269A (en) * 1989-05-26 1990-12-27 Toshiba Corp Semiconductor memory device and manufacture thereof
JPH0496270A (en) * 1990-08-03 1992-03-27 Sharp Corp Manufacture of semiconductor device
JP3421230B2 (en) * 1997-11-04 2003-06-30 株式会社日立製作所 Semiconductor storage device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198560U (en) * 1986-06-09 1987-12-17

Also Published As

Publication number Publication date
JPS53108392A (en) 1978-09-21

Similar Documents

Publication Publication Date Title
US4151607A (en) Semiconductor memory device
US4649406A (en) Semiconductor memory device having stacked capacitor-type memory cells
JPS60231357A (en) Semiconductor memory device
US4646118A (en) Semiconductor memory device
JPS62120070A (en) Semiconductor memory
JPH0294471A (en) Semiconductor storage device and manufacture thereof
IE55192B1 (en) Semiconductor memory device having stacked capacitor-type memory cells
JPS6155258B2 (en)
JPS62163365A (en) Manufacture of trench capacitor and integrated circuit memory cell
JP2621181B2 (en) MIS type semiconductor memory device
US4513304A (en) Semiconductor memory device and process for producing the same
JP2671899B2 (en) Semiconductor storage device
JPH0640573B2 (en) Semiconductor integrated circuit device
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
JPS59191374A (en) Semiconductor integrated circuit device
JPS63281457A (en) Semiconductor memory
JPH0744226B2 (en) Semiconductor device and manufacturing method thereof
JPH0347588B2 (en)
JPS6110271A (en) Semiconductor device
JPS61107768A (en) Semiconductor memory device
JPH077823B2 (en) Semiconductor integrated circuit device
JPH05110019A (en) Semiconductor memory storage
JP2554332B2 (en) 1-transistor type dynamic memory cell
JPH0321104B2 (en)
JPS62213273A (en) Dynamic random access memory