JP2702702B2 - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JP2702702B2
JP2702702B2 JP61136558A JP13655886A JP2702702B2 JP 2702702 B2 JP2702702 B2 JP 2702702B2 JP 61136558 A JP61136558 A JP 61136558A JP 13655886 A JP13655886 A JP 13655886A JP 2702702 B2 JP2702702 B2 JP 2702702B2
Authority
JP
Japan
Prior art keywords
layer
electrode
storage capacitor
plate electrode
fixed electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61136558A
Other languages
Japanese (ja)
Other versions
JPS62293667A (en
Inventor
俊郎 山田
道弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61136558A priority Critical patent/JP2702702B2/en
Publication of JPS62293667A publication Critical patent/JPS62293667A/en
Application granted granted Critical
Publication of JP2702702B2 publication Critical patent/JP2702702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体記憶装置に関し、特にダイナミックラ
ンダムアクセスメモリ(DRAM)の埋め込み型容量電極に
関するものである。 従来の技術 第3図に従来のDRAMの構造を示す。第3図に基づき従
来例について説明する。 半導体基板1上に形成された分離域11に囲まれた部分
の溝部20の側面に、蓄積容量の一方の電極となる拡散層
が形成され、この層12上に蓄積容量の誘電体層17さらに
その上に蓄積容量の他方の固定電位に接続されたプレー
ト電極14が形成されている。拡散層12に蓄えられた信号
電荷は読み出しゲート13を有するMSトランジスタ部
18を介して、コンタクト形成部16を通じて、ビット線10
に読み出される。15はポリシリコンよりなるプレート電
極14の表面に形成された高濃度不純物層であり、2は絶
縁膜である。 この構造において、拡散層12とプレート電極14間の結
合容量により、プレート電極14の電位も変動することに
なる。プレート電極14は隣接するメモリセルにも接続さ
れており、このプレート電極14の電位が変動すれば、隣
接するメモリセルの蓄積電荷量にも影響を与えるとい
う、プレート電極を介したセル間干渉の問題が発生す
る。また、信号電荷の読み出しの際、プレート電極14の
電位が一定値に落ちつくまでは、ビット線10の電位は確
定せず、その結果DRAM全体のアクセス時間の低下を招く
ことになる。以上の欠点を除くために従来は、プレート
電極14の上部に、イオン注入等により高濃度の不純物層
15を形成したりプレート電極1全体を高濃度の不純物を
含む層で形成することによりプレート電極14の抵抗を下
げこれにより、電位変動を少くするということが行なわ
れている。 プレート電極14全体を高濃度の不純物を含む層で形成
しようとする場合、誘電体層17への不純物の汚染が問題
である。他方、プレート電極14の表面層にのみ不純物層
を形成する場合、溝20の深さが深くなるにつれ、プレー
ト電極14の低抵抗化の効果が薄れるという問題点があ
る。 発明が解決しようとする問題点 上に示したように、従来の方法では、容量部の溝深さ
が深くなった場合、誘電体層17を不純物に汚染されない
ようにして、プレート電極14の低抵抗化を計ることがで
きないという問題点がある。 問題点を解決するための手段 本発明は、上記問題点を解決するために、蓄積容量の
固定電極が少なくとも半導体層と、その上部に形成され
た低抵抗層とからなる2層構造を有し、前記半導体層が
蓄積容量の誘電体層と接触され、前記固定電極が溝構造
内部に形成されたことを特徴とするものである。 作用 本発明は、蓄積容量の固定電極を少なくとも2層構造
とし、前記固定電極が溝構造内部に形成されたものであ
るため、電極の低抵抗化を実現し同時に、不純物汚染を
起させないものである。 実 施 例 本発明の一実施例装置の断面図を第1図に示し、第3
図と同一のものには同一番号を付している。この場合の
製造方法について説明する。シリコン基板1に掘られた
溝部20の側面に、蓄積容量の一方の電極となる拡散層12
を形成しさらにその上にSiO2等の誘電体層17を形成した
上に、他方の電極となるポリシリコン層30を溝部20に埋
めこみ完全に溝部が埋ってしまう前に、ポリシリコン層
に高濃度のイオン注入を行い低抵抗層31を形成する。こ
のようにして、埋め込みポリシリコン電極となる層30中
に、深さ方向に沿って、低抵抗層31を形成したあと再び
ポリシリコン層32の埋め込み形式を行って蓄積容量の固
定電極を形成する。次に読み出しMSトランジスタ部
18及コンタクト部16,ビット線10を形成する。 本実施例は上記の方法により固定電極をポリシリコン
層30,低抵抗層31,ポリシリコン層32の3層構造を実現し
たものである。第2図はこの途中の様子を示すもので、
溝部20の誘電体層17上にポリシリコン層30を埋込み形成
し、層30が溝部20を埋める前に層30の表面に低抵抗層31
を形成する。したがって、層31は誘電体層17に達するこ
となく容易に形成可能となり、かつ固定電極としては低
抵抗化が可能となる。 発明の効果 以上のように、本発明によれば、蓄積容量の固定電極
を少なくとも半導体層と、その上部に形成された低抵抗
層とからなる2層構造とし、前記半導体層が蓄積容量の
誘電体層と接触され、前記固定電極が溝構造内部に形成
されたものであるため、容量電極全体としての低抵抗化
を誘電体層への不純物汚染をおこさせることなく可能と
することができる。これによって、固定電極を介したセ
ル間干渉の問題を防ぐことができる、という格別の効果
を発揮する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and more particularly to a buried capacitance electrode of a dynamic random access memory (DRAM). FIG. 3 shows a structure of a conventional DRAM. A conventional example will be described with reference to FIG. A diffusion layer serving as one electrode of the storage capacitor is formed on the side surface of the trench 20 at a portion surrounded by the isolation region 11 formed on the semiconductor substrate 1. The dielectric layer 17 of the storage capacitor is formed on this layer 12. A plate electrode 14 connected to the other fixed potential of the storage capacitor is formed thereon. The signal charge stored in the diffusion layer 12 is stored in an MS transistor section having a read gate 13.
The bit line 10 through the contact formation portion 16 through 18
Is read out. Reference numeral 15 denotes a high-concentration impurity layer formed on the surface of the plate electrode 14 made of polysilicon, and reference numeral 2 denotes an insulating film. In this structure, the potential of the plate electrode 14 also fluctuates due to the coupling capacitance between the diffusion layer 12 and the plate electrode 14. The plate electrode 14 is also connected to an adjacent memory cell, and if the potential of the plate electrode 14 fluctuates, the amount of charge stored in the adjacent memory cell is also affected. Problems arise. Further, at the time of reading the signal charge, the potential of the bit line 10 is not determined until the potential of the plate electrode 14 falls to a constant value, and as a result, the access time of the entire DRAM is reduced. Conventionally, in order to eliminate the above disadvantages, a high concentration impurity layer was formed on the plate electrode 14 by ion implantation or the like.
It has been practiced to reduce the resistance of the plate electrode 14 by forming the electrode 15 or forming the entire plate electrode 1 with a layer containing a high concentration of impurities, thereby reducing the potential fluctuation. When the entire plate electrode 14 is to be formed of a layer containing a high concentration of impurities, contamination of the dielectric layer 17 with impurities is a problem. On the other hand, when the impurity layer is formed only on the surface layer of the plate electrode 14, there is a problem that the effect of reducing the resistance of the plate electrode 14 decreases as the depth of the groove 20 increases. 2. Problems to be Solved by the Invention As described above, in the conventional method, when the groove depth of the capacitance portion is increased, the dielectric layer 17 is prevented from being contaminated by impurities, and the lowering of the plate electrode 14 is prevented. There is a problem that resistance cannot be measured. Means for Solving the Problems In order to solve the above problems, the present invention has a two-layer structure in which a fixed electrode of a storage capacitor includes at least a semiconductor layer and a low resistance layer formed thereon. The semiconductor layer is in contact with a dielectric layer of a storage capacitor, and the fixed electrode is formed inside a groove structure. The present invention has a structure in which the fixed electrode of the storage capacitor has at least a two-layer structure, and the fixed electrode is formed inside the groove structure. is there. FIG. 1 is a cross-sectional view of an apparatus according to an embodiment of the present invention.
The same components as those in the drawings are denoted by the same reference numerals. The manufacturing method in this case will be described. A diffusion layer 12 serving as one electrode of a storage capacitor is provided on the side surface of the groove 20 dug in the silicon substrate 1.
A dielectric layer 17 of SiO 2 or the like is formed thereon, and a polysilicon layer 30 serving as the other electrode is buried in the groove 20. The low resistance layer 31 is formed by performing ion implantation at a concentration. In this way, the low resistance layer 31 is formed along the depth direction in the layer 30 to be the buried polysilicon electrode, and then the polysilicon layer 32 is buried again to form the fixed electrode of the storage capacitor. . Next, the readout MS transistor section
18 and the contact portion 16 and the bit line 10 are formed. In this embodiment, the fixed electrode has a three-layer structure of the polysilicon layer 30, the low resistance layer 31, and the polysilicon layer 32 by the above-described method. Fig. 2 shows the situation on the way.
A polysilicon layer 30 is buried and formed on the dielectric layer 17 in the groove 20, and a low-resistance layer 31 is formed on the surface of the layer 30 before the layer 30 fills the groove 20.
To form Therefore, the layer 31 can be easily formed without reaching the dielectric layer 17, and the resistance of the fixed electrode can be reduced. As described above, according to the present invention, according to the present invention, the fixed electrode of the storage capacitor has a two-layer structure including at least a semiconductor layer and a low-resistance layer formed on the semiconductor layer. Since the fixed electrode is formed inside the groove structure in contact with the body layer, the resistance of the entire capacitor electrode can be reduced without causing impurity contamination to the dielectric layer. Thereby, a special effect that the problem of inter-cell interference via the fixed electrode can be prevented is exhibited.

【図面の簡単な説明】 第1図は本発明の一実施例におけるDRAMの要部断面図、
第2図は同DRAMの製造方法を説明する断面図、第3図は
従来のDRAMの断面図である。 1……シリコン基板、11……分離部、12……拡散層、17
……誘電体層、20……溝部、30,32……ポリシリコン
層、31……低抵抗層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a principal part of a DRAM according to an embodiment of the present invention,
FIG. 2 is a sectional view for explaining a method of manufacturing the DRAM, and FIG. 3 is a sectional view of a conventional DRAM. 1 ... silicon substrate, 11 ... separation part, 12 ... diffusion layer, 17
... dielectric layer, 20 ... groove, 30, 32 ... polysilicon layer, 31 ... low resistance layer.

Claims (1)

(57)【特許請求の範囲】 1.蓄積容量の固定電極が少なくとも半導体層と、その
上部に形成された低抵抗層とからなる2層構造を有し、
前記半導体層が蓄積容量の誘電体層と接触され、前記固
定電極が溝構造内部に形成されたことを特徴とする半導
体記憶装置。
(57) [Claims] The fixed electrode of the storage capacitor has a two-layer structure including at least a semiconductor layer and a low-resistance layer formed thereon,
A semiconductor memory device, wherein the semiconductor layer is in contact with a dielectric layer of a storage capacitor, and the fixed electrode is formed inside a groove structure.
JP61136558A 1986-06-12 1986-06-12 Semiconductor storage device Expired - Lifetime JP2702702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136558A JP2702702B2 (en) 1986-06-12 1986-06-12 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136558A JP2702702B2 (en) 1986-06-12 1986-06-12 Semiconductor storage device

Publications (2)

Publication Number Publication Date
JPS62293667A JPS62293667A (en) 1987-12-21
JP2702702B2 true JP2702702B2 (en) 1998-01-26

Family

ID=15178037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136558A Expired - Lifetime JP2702702B2 (en) 1986-06-12 1986-06-12 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JP2702702B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954927A (en) * 1988-09-16 1990-09-04 Samsung Electronics Co., Ltd. Double capacitor and manufacturing method thereof
KR920004028B1 (en) * 1989-11-20 1992-05-22 삼성전자 주식회사 Semiconductor devices and its manufacturing method
JP4946870B2 (en) * 2005-12-12 2012-06-06 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511852B2 (en) * 1985-05-17 1996-07-03 松下電子工業株式会社 Method for manufacturing semiconductor device
JPS62266865A (en) * 1986-05-15 1987-11-19 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS62293667A (en) 1987-12-21

Similar Documents

Publication Publication Date Title
KR910002816B1 (en) Semiconductor memory
US5017981A (en) Semiconductor memory and method for fabricating the same
EP0175378A2 (en) Dynamic random access memory (DRAM)
JPH0616549B2 (en) Semiconductor integrated circuit device
JPH0682800B2 (en) Semiconductor memory device
US5859451A (en) Semiconductor memory having storage capacitor connected to diffusion region through barrier layer
JPH029165A (en) Semiconductor memory
US5606189A (en) Dynamic RAM trench capacitor device with contact strap
EP0177066A2 (en) Semiconductor memory device with information storage vertical trench capacitor and method of manufacturing the same
EP0154871A2 (en) One-transistor dynamic random-access memory
US5010379A (en) Semiconductor memory device with two storage nodes
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
JPS6155258B2 (en)
JP2702702B2 (en) Semiconductor storage device
JPH0576785B2 (en)
JP2519216B2 (en) Semiconductor memory device
US6355517B1 (en) Method for fabricating semiconductor memory with a groove
JP2574231B2 (en) Semiconductor memory device
JPH0795566B2 (en) Semiconductor memory device
JPS61107768A (en) Semiconductor memory device
JPH05110019A (en) Semiconductor memory storage
JPS61199657A (en) Semiconductor memory
JPS6110271A (en) Semiconductor device
KR900007233B1 (en) Semiconductor device
US5196363A (en) Method of forming mist type dynamic random access memory cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term