JPH0650767B2 - Method of manufacturing semiconductor memory device - Google Patents

Method of manufacturing semiconductor memory device

Info

Publication number
JPH0650767B2
JPH0650767B2 JP60235672A JP23567285A JPH0650767B2 JP H0650767 B2 JPH0650767 B2 JP H0650767B2 JP 60235672 A JP60235672 A JP 60235672A JP 23567285 A JP23567285 A JP 23567285A JP H0650767 B2 JPH0650767 B2 JP H0650767B2
Authority
JP
Japan
Prior art keywords
capacitor
layer
memory device
type
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60235672A
Other languages
Japanese (ja)
Other versions
JPS6294976A (en
Inventor
剛 田中
秀美 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60235672A priority Critical patent/JPH0650767B2/en
Publication of JPS6294976A publication Critical patent/JPS6294976A/en
Publication of JPH0650767B2 publication Critical patent/JPH0650767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は半導体記憶装置の製造方法に係わり、特に1ト
ランジスタ/1キャパシタ型のメモリセルを有するダイ
ナミックメモリの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor memory device, and more particularly to a method for manufacturing a dynamic memory having one transistor / one capacitor type memory cell.

[発明の技術的背景とその問題点] この種の1トランジスタ/1キャパシタ型のダイナミッ
クメモリで、特にα線に起因するソフトエラーに対して
耐性のある構造として従来用いられてきたのは、いわゆ
るHi−C(ハイキャパシタンス・セル)構造である。
この構造は第4図に示すように、情報を蓄積すべきシリ
コン基板1と逆導電型の不純物領域2の下に、不純物濃
度が基板1より高いこれと同導電型の不純物濃度層3を
設けるもので、この高濃度不純物層がキャリアに対する
電位障壁を形成することにより、ソフトエラーが防止さ
れる。第4図において4,5は基板1とは逆導電型の領
域(ソース,ドレイン)、6は絶縁膜、7はゲート電
極、8はキャパシタンス電極である。
[Technical Background of the Invention and its Problems] In this type of 1-transistor / 1-capacitor type dynamic memory, what has been conventionally used as a structure having resistance to a soft error caused by α-rays is so-called. It is a Hi-C (high capacitance cell) structure.
In this structure, as shown in FIG. 4, an impurity concentration layer 3 of the same conductivity type as that of the substrate 1 having an impurity concentration higher than that of the substrate 1 is provided under the impurity region 2 of the conductivity type opposite to that of the silicon substrate 1 for storing information. The high-concentration impurity layer forms a potential barrier against carriers, so that soft error is prevented. In FIG. 4, 4 and 5 are regions (sources and drains) of opposite conductivity type to the substrate 1, 6 is an insulating film, 7 is a gate electrode, and 8 is a capacitance electrode.

第5図は第4図の電気的等価回路で、11はトランジス
タ、12は情報を蓄積するキャパシタ、13はワード
線、14はビット線である。
FIG. 5 is an electrical equivalent circuit of FIG. 4, 11 is a transistor, 12 is a capacitor for storing information, 13 is a word line, and 14 is a bit line.

平面上に形成されたキャパシタに対しては、従来より用
いられているHi−C構造(第4図)で充分であった
が、LSIの高集積化に伴なって第6図に示すようにシ
リコン基板1中に溝21を掘り、その内壁をキャパシタ
として利用することが行なわれるようになってきた。第
6図においては第4図と対応する個所には同一符号が付
されている。この構造でも、第6図に示すようにHi−
C構造をとることは原理的に可能であるが、容易に分か
るように従来の如くイオン注入法により手軽に不純物領
域3を形成することはできない。この領域3を形成する
一つの方法は、BSG膜のような固体拡散源を使用する
ことであるが、かなり煩多な工程を必要とするものであ
る。
The Hi-C structure conventionally used (FIG. 4) was sufficient for a capacitor formed on a plane, but as shown in FIG. It has come to be practiced to dig a groove 21 in the silicon substrate 1 and use its inner wall as a capacitor. In FIG. 6, parts corresponding to those in FIG. 4 are designated by the same reference numerals. Even with this structure, as shown in FIG.
Although it is possible in principle to adopt the C structure, as is easily understood, the impurity region 3 cannot be easily formed by the ion implantation method as in the conventional case. One method of forming this region 3 is to use a solid diffusion source such as a BSG film, but it requires a considerably complicated process.

[発明の目的] 本発明は上記事情に鑑みてなされたもので、その目的と
するところは、従来のHi−C構造と同等以上の耐ソフ
トエラー性をもち、溝掘り型のキャパシタ構造に容易に
適用できる半導体記憶装置の製造方法を提供しようとす
るものである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and an object thereof is to have a soft error resistance equal to or higher than that of a conventional Hi-C structure, and to easily form a grooved capacitor structure. It is intended to provide a method of manufacturing a semiconductor memory device applicable to the above.

[発明の概要] 本発明は、溝掘り型のキャパシタ構造を用いる場合にお
いて、シリコン基板表面から溝の底部より深い位置まで
の基板全体に、不純物濃度が1×1016cm-3以上で、
基板の不純物濃度より高く、基板と同一導電型を有する
不純物層を設けることにより、ソフトエラーを防止する
ようにしたものである。
SUMMARY OF THE INVENTION The present invention provides an impurity concentration of 1 × 10 16 cm −3 or more over the entire substrate from the surface of the silicon substrate to a position deeper than the bottom of the trench when a trench-type capacitor structure is used.
By providing an impurity layer having a conductivity type higher than that of the substrate and having the same conductivity type as that of the substrate, soft error is prevented.

[発明の実施例] 以下図面を参照して本発明の一実施例を説明する。第1
図は同実施例の構成を示す断面図であるが、これは前記
従来例のものに対応するので、対応個所には同一符号を
用いる。まず比抵抗が5Ω・cmのP型基本板1に、ドー
ズ量1×1013cm-2でボロンをイオン注入し1190℃で
680分の熱拡散を行なって不純物層3aを形成し、第
2図のように基板の不純物濃度プロファイルを調整す
る。次にシリコン基板に深さ3μmの溝21を掘り、ヒ
素を拡散させてN型の不純物領域2を形成した後、熱酸
化により、溝21の内壁に100ÅのSiO膜6を成
長させる。その後ポリシリコン電極8を設け、キャパシ
タ(第5図の12に相当)形成を行なう。その後このキ
ャパシタに隣接して書き込み、読み出し用のトランジス
タ(第5図の11に相当)を設け、更に所定の配線を行
なうことにより、第1図のような1トランジスタ/1キ
ャパシタ型のダイナミックメモリが完成する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. First
The drawing is a cross-sectional view showing the structure of the same embodiment, but since this corresponds to the conventional example, the same reference numerals are used for corresponding portions. First, boron is ion-implanted into the P-type basic plate 1 having a specific resistance of 5 Ω · cm at a dose of 1 × 10 13 cm −2 , and thermal diffusion is performed at 1190 ° C. for 680 minutes to form the impurity layer 3a. The impurity concentration profile of the substrate is adjusted as shown. Next, a groove 21 having a depth of 3 μm is dug in a silicon substrate, arsenic is diffused to form an N-type impurity region 2, and then a 100 Å SiO 2 film 6 is grown on the inner wall of the groove 21 by thermal oxidation. Thereafter, a polysilicon electrode 8 is provided and a capacitor (corresponding to 12 in FIG. 5) is formed. After that, a transistor for writing and reading (corresponding to 11 in FIG. 5) is provided adjacent to this capacitor, and by further performing a predetermined wiring, a 1-transistor / 1-capacitor dynamic memory as shown in FIG. 1 is obtained. Complete.

第3図が本発明の効果を示すもので、縦軸は実施例で述
べた方法により、ボロンのイオン注入量を変化させて作
成したダイナミックメモリのソフトエラー・レート、横
軸はボロンのイオン注入ドーズ量である。第3図から明
らかなように、本発明はソフトエラー・レートの低減に
著しい効果を示し、ボロンのイオン注入量を5×10
12cm-2とすることで、従来のHi−C構造とほぼ同等
のソフトエラー耐性を有するダイナミックメモリが得ら
れる。またボロンのイオン注入ドーズ量を1×1013
cm-2以上とすることで、従来のHi−C構造に比較して
著しく良好なソフトエラー・レートが得られる。この時
第2図を参照するとわかるように、上記5×1012cm
-2のイオン注入量の場合、シリコン基板表面から溝21
の底部までの不純物濃度は、概略1×1016cm-3以上
となっている。また実施例のように1×1013cm-2
ドーズ量を用いれば不純物層3aの濃度は概略2×10
16cm-3以上となるが、この場合上記のように従来のH
i−C構造に比較して著しい効果が得られるようになる
ものである。
FIG. 3 shows the effect of the present invention. The vertical axis represents the soft error rate of the dynamic memory created by changing the boron ion implantation amount by the method described in the embodiment, and the horizontal axis represents the boron ion implantation. The dose amount. As is clear from FIG. 3, the present invention shows a remarkable effect in reducing the soft error rate, and the boron ion implantation amount is 5 × 10 5.
By setting the height to 12 cm -2 , a dynamic memory having a soft error resistance almost equal to that of the conventional Hi-C structure can be obtained. The boron ion implantation dose is set to 1 × 10 13
By setting it to be cm −2 or more, a remarkably good soft error rate can be obtained as compared with the conventional Hi-C structure. At this time, as can be seen by referring to FIG. 2, the above 5 × 10 12 cm
If the ion implantation amount is -2, the groove 21 is formed from the silicon substrate surface.
The impurity concentration up to the bottom is approximately 1 × 10 16 cm −3 or more. If a dose amount of 1 × 10 13 cm −2 is used as in the embodiment, the concentration of the impurity layer 3a is approximately 2 × 10.
16 cm -3 or more, but in this case the conventional H
The significant effect can be obtained as compared with the i-C structure.

[発明の効果] 以上説明した如く本発明によれば、従来のHi−C構造
と同等以上の耐ソフトエラー性が実現でき、また構造も
容易な半導体記憶装置が提供できるものである。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a semiconductor memory device that can realize a soft error resistance equal to or higher than that of the conventional Hi-C structure and that has a simple structure.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の断面図、第2図,第3図は
その効果を示す特性図、第4図は従来のHi−C構造を
とった記憶装置の断面図、第5図は1トランジスタ/1
キャパシタンス型メモリセルの回路図、第6図は第4図
の変形構造の断面図である。 1…シリコン基板、2,4,5…基板とは逆導電型の領
域、3a…1×1016cm-3以上の不純物濃度層、6…
絶縁膜、7,8…電極。
FIG. 1 is a sectional view of an embodiment of the present invention, FIGS. 2 and 3 are characteristic diagrams showing the effect thereof, and FIG. 4 is a sectional view of a storage device having a conventional Hi-C structure, and FIG. The figure shows 1 transistor / 1
FIG. 6 is a circuit diagram of the capacitance type memory cell, and FIG. 6 is a sectional view of the modified structure of FIG. 1 ... Silicon substrate, 2, 4, 5 ... Region of opposite conductivity type to the substrate, 3a ... 1 × 10 16 cm −3 or more impurity concentration layer, 6 ...
Insulating film, 7, 8 ... Electrodes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】トランジスタ/1キャパシタ型のメモリセ
ルを有する半導体記憶装置の製造方法において、前記キ
ャパシタの形成には、P型半導体基板に、ドーズ量1×
1013cm-2以上でボロンをイオン注入して1×1016cm
-3以上の濃度のイオン注入層を形成する工程と、前記イ
オン注入層に、該イオン注入層の深さより浅い溝を形成
する工程と、前記溝の側壁部及び底壁部にN型層を形成
するに当たり、このN型層の底部が前記溝の底壁と前記
イオン注入層の底部との間に配置されるように前記N型
層を形成する工程と、前記溝に、絶縁膜を介してキャパ
シタ用の電極層を形成する工程とを具備したことを特徴
とする半導体記憶装置の製造方法。
1. A method of manufacturing a semiconductor memory device having a transistor / 1 capacitor type memory cell, wherein the capacitor is formed on a P type semiconductor substrate with a dose of 1 ×.
Boron is ion-implanted at 10 13 cm -2 or more to 1 × 10 16 cm
A step of forming an ion-implanted layer having a concentration of -3 or more, a step of forming a groove in the ion-implanted layer that is shallower than the depth of the ion-implanted layer, and an N-type layer on the side wall and bottom wall of the groove. In forming the N-type layer, the step of forming the N-type layer so that the bottom of the N-type layer is located between the bottom wall of the groove and the bottom of the ion-implanted layer; And a step of forming an electrode layer for a capacitor, the method for manufacturing a semiconductor memory device.
JP60235672A 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device Expired - Fee Related JPH0650767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235672A JPH0650767B2 (en) 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235672A JPH0650767B2 (en) 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6294976A JPS6294976A (en) 1987-05-01
JPH0650767B2 true JPH0650767B2 (en) 1994-06-29

Family

ID=16989488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235672A Expired - Fee Related JPH0650767B2 (en) 1985-10-22 1985-10-22 Method of manufacturing semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0650767B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105268A (en) * 1983-11-11 1985-06-10 Toshiba Corp Semiconductor device and manufacture thereof
JPS60152059A (en) * 1984-01-20 1985-08-10 Toshiba Corp Semiconductor memory device
JPS60140860A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS6294976A (en) 1987-05-01

Similar Documents

Publication Publication Date Title
US4792834A (en) Semiconductor memory device with buried layer under groove capacitor
JP2655859B2 (en) Semiconductor storage device
JPH0365905B2 (en)
US4833647A (en) Semiconductor memory device having high capacitance and improved radiation immunity
JPH0810754B2 (en) Method for manufacturing trench capacitor and integrated circuit memory cell
JP2604705B2 (en) Method of manufacturing MOS capacitor
JPH0612805B2 (en) Method of manufacturing semiconductor memory device
JP2524002B2 (en) Method of manufacturing bipolar dynamic RAM having vertical structure and structure of the dynamic RAM
JPH0642534B2 (en) Method of forming a contact on a wall extending to a substrate
JPH0369185B2 (en)
US5646061A (en) Two-layer polysilicon process for forming a stacked DRAM capacitor with improved doping uniformity and a controllable shallow junction contact
JPS60224260A (en) Semiconductor memory device
JPH0650767B2 (en) Method of manufacturing semiconductor memory device
JPS61107768A (en) Semiconductor memory device
JPH0365904B2 (en)
JPS6340362A (en) Semiconductor storage device
JPH0444428B2 (en)
JP2661156B2 (en) Semiconductor memory device
JP2645008B2 (en) Semiconductor storage device
KR930005738B1 (en) Mist type dynamic random access memory cell and method for fabricating thereof
JPS61280653A (en) Dram cell and memory cell array thereof and making thereof
JP2906875B2 (en) Semiconductor memory cell and method of manufacturing the same
JPH0685426B2 (en) Dynamic random access memory
JPS60236260A (en) Semiconductor memory device
JPH0329186B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees