JPH0673368B2 - Semiconductor memory device and manufacturing method thereof - Google Patents

Semiconductor memory device and manufacturing method thereof

Info

Publication number
JPH0673368B2
JPH0673368B2 JP60016934A JP1693485A JPH0673368B2 JP H0673368 B2 JPH0673368 B2 JP H0673368B2 JP 60016934 A JP60016934 A JP 60016934A JP 1693485 A JP1693485 A JP 1693485A JP H0673368 B2 JPH0673368 B2 JP H0673368B2
Authority
JP
Japan
Prior art keywords
insulating film
capacitor
film
conductivity type
opening window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60016934A
Other languages
Japanese (ja)
Other versions
JPS61176148A (en
Inventor
泰示 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60016934A priority Critical patent/JPH0673368B2/en
Publication of JPS61176148A publication Critical patent/JPS61176148A/en
Publication of JPH0673368B2 publication Critical patent/JPH0673368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に係り、特にキャパシタ容量を
増大せしめた1トランジスタ・1キャパシタ構造のダイ
ナミック型ランダムアクセスメモリ(D−RAM)セルに
関する。
The present invention relates to a semiconductor memory device, and more particularly to a dynamic random access memory (D-RAM) cell having a one-transistor / one-capacitor structure with an increased capacitor capacity.

情報処理装置の機能拡大に伴い、該情報処理装置に具備
せしめられるD−RAMも大規模化されて来ており、該情
報処理装置の拡大を抑止するために、該D−RAMの高密
度高集積化が急速に進められている。
Along with the expansion of the functions of the information processing apparatus, the D-RAM included in the information processing apparatus has also been increased in scale, and in order to prevent the expansion of the information processing apparatus, the high density and high density of the D-RAM are provided. Integration is proceeding rapidly.

然しながら、該D−RAMの高密度高集積化を極度に進め
た際には、セル面積の縮小に伴うキャパシタ容量の大幅
な減少のために、該キャパシタに蓄積される情報電荷量
が大幅に減少して、情報読出し精度の低下や、α線によ
るソフトエラーに対する耐性等の低下等を生じて該D−
RAMの信頼度が低下するという問題を生じており、セル
面積が小さく且つキャパシタ容量の大きいD−RAMセル
が要望されている。
However, when the high density and high integration of the D-RAM is extremely advanced, the amount of information charges accumulated in the capacitor is greatly reduced due to the large reduction of the capacitor capacitance accompanying the reduction of the cell area. As a result, the accuracy of information reading is decreased, the resistance to a soft error due to α-rays is decreased, and the like.
There is a problem that the reliability of RAM is lowered, and a D-RAM cell having a small cell area and a large capacitor capacity is desired.

〔従来の技術〕[Conventional technology]

上記1トランジスタ・1キャパシタ型D−RAMセルにお
いて、キャパシタ容量を増大せしめる構造として当初提
案されたのが第3図に側断面を模式的に示すスタックド
・キャパシタ型セルである。
In the above-mentioned 1-transistor / 1-capacitor type D-RAM cell, a stacked-capacitor type cell whose side section is schematically shown in FIG. 3 was initially proposed as a structure for increasing the capacitance of the capacitor.

第3図において、1はp-型シリコン基板、2はp型チャ
ネル・カット領域、3はフィールド酸化膜、4はゲート
酸化膜、5はゲート電極、6はワード線(隣接する他セ
ルのトランスファ・トランジスタのゲート電極)、7は
第1の絶縁膜、8はn+型ドレイン領域、9は蓄積ノード
となるn+型領域、10は第1のキャパシタ電極、11は誘電
体膜、12は第2のキャパシタ電極、Trはトランスファ・
トランジスタ、Cはキャパシタを示す。
In FIG. 3, 1 is a p - type silicon substrate, 2 is a p-type channel cut region, 3 is a field oxide film, 4 is a gate oxide film, 5 is a gate electrode, 6 is a word line (transfer of an adjacent other cell). -Transistor gate electrode), 7 is a first insulating film, 8 is an n + type drain region, 9 is an n + type region serving as a storage node, 10 is a first capacitor electrode, 11 is a dielectric film, and 12 is The second capacitor electrode, Tr is the transfer
A transistor and C are capacitors.

このセル構造によれば、電荷蓄積用の第1のキャパシタ
電極が自己セルのトランスファ・トランジスタTrのゲー
ト電極5と隣接するワード線6の上部にまで延在せしめ
られるので、上記第2のn+型領域8をキャパシタの一電
極とする通常のD−RAMセルに比べ、キャパシタ容量は
2〜3倍程度に増大される。
According to this cell structure, since the first capacitor electrode for charge storage is extended to the upper part of the word line 6 adjacent to the gate electrode 5 of the transfer transistor Tr of the self cell, the second n + The capacitance of the capacitor is increased by a factor of 2 to 3 as compared with an ordinary D-RAM cell using the mold region 8 as one electrode of the capacitor.

然しながら高集積化が大幅に進んでいる状況においては
上記2〜3倍程度の容量増大では、蓄積情報の検出精度
及びα線ソフトエラー耐性の面で不充分であり、更にキ
ャパシタ容量を増大せしめる構造として従来提供された
のがトレンチ・キャパシタ型セルである。
However, in a situation where the degree of high integration is significantly advanced, the capacitance increase of about 2 to 3 times is insufficient in terms of detection accuracy of stored information and α ray soft error resistance, and a structure that further increases the capacitance of the capacitor. Conventionally provided is a trench capacitor type cell.

第4図は上記トレンチ・キャパシタ型セルの側断面を模
式的に示したもので、図中、12a及び12bはトレンチ、13
a及び13bは電荷蓄積領域(空乏層)、14はキャパシタ電
極、その他の符号は第3図と同一対象物を示す。
FIG. 4 is a schematic side sectional view of the above-mentioned trench capacitor type cell, in which 12a and 12b are trenches and 13
Reference numerals a and 13b denote charge storage regions (depletion layers), 14 denotes a capacitor electrode, and other reference numerals denote the same objects as in FIG.

このトレンチ・キャパシタ型セルは、トレンチの深さを
深くすることによって、同一セル面積を有する前記スタ
ックド・キャパシタ型セルに比べ、キャパシタ容量を更
に大幅に増大出来るという利点を持っている。
This trench capacitor type cell has an advantage that by increasing the depth of the trench, the capacitance of the capacitor can be significantly increased as compared with the stacked capacitor type cell having the same cell area.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

然し該トレンチ・キャパシタ型D−RAMセルにおいて
は、キャパシタ電極14に印加される電圧によってトレン
チ12a,12b等の周囲に形成される空乏層からなる電荷蓄
積領域13a,13b等が大きく拡がる(図のようにバックバ
イアスが強く機能するトレンチ先端部とチャネル・カッ
ト領域が機能するトレンチ基部との中間部で特に大きく
拡がる)ために、隣接するセルのトレンチ例えば12aと1
2bを接近して設けた場合、蓄積電荷のリークを生じて情
報が失われるという現象を生じる。
However, in the trench capacitor type D-RAM cell, the charge storage regions 13a, 13b and the like formed of depletion layers formed around the trenches 12a, 12b and the like are greatly expanded by the voltage applied to the capacitor electrode 14 (see the figure). Such as 12a and 1 of the adjacent cell trenches, because the back bias is particularly wide at the middle between the trench tip and the channel cut region.
When 2b is provided close to each other, a phenomenon occurs in which accumulated charge leaks and information is lost.

そのため各セル間の分離領域幅即ちフィールド酸化膜3
が配設される領域の幅を広くとる必要があり、これによ
って集積度の向上が妨げられるという問題があった。
Therefore, the isolation region width between each cell, that is, the field oxide film 3
There is a problem in that it is necessary to widen the width of the region in which is provided, which hinders the improvement of the degree of integration.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、一導電型半導体基板上に形成されたMIS
型トランスファトランジスタと、該トランジスタを覆っ
て該一導電型半導体基板上に形成された絶縁膜と、 該絶縁膜に形成され、かつ該トランジスタの蓄積ノード
となる反対導電型領域を表出する開口窓と、 該開口窓の側壁面に形成され、下端部が該反対導電型領
域と電気的に接続し、かつ該絶縁膜表面には実質的に延
在しないように形成される筒状の第1のキャパシタ電極
と、 少なくとも前記開口窓の側壁面において該第1のキャパ
シタ電極を覆うように形成された誘電体膜と、 該誘電体膜表面に、該第1のキャパシタ電極と電気的に
接続しないように、且つ前記絶縁膜表面に延在するよう
に形成される第2のキャパシタ電極と を有してなることを特徴とする半導体記憶装置,あるい
は、一導電型半導体基板上に形成されたMIS型トランス
ファトランジスタを覆うように、該一導電型半導体基板
表面に絶縁膜を形成する工程と、 次いで、該絶縁膜を異方性エッチングして、選択的に該
トランスファトランジスタの反対導電型のソースまたは
ドレイン領域を露出する開口窓を形成する工程と、 次いで、該開口窓の底面および側壁面から該絶縁膜上面
に延在するように第1の導電膜を被着形成する工程と、 次いで、該第1の導電膜を、該絶縁膜上面から除去しか
つ該開口窓の少なくとも側壁面には残すように、異方性
エッチングする工程と、 次いで、該第1の導電膜表面を覆うように誘電体膜を形
成する工程と、 次いで、該誘電体膜表面に、前記第1の導電膜と電気的
に接続しないように、第2の導電膜を被着形成する工程
と を有する半導体記憶装置の製造方法によって解決され
る。
The above problems are caused by the MIS formed on the one-conductivity type semiconductor substrate.
Type transfer transistor, an insulating film formed on the one conductivity type semiconductor substrate to cover the transistor, and an opening window exposing the opposite conductivity type region formed in the insulating film and serving as a storage node of the transistor A first cylindrical member formed on a side wall surface of the opening window so that a lower end portion thereof is electrically connected to the opposite conductivity type region and does not substantially extend to a surface of the insulating film. Capacitor electrode, a dielectric film formed so as to cover the first capacitor electrode at least on the side wall surface of the opening window, and the dielectric film surface is not electrically connected to the first capacitor electrode And a second capacitor electrode formed so as to extend on the surface of the insulating film, or a MIS formed on a semiconductor substrate of one conductivity type. Type tran A step of forming an insulating film on the surface of the semiconductor substrate of one conductivity type so as to cover the transfer transistor, and then anisotropically etching the insulating film to selectively form a source or drain of the opposite conductivity type of the transfer transistor. A step of forming an opening window exposing the region, a step of depositing and forming a first conductive film so as to extend from the bottom surface and side wall surface of the opening window to the insulating film upper surface, A step of anisotropically etching so that the first conductive film is removed from the upper surface of the insulating film and left on at least the side wall surface of the opening window; and then, a dielectric is formed so as to cover the surface of the first conductive film. Manufacture of a semiconductor memory device including a step of forming a film, and then a step of depositing and forming a second conductive film on the surface of the dielectric film so as not to be electrically connected to the first conductive film. Solved by the method It

〔作用〕[Action]

即ち本発明のD−RAMセルにおいては、トランスファ・
トランジスタの上部に厚い絶縁膜を設け、該絶縁膜に該
絶縁膜を貫通して該トランスファ・トランジスタの蓄積
ノードとなる不純物拡散領域に接する筒状のキャパシタ
を形成するものであり、該絶縁膜を厚く形成することに
よってキャパシタ容量の大幅な増大が可能であるので、
情報の検出精度及びα線ソフトエラー耐性の向上が図
れ、且つ隣接するセルのキャパシタとの間が該絶縁膜に
よって完全に分離されるので、蓄積電荷のリークを生ず
ることがなく蓄積情報の信頼度は向上する。
That is, in the D-RAM cell of the present invention, the transfer
A thick insulating film is provided on the upper part of the transistor, and a cylindrical capacitor is formed through the insulating film so as to come into contact with an impurity diffusion region serving as a storage node of the transfer transistor. By making it thick, it is possible to greatly increase the capacitance of the capacitor.
Since the information detection accuracy and the α-ray soft error resistance can be improved and the capacitor of the adjacent cell is completely separated by the insulating film, the stored information does not leak and the reliability of the stored information can be improved. Will improve.

〔実施例〕〔Example〕

以下本発明を図示実施例により、具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to illustrated embodiments.

第1図は本発明に係わる1トランジスタ・1キャパシタ
構造のD−RAMセルの一実施例を示す模式平面図(a)
及び模式側断面図(b)で、第2図はその製造方法を示
す工程断面図である。
FIG. 1 is a schematic plan view showing an embodiment of a D-RAM cell having a one-transistor / one-capacitor structure according to the present invention (a).
FIG. 2 is a schematic cross-sectional view (b), and FIG. 2 is a process cross-sectional view showing the manufacturing method.

全図を通じ同一対象物は同一符号で示す。The same object is denoted by the same symbol throughout the drawings.

第1図において、1はp-型シリコン基板、2はp型チャ
ネル・カット領域、3はフィールド酸化膜、4はゲート
酸化膜、5a,5b,5cは第1の多結晶シリコン層PAよりなる
ゲート電極(ワード線)、8はn+型ドレイン領域、9は
蓄積ノードとなるn+型領域、21は化学気相成長(CVD)
法で形成した厚さ例えば1〜2μm程度の二酸化シリコ
ン(SiO2)絶縁膜、22は蓄積ノードとなるn+型領域を表
出する例えば1.5〜2μm□程度の第1のスルーホー
ル、23はn+型ドレイン領域を表出する例えば0.7〜1μ
m□程度の第2のスルーホール、24は第2の多結晶シリ
コン層(PB)よりなる電荷蓄積用キャパシタ電極、25は
同じくPBよりなるドレイン電極、26は厚さ例えば100Å
程度のSiO2よりなる誘電体膜、27は第3の多結晶シリコ
ン層PCよりなる対向キャパシタ電極、28は燐珪酸ガラス
(PSG)絶縁膜、29はコンタクト窓、30はアルミニウム
等よりなるビット配線、Trはトランスファ・トランジス
タ、Cはキャパシタを示す。
In FIG. 1, 1 is a p - type silicon substrate, 2 is a p-type channel cut region, 3 is a field oxide film, 4 is a gate oxide film, and 5a, 5b and 5c are the first polycrystalline silicon layer PA. Gate electrode (word line), 8 is an n + type drain region, 9 is an n + type region serving as a storage node, 21 is chemical vapor deposition (CVD)
A silicon dioxide (SiO 2 ) insulating film having a thickness of, for example, about 1 to 2 μm formed by the method, 22 denotes an n + -type region serving as a storage node, for example, a first through hole having a thickness of about 1.5 to 2 μm, and 23 denotes Exposing the n + type drain region, for example, 0.7 to 1 μm
A second through hole of about m square, 24 is a capacitor electrode for charge storage made of a second polycrystalline silicon layer (PB), 25 is a drain electrode also made of PB, 26 is a thickness of, for example, 100Å
Dielectric film made of SiO 2 to the extent, 27 is a counter capacitor electrode made of a third polycrystalline silicon layer PC, 28 is a phosphosilicate glass (PSG) insulating film, 29 is a contact window, 30 is a bit wiring made of aluminum or the like. , Tr is a transfer transistor, and C is a capacitor.

同図に示すように本発明に係わるD−RAMセルは、 トランスファ・トランジスタTrの上部に厚いSiO2絶縁膜
21を設け、このSiO2絶縁膜21にトランスファ・トランジ
スタTrの蓄積ノードとなるn+型領域9を表出するキャパ
スタ用の第1のスルーホール22とn+型ドレイン領域8を
表出する第2のスルーホール23を形成し、 上記第1のスルーホール22内にトランスファ・トランジ
スタTrの蓄積ノードとなるn+型領域9に下端部が接する
筒状の電荷蓄積用キャパシタ電極24と、 この電極24の内面と上面及びこの電極24の底部に表出す
るn+型領域9の表面に形成された誘電体膜26と、 この電荷蓄積用キャパシタ電極24内に上記誘電体膜26を
介して埋め込まれ、上部がSiO2絶縁膜21に延在する対向
キャパシタ電極27とよりなるキャパシタCが設けられ、 トランスファ・トランジスタTrのn+型ドレイン領域8
が、上記第2のスルーホール23内に埋め込まれたドレイ
ン電極25及びコンタクト窓29を介しビット配線30に接続
されてなっている。
As shown in the figure, the D-RAM cell according to the present invention has a thick SiO 2 insulating film on the transfer transistor Tr.
A first through hole 22 for a capacitor and a n + type drain region 8 which exposes an n + type region 9 serving as a storage node of the transfer transistor Tr are provided on the SiO 2 insulating film 21. And a cylindrical charge storage capacitor electrode 24 whose lower end is in contact with the n + -type region 9 which is the storage node of the transfer transistor Tr in the first through hole 22. A dielectric film 26 formed on the inner and upper surfaces of 24 and the surface of the n + type region 9 exposed on the bottom of the electrode 24, and embedded in the charge storage capacitor electrode 24 via the dielectric film 26. A capacitor C having an opposing capacitor electrode 27 whose upper portion extends to the SiO 2 insulating film 21 is provided, and the n + type drain region 8 of the transfer transistor Tr is provided.
However, it is connected to the bit line 30 through the drain electrode 25 and the contact window 29 embedded in the second through hole 23.

上記D−RAMセルは、例えば以下に第2図(a)乃至
(e)に示す工程断面図を参照して説明する方法によっ
て形成される。
The D-RAM cell is formed, for example, by the method described below with reference to process sectional views shown in FIGS.

第2図(a)参照 通常の方法によりp-型シリコン基板1上にトランスファ
・トランジスタTrを形成した後、CVD法により該基板上
に厚さ例えば1〜2μm程度のSiO2絶縁膜21を形成し、 次いで通常のリアクティブ・イオンエッチング(RIE)
法により上記SiO2絶縁膜21に蓄積ノードとなるn+型領域
9を表出する例えば1.5〜2μm□程度の第1のスルー
ホール22、及びn+型ドレイン領域8を表出する例えば0.
7〜1μm□程度の第2のスルーホール23を形成する。
See FIG. 2 (a). After the transfer transistor Tr is formed on the p type silicon substrate 1 by the usual method, the SiO 2 insulating film 21 having a thickness of, for example, about 1 to 2 μm is formed on the substrate by the CVD method. Then normal reactive ion etching (RIE)
The n + type region 9 to be the storage node is exposed in the SiO 2 insulating film 21 by the method, for example, the first through hole 22 of about 1.5 to 2 μm □ and the n + type drain region 8 are exposed, for example, 0.
A second through hole 23 of about 7 to 1 μm □ is formed.

第2図(b)参照 次いで該基板上にCVD法により第2のスルーホール23を
埋める厚さ、例えば5000Å程度の第2の多結晶シリコン
層PBを形成する。この際第1のスルーホール22は埋まら
ず、その側壁面及び底面に上記厚さのPB層が形成され
る。
See FIG. 2B. Then, a second polycrystalline silicon layer PB having a thickness of, for example, about 5000 Å to fill the second through hole 23 is formed on the substrate by the CVD method. At this time, the first through hole 22 is not filled, and the PB layer having the above thickness is formed on the side wall surface and the bottom surface thereof.

第2図(c)参照 次いでRIE法で前面エッチングを行い、SiO2絶縁膜21の
上面及び第1のスルーホール22内の蓄積ノードとなるn+
型領域9面を表出させる。ここで、第1のスルーホール
22内には、その側壁面に沿って下端部が前記n+型領域9
に接する筒状のPB層が残留する。次いで熱酸化法により
PB層の表面及びn+型領域9の表出面に厚さ例えば100Å
程度のSiO2誘電体膜26を形成する。
Next, as shown in FIG. 2 (c), front surface etching is performed by the RIE method, and n + becomes the storage node in the upper surface of the SiO 2 insulating film 21 and the first through hole 22.
The surface of the mold region 9 is exposed. Where the first through hole
The lower end of the n + -type region 9 is located along the side wall of the n-type region 9.
The cylindrical PB layer contacting with remains. Then by thermal oxidation method
The thickness of the surface of the PB layer and the exposed surface of the n + type region 9, for example, 100 Å
A SiO 2 dielectric film 26 is formed to a degree.

なお第1のスルーホール22内のPB層は筒状の電荷蓄積用
キャパシタ電極24となり、第2のスルーホール23内のPB
層はドレイン電極25となる。
The PB layer in the first through hole 22 becomes a cylindrical charge storage capacitor electrode 24, and the PB layer in the second through hole 23 is formed.
The layer becomes the drain electrode 25.

第2図(d)参照 次いで該基板上にCVD法により上記筒状の電荷蓄積用キ
ャパシタ電極24の内部を埋める例えば5000Å程度の第3
の多結晶シリコン層PCを形成し、次いでRIE法により該P
C層に前記ドレイン電極25の上面を表出する開孔31を形
成する。
See FIG. 2 (d). Then, the inside of the cylindrical charge-storing capacitor electrode 24 is filled on the substrate by the CVD method, for example, the third capacitor of about 5000 Å.
Polycrystalline silicon layer PC is formed, and then the P layer is formed by the RIE method.
An opening 31 exposing the upper surface of the drain electrode 25 is formed in the C layer.

ここでPC層は対向キャパシタ電極27となる。Here, the PC layer becomes the counter capacitor electrode 27.

第2図(e)参照 次いで該基板上にCVD法により厚さ1μm程度のPSG絶縁
膜28を形成し、 通常の方法により該PSG絶縁膜28にドレイン電極25の上
面を表出するコンタクト窓29を形成し、 通常の方法により該絶縁膜29上に上記コンタクト窓29部
においてドレイン電極25に接するビット配線30を形成す
る。
Then, a PSG insulating film 28 having a thickness of about 1 μm is formed on the substrate by a CVD method, and a contact window 29 exposing the upper surface of the drain electrode 25 on the PSG insulating film 28 is formed by a usual method. And a bit line 30 in contact with the drain electrode 25 in the contact window 29 is formed on the insulating film 29 by a conventional method.

そして、以後図示しないカバー絶縁膜の形成等を行って
本発明に係わるD−RAMセルが完成する。
Then, a cover insulating film (not shown) is formed thereafter to complete the D-RAM cell according to the present invention.

上記実施例の説明から明らかなように、本発明に係わる
D−RAMセルにおいては、原理的に、CVD法によって導電
層が底部まで成長出来る深さであれば筒型のキャパシタ
をいくらでも深く形成することが可能である。従ってキ
ャパシタ容量を従来に比べ大幅に増大させることが出来
る。
As is clear from the description of the above embodiment, in the D-RAM cell according to the present invention, in principle, a cylindrical capacitor is formed as deep as possible so long as the conductive layer can grow to the bottom by the CVD method. It is possible. Therefore, the capacitance of the capacitor can be significantly increased as compared with the conventional one.

また該筒型のキャパシタは絶縁膜内に設けられるので、
隣接するセルの筒型キャパシタとの間が該絶縁膜で分離
されることになり、情報電荷のリークは完全に防止され
る。
Further, since the cylindrical capacitor is provided in the insulating film,
The insulating film separates the cylindrical capacitors of adjacent cells from each other, and the leakage of information charges is completely prevented.

更に又、キャパシタが絶縁膜内に設けられることによ
り、α線の入射によりシリコン基板内に発生した電荷が
キャパシタに到達することがなく、α線ソフトエラー耐
性も増大する。
Furthermore, since the capacitor is provided in the insulating film, the charge generated in the silicon substrate due to the incidence of α rays does not reach the capacitor, and the α-ray soft error resistance is increased.

なおキャパシタ電極は上記実施例に示す多結晶シリコン
に限られるものではなく、モリブデン・シリサイド等他
の導電物質であっても良い。
The capacitor electrode is not limited to the polycrystalline silicon shown in the above embodiment, but may be another conductive material such as molybdenum silicide.

〔発明の効果〕〔The invention's effect〕

以上説明のように本発明によれば、1トランジスタ・1
キャパシタ構造のダイナミック型ランダムアクセスメモ
リ(D−RAM)セルの、キャパシタ容量を大幅に増大
し、隣接するキャパシタ間の情報電荷のリークを無く
し、且つα線ソフトエラー耐性を向上せしめることがで
きるので、その信頼度が向上する。
As described above, according to the present invention, one transistor
Since the capacitance of a dynamic random access memory (D-RAM) cell having a capacitor structure can be significantly increased, the leakage of information charges between adjacent capacitors can be eliminated, and the α-ray soft error resistance can be improved. The reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わる1トランジスタ・1キャパシタ
構造のD−RAMセルの一実施例を示す模式平面図(a)
及び模式側断面図(b)、 第2図(a)乃至(e)はその製造方法を示す工程断面
図、 第3図はスタックド・キャパシタ型D−RAMセルの側断
面図、 第4図はトレンチ・キャパシタ型セルの側断面図であ
る。 図において、 5a,5b,5cはゲート電極(ワード線) 8はn+型ドレイン領域、 9は蓄積ノードとなるn+型領域、 21は二酸化シリコン絶縁膜、 22は第1のスルーホール、 23は第2のスルーホール、 24は電荷蓄積用キャパシタ電極、 25はドレイン電極、 26は誘電体膜、 27は対向キャパシタ電極、 28は燐珪酸ガラス絶縁膜、 29はコンタクト窓、 30はビット配線、 Trはトランスファ・トランジスタ、 Cはキャパシタ を示す。
FIG. 1 is a schematic plan view showing an embodiment of a D-RAM cell having a one-transistor / one-capacitor structure according to the present invention (a).
And schematic side sectional views (b), FIGS. 2 (a) to (e) are process sectional views showing the manufacturing method, FIG. 3 is a side sectional view of a stacked capacitor type D-RAM cell, and FIG. It is a sectional side view of a trench capacitor type cell. In the figure, 5a, 5b and 5c are gate electrodes (word lines) 8 is an n + type drain region, 9 is an n + type region to be a storage node, 21 is a silicon dioxide insulating film, 22 is a first through hole, 23 Is a second through hole, 24 is a charge storage capacitor electrode, 25 is a drain electrode, 26 is a dielectric film, 27 is a counter capacitor electrode, 28 is a phosphosilicate glass insulating film, 29 is a contact window, 30 is a bit line, Tr is a transfer transistor and C is a capacitor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板上に形成されたMIS型
トランスファトランジスタと、 該トランジスタを覆って該一導電型半導体基板上に形成
された絶縁膜と、 該絶縁膜に形成され、かつ該トランジスタの蓄積ノード
となる反対導電型領域を表出する開口窓と、 該開口窓の側壁面に形成され、下端部が該反対導電型領
域と電気的に接続し、かつ該絶縁膜表面には実質的に延
在しないように形成される筒状の第1のキャパシタ電極
と、 少なくとも前記開口窓の側壁面において該第1のキャパ
シタ電極を覆うように形成された誘電体膜と、 該誘電体膜表面に、該第1のキャパシタ電極と電気的に
接続しないように、且つ前記絶縁膜表面に延在するよう
に形成される第2のキャパシタ電極と を有してなることを特徴とする半導体記憶装置。
1. A MIS transfer transistor formed on a semiconductor substrate of one conductivity type, an insulating film formed on the semiconductor substrate of one conductivity type to cover the transistor, and formed on the insulating film. An opening window that exposes an opposite conductivity type region serving as a storage node of a transistor, a side wall surface of the opening window, a lower end portion of which is electrically connected to the opposite conductivity type region, and a surface of the insulating film is formed. A cylindrical first capacitor electrode formed so as not to extend substantially, a dielectric film formed so as to cover the first capacitor electrode at least on the side wall surface of the opening window, and the dielectric And a second capacitor electrode formed on the film surface so as not to be electrically connected to the first capacitor electrode and extending to the insulating film surface. Storage device.
【請求項2】一導電型半導体基板上に形成されたMIS型
トランスファトランジスタを覆うように、該一導電型半
導体基板表面に絶縁膜を形成する工程と、 次いで、該絶縁膜を異方性エッチングして、選択的に該
トランスファトランジスタの反対導電型のソースまたは
ドレイン領域を露出する開口窓を形成する工程と、 次いで、該開口窓の底面および側壁面から該絶縁膜上面
に延在するように第1の導電膜を被着形成する工程と、 次いで、該第1の導電膜を、該絶縁膜上面から除去しか
つ該開口窓の少なくとも側壁面には残すように、異方性
エッチングする工程と、 次いで、該第1の導電膜表面を覆うように誘電体膜を形
成する工程と、 次いで、該誘電体膜表面に、前記第1の導電膜と電気的
に接続しないように、第2の導電膜を被着形成する工程
と を有する半導体記憶装置の製造方法。
2. A step of forming an insulating film on the surface of the one conductivity type semiconductor substrate so as to cover the MIS transfer transistor formed on the one conductivity type semiconductor substrate, and then anisotropically etching the insulating film. And selectively forming an opening window that exposes the source or drain region of the opposite conductivity type of the transfer transistor, and then extending from the bottom surface and side wall surface of the opening window to the upper surface of the insulating film. A step of depositing and forming a first conductive film, and a step of anisotropically etching the first conductive film so as to remove it from the upper surface of the insulating film and leave at least the side wall surface of the opening window. A step of forming a dielectric film so as to cover the surface of the first conductive film, and a second step of electrically connecting the surface of the dielectric film to the first conductive film. The conductive film of Method of manufacturing a semiconductor memory device having a step.
JP60016934A 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof Expired - Lifetime JPH0673368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016934A JPH0673368B2 (en) 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016934A JPH0673368B2 (en) 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61176148A JPS61176148A (en) 1986-08-07
JPH0673368B2 true JPH0673368B2 (en) 1994-09-14

Family

ID=11929950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016934A Expired - Lifetime JPH0673368B2 (en) 1985-01-31 1985-01-31 Semiconductor memory device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0673368B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741857B2 (en) * 1987-05-11 1998-04-22 株式会社日立製作所 Semiconductor storage device
JP2621181B2 (en) * 1987-06-12 1997-06-18 日本電気株式会社 MIS type semiconductor memory device
JP2613077B2 (en) * 1988-03-25 1997-05-21 富士通株式会社 Method for manufacturing semiconductor device
JP2723530B2 (en) * 1988-04-13 1998-03-09 日本電気株式会社 Method for manufacturing dynamic random access memory device
JPH0221652A (en) * 1988-07-08 1990-01-24 Mitsubishi Electric Corp Semiconductor storage device
JPH03116965A (en) * 1989-09-29 1991-05-17 Mitsubishi Electric Corp Memory cell structure
JP2996409B2 (en) * 1990-02-06 1999-12-27 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US6744091B1 (en) 1995-01-31 2004-06-01 Fujitsu Limited Semiconductor storage device with self-aligned opening and method for fabricating the same
JP3623834B2 (en) * 1995-01-31 2005-02-23 富士通株式会社 Semiconductor memory device and manufacturing method thereof
JP3941133B2 (en) 1996-07-18 2007-07-04 富士通株式会社 Semiconductor device and manufacturing method thereof
JP2007189008A (en) * 2006-01-12 2007-07-26 Elpida Memory Inc Semiconductor memory device and method of fabricating same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108392A (en) * 1977-03-04 1978-09-21 Hitachi Ltd Semiconductor device
JPS55154762A (en) * 1979-05-22 1980-12-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor memory

Also Published As

Publication number Publication date
JPS61176148A (en) 1986-08-07

Similar Documents

Publication Publication Date Title
US5021842A (en) Trench DRAM cell with different insulator thicknesses
US4672410A (en) Semiconductor memory device with trench surrounding each memory cell
KR960003864B1 (en) Semiconductor memory device and the manufacturing method thereof
US4958318A (en) Sidewall capacitor DRAM cell
KR100232393B1 (en) Semiconductor memory and its fabrication method
KR900000170B1 (en) Dynamic memory cell and method of producing it
EP0337436A2 (en) Semiconductor memory device having improved dynamic memory cell structure
US5223447A (en) DRAM-cell having an isolation merged trench and its method of manufacture
JP2906807B2 (en) Semiconductor memory cell and manufacturing method thereof
JPH0616549B2 (en) Semiconductor integrated circuit device
US6255684B1 (en) DRAM cell configuration and method for its production
US5763305A (en) Method for forming a semiconductor memory device with a capacitor
US5136533A (en) Sidewall capacitor DRAM cell
US5606189A (en) Dynamic RAM trench capacitor device with contact strap
EP0177066A2 (en) Semiconductor memory device with information storage vertical trench capacitor and method of manufacturing the same
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
JP2604705B2 (en) Method of manufacturing MOS capacitor
KR920010695B1 (en) D-ram cell and its manufacturing method
JPS63310162A (en) Mis type semiconductor memory device
US5010379A (en) Semiconductor memory device with two storage nodes
US5166090A (en) Method for manufacturing a semiconductor random access memory cell
JPS6155258B2 (en)
JPH0642535B2 (en) How to make a memory cell
JPH0369185B2 (en)
JPH0744226B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term