JPS61199657A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS61199657A
JPS61199657A JP60041654A JP4165485A JPS61199657A JP S61199657 A JPS61199657 A JP S61199657A JP 60041654 A JP60041654 A JP 60041654A JP 4165485 A JP4165485 A JP 4165485A JP S61199657 A JPS61199657 A JP S61199657A
Authority
JP
Japan
Prior art keywords
insulating film
capacitor
type
silicon layer
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60041654A
Other languages
Japanese (ja)
Inventor
Yasumi Ema
泰示 江間
Takashi Yabu
薮 敬司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60041654A priority Critical patent/JPS61199657A/en
Publication of JPS61199657A publication Critical patent/JPS61199657A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/373DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate the capacitor extending under or around the transistor

Abstract

PURPOSE:To contract the cell space while improving the degree of integration by a method wherein a transfer transistor coming into contact with a conductor layer of capacitor is provided on a one conductive semiconductor layer laminated on the upper part of cylindrical capacitors arranged in through holes formed in an insulating film on a conductive type substrate through the intermediary of an insulating film. CONSTITUTION:Cylindrical capacitors C are formed in through holes 23 made in a thick SiO2 insulating film 22 and then the first interlayer insulating film 27 with the first contact window 28 exposing a part of charge accumulating electrode 26 is arranged on the surface of capacitors C. Besides, a P<-> type single crystal silicon layer 29 is arranged on the first interlayer insulating film 27 above the capacitors C. Finally a transfer transistor composed of a gate oxide film 30 formed on the silicon layer 29, gate electrodes 33 comprising e.g. N<+> type polycrystalline silicon layer PC formed on the gate oxide film 30, and N<+> type region 31 to be an accumulating node coming into contact with the charge accumulating electrode 26 in the capacitors C at the first contact window 28 formed in the P<-> type single crystal silicon layer 29 and an N<+> type drain region 32 may be arranged on the P<-> type single crystal silicon layer 29.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に係り、特にキャパシタ容量を
増大せしめた1トランジスタ・1キヤバシ夛構造のダイ
ナミック型ランダムアクセスメモリ CD−RAM)セ
ルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and particularly to a dynamic random access memory (CD-RAM) cell having a one-transistor, one-cabinet structure with increased capacitance.

情報処理装置の機能拡大に伴い、該情報処理装置に具備
せしめられるD−RAMも大規模化されて来ており、該
情報処理装置の拡大を抑止するために、該D−RAMの
高密度高集積化が急速に進められている。
As the functions of information processing devices have expanded, the D-RAMs installed in the information processing devices have also become larger in scale. Integration is progressing rapidly.

然しなから、該D−RAMの高密度高集積化を極度に進
めた際には、セル面積の縮小に伴うキャパシタ容量の大
幅な減少のために、該キャパシタに蓄積される情報電荷
量が大幅に減少して、情報の読出し精度の低下や、α線
によるソフトエラーに対する耐性(ソフトエラーα線耐
性)の低下などを生じて、該D−RAMの信頬度が低下
するという問題が起きており、セル面積が小さく且つキ
ャパシタ容量の大きいD−RAMセルが要望されている
However, when the D-RAM becomes extremely dense and highly integrated, the amount of information charge stored in the capacitor decreases significantly due to a significant reduction in capacitor capacity due to the reduction in cell area. This causes problems such as a decrease in information readout accuracy and a decrease in resistance to soft errors caused by alpha rays (soft error alpha ray resistance), resulting in a decrease in confidence in the D-RAM. Therefore, there is a demand for a D-RAM cell with a small cell area and a large capacitor capacity.

〔従来の技術〕[Conventional technology]

上記1トランジスタ・1キャパシタ型D−RAMセルに
おいて、キャパシタ容量を増大せしめる構造として当初
提案されたのが第3図に側断面を模式的に示すスタック
ド・キャパシタ型セルである。
In the one-transistor/one-capacitor type D-RAM cell, a stacked capacitor type cell, whose side cross section is schematically shown in FIG. 3, was originally proposed as a structure for increasing the capacitor capacity.

第3図において、1はp−型シリコン基板、2はp型チ
ャネル・カット領域、3はフィールド酸化膜、4はゲー
ト酸化膜、5はゲート電極、6はワード線(隣接する他
のセルのトランスファ・トランジスタのゲート電極)、
7は第1の絶縁膜、8はドレインとなる第1のn+型領
領域9は蓄積ノードとなる第2のn゛型領領域1oは第
1のキャパシタ電極、11は誘電体膜、12は第2のキ
ャパシタ電極、Trはトランスファ・トランジスタ、C
はキャパシタを示す。
In FIG. 3, 1 is a p-type silicon substrate, 2 is a p-type channel cut region, 3 is a field oxide film, 4 is a gate oxide film, 5 is a gate electrode, and 6 is a word line (for adjacent cells). transfer transistor gate electrode),
7 is a first insulating film, 8 is a drain, the first n+ type region 9 is a storage node, and the second n' type region 1o is a first capacitor electrode, 11 is a dielectric film, and 12 is a The second capacitor electrode, Tr, is a transfer transistor, C
indicates a capacitor.

このセル構造によれば、電荷蓄積用の第1のキャパシタ
電極が自己セルのトランスファ・トランジスタ(Tr)
のゲート電極と隣接するワード線6の上部にまで延在せ
しめられるので、上記第2のn゛型領領域8キャパシタ
の一電極とする通常のD−RAMセルに比べ、キャパシ
タ容量は2〜3倍程度に増大される。
According to this cell structure, the first capacitor electrode for charge storage is a transfer transistor (Tr) of the self-cell.
Since it extends to the upper part of the word line 6 adjacent to the gate electrode, the capacitor capacitance is 2 to 3 times higher than that of a normal D-RAM cell in which the second n-type region 8 serves as one electrode of the capacitor. It will be increased about twice as much.

然しなから高集積化が大幅に進んでいる状況においては
、上記2〜3倍程度の容量増大では蓄積情報の検出精度
及びソフトエラーα線耐性の面で不充分であり、更にキ
ャパシタ容量を増大せしめる構造として従来提供された
のがトレンチ・キャパシタ型セルである。
However, in a situation where high integration is progressing significantly, increasing the capacitance by a factor of 2 to 3 is insufficient in terms of detection accuracy of stored information and resistance to soft error alpha rays, and it is necessary to further increase the capacitor capacity. A trench capacitor type cell has conventionally been provided as a structure for this purpose.

第4図は上記トレンチ・キャパシタ型セルの側断面を模
式的に示したもので、図中、12a及び12bはトレン
チ、13a及び13bは電荷蓄積領域(空乏層)、14
はキャパシタ電極、その他の符号は第2図と同一対象物
を示す。
FIG. 4 schematically shows a side cross section of the trench capacitor type cell, in which 12a and 12b are trenches, 13a and 13b are charge storage regions (depletion layers), and 14
indicates a capacitor electrode, and other symbols indicate the same objects as in FIG.

このトレンチ・キャパシタ型セルは、トレンチの深さを
深くすることによって、同一セル面積を有1する前記ス
タックドパキャパシタ型セルに比べ、キャパシタ容量を
更に大幅に増大出来るという利点を持っている。
This trench capacitor type cell has the advantage that by increasing the depth of the trench, the capacitor capacity can be further increased significantly compared to the stacked capacitor type cell having the same cell area.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し該トレンチ・キャパシタ型D−RAMセルにおいて
は、キャパシタ電極14に印加される電圧によってトレ
ンチ128.12b等の周囲に形成される空乏層からな
る電荷蓄積領域13a、13b等が太き(拡がる(図の
ようにバックバイアスが強(機能するトレンチ先端部と
チャネル・カット領域が機能するトレンチ基部との中間
部で特に大きく拡がる)ために、隣接するセルのトレン
チ例えば12aと12bを接近して設けた場合、トレン
チ間に蓄積電荷のリークを生じて情報が失われるという
現象を生ずる。
However, in the trench capacitor type D-RAM cell, the charge storage regions 13a, 13b, etc. made of depletion layers formed around the trenches 128, 12b, etc. become thicker (widener) due to the voltage applied to the capacitor electrode 14. As shown in the figure, because the back bias is strong (particularly widens in the middle between the functional trench tip and the functional trench base), the trenches of adjacent cells, for example 12a and 12b, are placed close together. In this case, leakage of accumulated charge occurs between the trenches, resulting in a phenomenon in which information is lost.

そのため各セル間の分離領域幅即ちフィールド酸化膜3
が配設される領域の幅を広(とる必要があり、これによ
って集積度の向上が妨げられるという問題があった。
Therefore, the width of the isolation region between each cell, that is, the field oxide film 3
It is necessary to widen the width of the area in which the IC is disposed, which poses a problem in that it impedes the improvement of the degree of integration.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、導電性基板上の第1の絶縁膜に設けられ
たスルーホール内に、該スルーホールの内面及び該スル
ーホール内に表出する該導電性基板上に積層された第1
の導電体層と、該第1の導電体層上に形成された誘電体
膜と、該誘電体股上に積層された第2の導電体層とより
なる筒型のキャパシタを有し、該キャパシタの上部に第
2の絶縁膜を介して積層された一導電型半導体層に、ゲ
ートを挟んで配設される反対導電型領域の一方が該第2
の絶縁膜に配設されたコンタクト窓を介して該キャパシ
タの第2の導電体層に接するトランスファ・トランジス
タが設けられてなる本発明による半導体記憶装置によっ
て解決される。
The above-mentioned problem is solved by a first insulating film laminated on the conductive substrate exposed inside the through-hole and inside the through-hole in the through-hole provided in the first insulating film on the conductive substrate.
a cylindrical capacitor including a conductor layer, a dielectric film formed on the first conductor layer, and a second conductor layer laminated on the dielectric layer, the capacitor One conductivity type semiconductor layer is stacked on top of the semiconductor layer with a second insulating film interposed therebetween, and one of the opposite conductivity type regions disposed with the gate in between is the second conductivity type semiconductor layer.
This problem is solved by a semiconductor memory device according to the present invention, which includes a transfer transistor that is in contact with the second conductive layer of the capacitor through a contact window provided in the insulating film of the capacitor.

〔作用〕[Effect]

即ち本発明の1トランジスタ・1キャパシタ型D−RA
Mセルにおいては、筒状のキャパシタの上部にトランス
ファ・トランジスタが配設されるのでセル面積が縮小さ
れ、更にトランスファ、・トランジスタ下部の絶縁膜を
厚く形成し、筒状キャパシタの形成されるスルーホール
の深さを深くすることによって、キャパシタの電荷蓄積
容量を大幅に増大せしめることが出来る。
That is, the one-transistor/one-capacitor type D-RA of the present invention
In the M cell, the transfer transistor is arranged above the cylindrical capacitor, so the cell area is reduced, and the insulating film below the transfer transistor is formed thicker to form a through hole where the cylindrical capacitor is formed. By increasing the depth of the capacitor, the charge storage capacity of the capacitor can be greatly increased.

そしてキャパシタの周囲は絶縁膜で分離されるので隣接
するキャパシタとの間に情報電荷のリークを生ずること
が無(、また周囲が絶縁膜で分離され且つ情報電荷が蓄
積されるキャパシタ電極が対向電極に内包されているの
でシフトエラーα線耐性も大幅に向上する。
Since the periphery of the capacitor is separated by an insulating film, there is no leakage of information charges between adjacent capacitors (also, the periphery is separated by an insulating film, and the capacitor electrode where information charges are stored is connected to the opposite electrode). Since it is included in the shift error α ray resistance is also greatly improved.

〔実施例〕〔Example〕

以下本発明を図示実施例により、具体的に説明する。 The present invention will be specifically described below with reference to illustrated embodiments.

第1図は本発明に係わる1トランジスタ・1キヤパシタ
構造のD−RAMセルの一実施例を示す模式平面図(a
)及びA−A矢視断面図(bl、第2図(al乃至(f
)はその製造方法を示す工程断面図である。
FIG. 1 is a schematic plan view (a
) and A-A cross-sectional view (bl, Fig. 2 (al to (f)
) is a process sectional view showing the manufacturing method.

企図を通じ同一対象物は同一符号で示す。Identical objects are designated by the same reference numerals throughout the design.

第1図において、21は例えば高ドープのp型シリコン
よりなる導電性基板、22は厚さ2〜5μm程度の二酸
化シリコン(St(h)v7A縁膜、23は例えば1.
5〜2μm口程度のスルーホール、24は厚さ1000
人程度0p゛型多結晶シリコン層P^よりなる動向キャ
パシタ電極、25は例えば5iOzよりなる厚さ100
人程0の誘電体膜、26はスルーホール内を埋める例え
ば厚さ0.5〜1μm程度のn゛型多結晶シリコンJi
iPBよりなる電荷蓄積用キャパシタ電極、27は例え
ばSingよりなる厚さ5000〜8000人程度の第
1の層程度縁膜、28は第1のコンタクト窓、29は厚
さ3000〜5000人程度のp−型単程度シリコン層
、30は通常の厚さのゲート酸化膜、31は蓄積ノード
となるn゛型領領域32はn゛゛ドレイン領域、33は
n゛型多結晶シリコン層PCよりなるゲート電橋(ワー
ドり 、34は燐珪酸ガラス等よりなる第2の眉間絶縁
膜、35は第2のコンタクト窓、36はアルミニウム等
よりなるビット配線、Cはキャパシタ、Trはトランス
ファ・トランジスタを示している。
In FIG. 1, 21 is a conductive substrate made of, for example, highly doped p-type silicon, 22 is a silicon dioxide (St(h)v7A film) with a thickness of about 2 to 5 μm, and 23 is, for example, 1.
Through hole of about 5 to 2 μm, 24 has a thickness of 1000 mm
A trend capacitor electrode made of a 0p type polycrystalline silicon layer P^, 25 has a thickness of 100, for example, made of 5 iOz.
The dielectric film 26 is a dielectric film with a thickness of 0, for example, an n-type polycrystalline silicon film with a thickness of about 0.5 to 1 μm, which fills the inside of the through hole.
A charge storage capacitor electrode made of iPB, 27 a first layer film made of, for example, Sing and having a thickness of about 5,000 to 8,000 layers, 28 a first contact window, and 29 a P layer having a thickness of about 3,000 to 5,000 layers. 30 is a gate oxide film of normal thickness, 31 is an n-type region 32 which becomes a storage node is an n-drain region, and 33 is a gate electrode made of an n-type polycrystalline silicon layer PC. 34 is a second glabellar insulation film made of phosphosilicate glass, 35 is a second contact window, 36 is a bit wiring made of aluminum, etc., C is a capacitor, and Tr is a transfer transistor. .

同図に示すように本発明に係わるD−RAMセルは、 例えば高ドープのp型シリコンよりなる導電性基板21
上に設けた厚いSi0g絶縁膜22に該基板21面を表
出するスルーホール23を設け、 該スルーホール23の内面及び該スルーホール内に表出
する基板21面を含む該St島絶絶縁膜22上、該基板
21とオーミンクな接続がなされるp+型多結晶シリコ
ン層PAよりなる対向キャパシタ電極24を形成し、 該対向キャパシタ電極24の表面に例えばSingより
なる誘電体II!25を形成し、 該スルーホール23の上部に該誘電体膜25を介して該
スルーホール23内を埋める例えばn・型多結晶シリコ
ン層PBよりなる電荷蓄積用電極26を配設することに
よって、該厚いSi0g絶縁膜22のスルーホール23
内に筒状のキャパシタCが形成され、該キャパシタC配
設面上に例えば5iOtよりなり、該キャパシタCの電
荷蓄積用電極26の一部を表出する第1のコンタクト窓
28を有する第1の眉間絶縁膜27を配設し、゛ 該キャパシタCの上部に当たる該第1の眉間絶縁膜27
上に多結晶シリコンの単結晶化技術によって形成したp
”型単結晶シリコン層29を配設し、該p−型型箱結晶
9937層29上、該p−型型箱結晶9937層29上
゛形成したゲート酸化膜30と、該ゲート酸化膜30上
に形成した例えばn゛型多結晶シリコン層PCよりなる
ゲート電極33と、該p−−単結晶シリコン1J29に
形成した前記第1のコンタクト窓28においてキャパシ
タC°の電荷蓄積用型8i126に接し蓄積ノードとな
るn9型領域31、及びn゛゛ドレイン領域32、とか
らなるトランスファ・トランジスタTrが配設され、 その上部にPSG等よりなり、上記トランスファ・トラ
ンジスタTrのn゛゛ドレイン領域32を表出する第2
のコンタクト窓35を有する第2の眉間絶縁膜34を形
成し、 該第2の層間絶縁膜34上に上記第2のコンタクト窓3
5においてトランスファ・トランジスタTrの「型ドレ
イン領域32に接続するビット配線36が配設されてな
っている。
As shown in the figure, the D-RAM cell according to the present invention includes a conductive substrate 21 made of, for example, highly doped p-type silicon.
A through hole 23 exposing the surface of the substrate 21 is provided in the thick SiOg insulating film 22 provided above, and the St island insulating film including the inner surface of the through hole 23 and the surface of the substrate 21 exposed in the through hole is formed. 22, a counter capacitor electrode 24 made of a p+ type polycrystalline silicon layer PA which is ohminically connected to the substrate 21 is formed, and a dielectric material II! made of, for example, Sing is formed on the surface of the counter capacitor electrode 24. 25 is formed, and a charge storage electrode 26 made of, for example, an n-type polycrystalline silicon layer PB is provided above the through hole 23 via the dielectric film 25 to fill the inside of the through hole 23. Through hole 23 of the thick Si0g insulating film 22
A cylindrical capacitor C is formed therein, and a first contact window 28 made of, for example, 5iOt and exposing a part of the charge storage electrode 26 of the capacitor C is provided on the surface on which the capacitor C is disposed. The first glabella insulating film 27 corresponding to the upper part of the capacitor C is disposed.
P formed by single crystallization technology of polycrystalline silicon on top
A gate oxide film 30 is formed on the p-type box crystal 9937 layer 29, on the p-type box crystal 9937 layer 29, and on the gate oxide film 30. The gate electrode 33 made of, for example, an n-type polycrystalline silicon layer PC formed in A transfer transistor Tr consisting of an n9 type region 31 serving as a node and an n'' drain region 32 is disposed, and the upper part thereof is made of PSG or the like, and the n'' drain region 32 of the transfer transistor Tr is exposed. Second
A second glabellar insulating film 34 having a contact window 35 is formed, and the second contact window 3 is formed on the second interlayer insulating film 34.
5, a bit wiring 36 connected to the type drain region 32 of the transfer transistor Tr is provided.

上記D−RAM−ルは、例えば以下に第2図(al乃至
(f)に示す工程断面図を参照して説明する方法によっ
て形成される。
The D-RAM is formed, for example, by the method described below with reference to process cross-sectional views shown in FIGS. 2A to 2F.

第2図(a)参照 先ず熱酸化或いは化学気相成長(CV D)法によりp
0型多結晶シリコン導電性基板21上に厚さ2〜5μm
程度のStO□vA縁膜22を形成し、通常のりアクテ
ィブ・イオンエ・ノチング(RIE’)法により1.5
〜2μm口程度のスルーホール23を形成する。
Refer to Figure 2 (a). First, p is deposited by thermal oxidation or chemical vapor deposition (CVD) method.
2 to 5 μm thick on type 0 polycrystalline silicon conductive substrate 21
A StO□vA film 22 with a thickness of 1.5% is formed using a conventional glue active ion etching (RIE') method.
A through hole 23 with a diameter of about 2 μm is formed.

第2図(b)参照 次いでCVD法により上記スルーホール23の内面及び
該スルーホール23内に表出する基板21面を含む上記
Si0g絶縁膜22上に厚さ1000人程度0第1の多
結晶シリコン層P^を形成し、イオン注入法等により該
多結晶シリコンfiPAをp°型にする。この第1の多
結晶シリコン層PAは対向キャパシタ電極24になる。
Referring to FIG. 2(b), a first polycrystalline film having a thickness of approximately 1,000 layers is deposited on the SiOg insulating film 22, including the inner surface of the through hole 23 and the surface of the substrate 21 exposed inside the through hole 23, by CVD. A silicon layer P^ is formed, and the polycrystalline silicon fiPA is made into p° type by ion implantation or the like. This first polycrystalline silicon layer PA becomes the opposing capacitor electrode 24.

次いで熱酸化により該PAよりなる対向キャパシタ電極
24の表面に厚さ例えば100人程0のSiO□誘電体
v!、25を形成し、 次いでCVD法により上記誘電体膜25上にスルーホー
ル内を埋める厚さ例えば0.5〜1.um程度の第2の
多結晶シリコン層PBを形成し、イオン注入法等により
該第2の多結晶シリコンJiPBをn゛型にする。
Next, by thermal oxidation, a SiO□ dielectric material v! with a thickness of, for example, about 100 mm is formed on the surface of the opposing capacitor electrode 24 made of PA. , 25 is then formed on the dielectric film 25 by CVD to a thickness of, for example, 0.5 to 1.5 mm to fill the through hole. A second polycrystalline silicon layer PB having a thickness of approximately 100 nm is formed, and the second polycrystalline silicon JiPB is made into an n-type by ion implantation or the like.

第2図(C)参照 次いで通常のRIE法により上記第2の多結晶シリコン
層PRをパターンニングして8亥PBよりなる電荷蓄積
用キャパシタ電極26を形成する。
Referring to FIG. 2(C), the second polycrystalline silicon layer PR is then patterned by the usual RIE method to form a charge storage capacitor electrode 26 made of PB.

第2図(d)参照 次いでCVD法により該基板上に例えばSingよりな
る厚さ5000〜8000人程度の第1の眉程度縁膜2
7を形成し、 通常のRIE法等により該第1の眉間絶縁膜27に電荷
蓄積用キャパシタ電極26の一部を表出する第1のコン
タクト窓28を形成し、 次いでCVD法により該第1の眉間絶縁膜27上に厚さ
3000〜5000人程度の多結晶シ程度ン層を形成し
、レーザビームし走査によるレーザアニール法により上
記多結晶シリ−コン層を単結晶化し、イオン注入法によ
り該単結晶層をp−型単結晶シリコン層29とする。
Referring to FIG. 2(d), a first lamina film 2 of about 5,000 to 8,000 thickness and made of, for example, Sing is deposited on the substrate by CVD.
A first contact window 28 exposing a part of the charge storage capacitor electrode 26 is formed in the first glabella insulating film 27 by a normal RIE method, and then a CVD method is used to form a first contact window 28 exposing a part of the charge storage capacitor electrode 26. A polycrystalline silicon layer with a thickness of about 3,000 to 5,000 layers is formed on the glabella insulating film 27, and the polycrystalline silicon layer is made into a single crystal by a laser annealing method using a laser beam and scanning, and then is made into a single crystal by an ion implantation method. This single crystal layer is referred to as a p-type single crystal silicon layer 29.

第2図+8)参照 次いで上記p−型型詰結晶9937層9をRIE法によ
り所定の形状にパターンニングした後、通常のMOSト
ランジスタの製造方法に準じ、上記p−−単結晶シリコ
ン層29パターン上にゲート酸化膜30を形成し、 該ゲート酸化膜30上に第3の多結晶シリコン層pcよ
りなるゲート電極33を形成し、該ゲート電極33をマ
スクにしてイオン注入法により蓄積ノードとなるn°型
領領域31びn°°ドレイン領域32を形成する。
Refer to Fig. 2+8) Next, after patterning the p-type packed crystal 9937 layer 9 into a predetermined shape by RIE method, the p-type single crystal silicon layer 29 is patterned according to a normal MOS transistor manufacturing method. A gate oxide film 30 is formed on the gate oxide film 30, a gate electrode 33 made of a third polycrystalline silicon layer PC is formed on the gate oxide film 30, and a storage node is formed by ion implantation using the gate electrode 33 as a mask. An n° type region 31 and an n° drain region 32 are formed.

第2図(fl参照 次いでCVD法により該基板上にPSG等よりなる第2
の層間絶縁膜34を形成し、 RIE法により該第2の層間絶縁膜34に上記n1型ド
レイン領域32を表出する第2のコンタクト窓35を形
成し、リフロー処理により該第2のコンタクト窓35を
なだらかに整形し、 次いで通常の蒸着法等により該第2の眉間絶縁膜34上
に例えばアルミニウム等の配線材料層を形成しRIE法
によりパターンニングを行って、該第2の層間絶縁膜3
4上に上記第2のコンタクト窓35においてn+型ドレ
イン領域32に接続するビット配線36を形成する。
FIG. 2 (see fl) Next, a second layer made of PSG or the like is deposited on the substrate by CVD method.
A second contact window 35 exposing the n1 type drain region 32 is formed in the second interlayer insulating film 34 by an RIE method, and a second contact window 35 is formed by a reflow process. 35 is gently shaped, and then a layer of wiring material such as aluminum is formed on the second glabellar insulating film 34 by a normal vapor deposition method and patterned by an RIE method to form the second interlayer insulating film 34. 3
A bit wiring 36 is formed on the second contact window 35 to be connected to the n+ type drain region 32.

そして以後図示しないカバー絶縁膜の等がなされて本発
明に係わるD−RAMセルが完成する。
Thereafter, a cover insulating film (not shown) and the like are formed to complete the D-RAM cell according to the present invention.

上記実施例の説明から明らかなように、本発明に係わる
D−RAMセルにおいては、原理的には導電性基板21
上に形成する5iOz絶縁膜22を厚くしスルーホール
23を深くすることによって筒型のキャパシタCの電荷
蓄積容量を大幅に増大せしめることが可能である。
As is clear from the description of the above embodiment, in principle, in the D-RAM cell according to the present invention, the conductive substrate 21
By increasing the thickness of the 5iOz insulating film 22 formed thereon and deepening the through hole 23, it is possible to significantly increase the charge storage capacity of the cylindrical capacitor C.

また該筒型のキャパシタCは絶縁膜22内に設けられ、
隣接するセルの筒型キャパシタとの間が該絶縁膜22に
よって分離されることになり、情報電荷のリークは完全
に防止される。
Further, the cylindrical capacitor C is provided within the insulating film 22,
The cylindrical capacitors of adjacent cells are separated by the insulating film 22, and leakage of information charges is completely prevented.

更に又、基板に高導電性基板が用いられるのでα線入射
によって基板内に励起される電子はすぐに再結合して消
滅すること、及びキャパシタが絶縁膜22内けられるこ
とによって、ソフトエラーα線耐性は大幅に向上する。
Furthermore, since a highly conductive substrate is used as the substrate, electrons excited in the substrate by the incidence of α rays quickly recombine and disappear, and since the capacitor is disposed within the insulating film 22, a soft error α is caused. Line resistance is greatly improved.

なおキャパシタ電極は上記実施例に示す多結晶シリコン
に限られるものではなく、モリブデン・シリサイド等信
の導電物質であっても良い。
Note that the capacitor electrode is not limited to the polycrystalline silicon shown in the above embodiment, but may be made of a conductive material such as molybdenum silicide.

〔発明゛の効果〕[Effects of invention]

以上説明のように本発明によれば、1トランジスタ・l
キャパシタ構造のダイナミック型ランダムアクセスメモ
リ (D−RAM)セルの、キャパシタ容量を大幅に増
大し、隣接するキャパシタ間の情報電荷のリークを無く
し、且つソフトエラーα線耐性を向上せしめることが出
来るので、その信転度が向上する。
As explained above, according to the present invention, one transistor/l
It is possible to significantly increase the capacitor capacity of a dynamic random access memory (D-RAM) cell with a capacitor structure, eliminate information charge leakage between adjacent capacitors, and improve soft error alpha ray resistance. Its credibility will improve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる1トランジスタ・1キヤパシタ
構造のD−RAMセルの一実施例を示す模式平面図(a
l及びA−A矢視断面図(b)、第2図(a)乃至(f
)はその製造方法を示す工程断面図、 第3図はスタックド・キャパシタ型D−RAMセルの側
断面図、 第4図はトレンチ・キャパシタ型D−RAMセルの側断
面図である。 図において、 21は導電性基板、 22は二酸化シリコン(Sing)絶縁膜、23はスル
ーホール、 24は対向キャパシタ電極、 25は誘電体膜、 26は電荷蓄積用キャパシタ電極、 27は第1の眉間絶縁膜、 28は第1のコンタクト窓、    −29はp−型単
結晶シリコン層、 30はゲート酸化膜、 31は蓄積ノードとなるn゛型領領域 32はn゛゛ドレイン領域、 33はゲート電極(ワード線)、    。 34は第2の層間絶縁膜、 35は第2のコンタクト窓、 36はビット配線、 Cはキャパシタ、 Trはトランスファ・トランジスタ を示す。 第 1 図 第 2 図
FIG. 1 is a schematic plan view (a
1 and A-A cross-sectional view (b), Figures 2 (a) to (f)
3 is a side sectional view of a stacked capacitor type D-RAM cell, and FIG. 4 is a side sectional view of a trench capacitor type D-RAM cell. In the figure, 21 is a conductive substrate, 22 is a silicon dioxide (Sing) insulating film, 23 is a through hole, 24 is a counter capacitor electrode, 25 is a dielectric film, 26 is a charge storage capacitor electrode, and 27 is the first glabella. Insulating film, 28 is a first contact window, -29 is a p-type single crystal silicon layer, 30 is a gate oxide film, 31 is an n-type region 32 which becomes a storage node, is an n-drain region, 33 is a gate electrode (word line), . 34 is a second interlayer insulating film, 35 is a second contact window, 36 is a bit wiring, C is a capacitor, and Tr is a transfer transistor. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 導電性基板上の第1の絶縁膜に設けられたスルーホール
内に、該スルーホールの内面及び該スルーホール内に表
出する該導電性基板上に積層された第1の導電体層と、
該第1の導電体層上に形成された誘電体膜と、該誘電体
膜上に積層された第2の導電体層とよりなる筒型のキャ
パシタを有し、該キャパシタの上部に第2の絶縁膜を介
して積層された一導電型半導体層に、ゲートを挟んで配
設される反対導電型領域の一方が該第2の絶縁膜に配設
されたコンタクト窓を介して該キャパシタの第2の導電
体層に接するトランスファ・トランジスタが設けられて
なることを特徴とする半導体記憶装置。
A first conductor layer laminated on the conductive substrate, which is exposed in the inner surface of the through hole and inside the through hole, in a through hole provided in a first insulating film on the conductive substrate;
A cylindrical capacitor includes a dielectric film formed on the first conductive layer and a second conductive layer laminated on the dielectric film, and a second conductive layer is formed on the top of the capacitor. One conductivity type semiconductor layer stacked with an insulating film interposed therebetween, one of the opposite conductivity type regions disposed with the gate in between is connected to the capacitor through a contact window disposed in the second insulating film. A semiconductor memory device comprising a transfer transistor in contact with a second conductive layer.
JP60041654A 1985-03-01 1985-03-01 Semiconductor memory Pending JPS61199657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041654A JPS61199657A (en) 1985-03-01 1985-03-01 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041654A JPS61199657A (en) 1985-03-01 1985-03-01 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS61199657A true JPS61199657A (en) 1986-09-04

Family

ID=12614349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041654A Pending JPS61199657A (en) 1985-03-01 1985-03-01 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS61199657A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370560A (en) * 1986-09-12 1988-03-30 Nec Corp Semiconductor memory cell
US4918502A (en) * 1986-11-28 1990-04-17 Hitachi, Ltd. Semiconductor memory having trench capacitor formed with sheath electrode
DE4220997A1 (en) * 1991-08-17 1993-02-18 Horiba Ltd DEVICE FOR CONTINUOUS ANALYSIS OF A MEDIUM CONTAINING PARTICLES
US5468979A (en) * 1992-04-30 1995-11-21 Nippon Steel Corporation Semiconductor device having trench type capacitors formed completely within an insulating layer
US6780706B2 (en) * 1999-07-30 2004-08-24 Micron Technology, Inc. Semiconductor container structure with diffusion barrier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370560A (en) * 1986-09-12 1988-03-30 Nec Corp Semiconductor memory cell
US4918502A (en) * 1986-11-28 1990-04-17 Hitachi, Ltd. Semiconductor memory having trench capacitor formed with sheath electrode
DE4220997A1 (en) * 1991-08-17 1993-02-18 Horiba Ltd DEVICE FOR CONTINUOUS ANALYSIS OF A MEDIUM CONTAINING PARTICLES
US5468979A (en) * 1992-04-30 1995-11-21 Nippon Steel Corporation Semiconductor device having trench type capacitors formed completely within an insulating layer
US6780706B2 (en) * 1999-07-30 2004-08-24 Micron Technology, Inc. Semiconductor container structure with diffusion barrier

Similar Documents

Publication Publication Date Title
KR910002816B1 (en) Semiconductor memory
KR920007331B1 (en) Semiconductor memory device and a method of its manufacturing method
US4646118A (en) Semiconductor memory device
KR900000170B1 (en) Dynamic memory cell and method of producing it
EP0112670A1 (en) Semiconductor memory device having stacked capacitor-tape memory cells
JPH0616549B2 (en) Semiconductor integrated circuit device
JPS60214558A (en) Semiconductor integrated circuit device and manufacture thereof
US5428236A (en) Semiconductor memory device having trenched capicitor
JPS61176148A (en) Semiconductor memory device
JPS6155258B2 (en)
JPH0640573B2 (en) Semiconductor integrated circuit device
JPS59191374A (en) Semiconductor integrated circuit device
JPS61199657A (en) Semiconductor memory
JPH0131308B2 (en)
JPS60128658A (en) Semiconductor memory device
JPH0438144B2 (en)
JPS60109265A (en) Semiconductor ic device
JP2702702B2 (en) Semiconductor storage device
JPH0414862A (en) Semiconductor device
JP2671903B2 (en) Dynamic random access memory device
JP3354333B2 (en) Semiconductor storage device
JPS6110271A (en) Semiconductor device
JPH0329186B2 (en)
US5335196A (en) Semiconductor memory device having memory cells formed of one transistor and one capacitor and a method of producing the same
JPS6240868B2 (en)